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When quarks and gluons tend to form a dense medium, like in high en-
ergy or/and heavy-ion collisions, it is interesting to ask the question which
are the relevant degrees of freedom that Quantum Chromodynamics pre-
dicts. The present notes correspond to two lectures given at Zakopane
in the (rainy) summer of 2006, where this question is adressed concretely
in two cases, one in the QCD regime of weak coupling, the other one at
strong coupling. (The second Lecture is published on page 0000 of this
volume.) Each case corresponds to the study of an elusive but dynami-
cally important transient phase of quarks and gluons expected to appear
from Quantum Chromodynamics during high energy collisions. Below, we
examine the dynamical phase space of gluon transverse momenta near the
so-called “saturation” phase including its fluctuation pattern. “Saturation”
is expected to appear when the density of gluons emitted during the colli-
sion reaches the limit when recombination effects cannot be neglected, even
in the perturbative QCD regime. We demonstrate that the gluon momenta
exhibit a nontrivial clustering structure, analoguous to “hot spots”, whose
distributions are derived using an interesting matching with the thermo-
dynamics of directed polymers on a tree with disorder and its “spin-glass”
phase.

PACS numbers: 13.60.Hb, 12.38.Cy, 05.40.–a

1. Introduction

Saturation in QCD is expected to occur when parton densities inside a
hadronic target are so high that their wave-functions overlap. This is ex-
pected from the rapidity Y = log(W 2) evolution of deep-inelastic scattering
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amplitudes governed by the Balitsky Fadin Kuraev Lipatov (BFKL) ker-
nel [1]. The BFKL evolution equation is such that the number of gluons
of fixed size increases exponentially and would lead without modification to
a violation of unitarity. By contrast, the renormalisation-group evolution
equations following Dokshitzer, Gribov and Lipatov, Altarelli and Parisi
(DGLAP) [2] explain the evolution at fixed Y as a function of the hard
scale Q2. They lead to a dilute system of asymptotically free partons. As
schematized in Fig. 1, the transition to saturation [3,4] is characterized by a
typical transverse momentum scale Qs(Y ), depending on the overal rapidity
of the reaction, when the unitarity bound is reached by the BFKL evolution
of the amplitude. The two-dimensional plot showing the two QCD evolution
schemes and the transition boundary to saturation are represented in Fig. 1.
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Fig. 1. Schematic view of the transition region to saturation. The DGLAP and

BFKL evolution ranges are displayed, together with the saturation region where

the density bounds are reached.

The problem we address here is the characterization of the gluon momen-
tum distribution near saturation. Our aim is to understand the transverse-
momenta spectrum of the gluons which are generated by the BFKL evolution
in rapidity, i.e. characterising a transient QCD phase structure near satu-
ration as a whole. The new material contained in this lecture comes from
Ref. [5].

As a guide for the further developments, the basic structure underlying
the transition to saturation can be understood in terms of traveling waves. If
at first one neglects the fluctuations (in the mean-field approximation), the
effect of saturation on a dipole-target amplitude is described by the non-
linear Balitsky–Kovchegov [6] (BK) equation, where a nonlinear damping
term adds to the BFKL equation. As shown in [7], this equation falls into
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the universality class of the Fisher and Kolmogorov, Petrovsky, Piscounov
(F-KPP) nonlinear equation [8] which admits asymptotic traveling wave so-
lutions. The exponential behaviour of the BFKL evolution quickly enhances
the effects of the tail towards a region where finally the nonlinear damping
regulates both the traveling wave propagation and structure.

Indeed, one of the major recent challenges in QCD saturation is the
problem of taking into account the rôle of fluctuations, i.e. the structure
of gluon momenta beyond the average. In these conditions it was realized
for traveling waves [9] and thus in the QCD case [10], that the fluctuations
may have a surprisingly large effect on the overall solution of the nonlin-
ear equations of saturation. Indeed, a fluctuation in the dilute regime may
grow exponentially and thus modify its contribution to the overall ampli-
tude. Hence, in order to enlarge our understanding of the QCD evolution
with rapidity, it seems important to give a quantitative description of the
pattern of momenta generated by the BFKL evolution equations for the set
of cascading dipoles (or, equivalently gluons) near saturation, which is the
subject of the lecture.

Technically speaking, we shall work in the leading order in 1/Nc, where
the QCD dipole framework is valid [11]. Moreover we will use the diffusive
approximation of the 1-dimensional BFKL kernel. In fact, the phase struc-
ture appears quite rich already within this approximation scheme. Many
aspects we will obtain show “universality” features and thus are expected to
be valid beyond the approximations.

2. Rapidity evolution of cascading QCD dipoles

Let us start by briefly describing the QCD evolution of the dipole distri-
butions [11–13].

The structure of BFKL cascading describes a 2-dimensional tree struc-
ture of dipoles in transverse position space evolving with rapidity. Let us,
for instance, focus on the rapidity evolution starting from one massive qq̄
pair or onium [11], see Fig. 2. At each branching vertex, the wave function
of the onium-projectile is described by a collection of color dipoles. The
dipoles split with a probability per unit of rapidity defined by the BFKL
kernel [1]

K(v,w; z) =
αsNc

π

(v − w)2

(v − z)2 (z − w)2
(1)

describing the dissociation vertex of one dipole (v,w) into two dipoles at
(v, z) and (z,w), where v,w, z are arbitrary 2-dimensional transverse space
coordinates.

As an approximation of the 2-dimensional formulation of the BFKL ker-
nel (1) obtained when one neglects the impact-parameter dependence, we
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Fig. 2. BFKL cascading and saturation. The QCD branching process in the

BFKL regime and beyond is represented along the rapidity axis (upper part). Its

2-dimensional counterpart in transverse position space is displayed at two different

rapidities (lower part). The interaction region is represented by a shaded disk of

size 1/Q. At rapidity Y1, the interaction still probes individual dipoles (or gluons),

which corresponds to the exponential BFKL regime. There exists a smooth transi-

tion to a regime where the interaction only probes groups of dipoles or gluons, e.g.

at rapidity Y2. This gives a description of the near-saturation region correspond-

ing to a mean-field approximation, where correlations can be neglected. Further in

rapidity, Y > Y2, other dynamical effects, such as merging and correlations appear.

shall restrict our analysis in the present paper to the 1-dimensional reduction
of the problem to the transverse-momenta moduli ki of the cascading gluons.
After Fourier transforming to the transverse-momentum space, the leading-
order BFKL kernel [1] defining the rapidity evolution in the 1-dimensional
approximation is known [6] to act in transverse momentum space as a dif-
ferential operator of infinite order

χ(−∂l) ≡ 2ψ(1) − ψ(−∂l) − ψ(1 + ∂l) , (2)

where l = log k2 and Y is the rapidity in units of the fixed coupling constant
αsNc/π.
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In the sequel, we shall restrict further our analysis to the diffusive ap-
proximation of the BFKL kernel. We thus expand the BFKL kernel to
second order around some value γc

χ(γ) ∼ χc + χ′
c(γ − γc) + 1

2
χ′′

c (γ − γc)
2 = A0 −A1γ +A2γ

2 , (3)

where γc will be defined in such a way to be relevant for the near-saturation

region of the BFKL regime.
Within this diffusive approximation, it is easy to realize that the first

term (A0) is responsible for the exponential increase of the BFKL regime
while the third term (A2) is a typical diffusion term. The second term (A1)
is a “shift” term since it amounts to a rapidity-dependent redefinition of the
kinematic variables, as we shall see.

In Eq. (3), γc is chosen in order to ensure the validity of the kernel (3)
in the transition region from the BFKL regime towards saturation. Indeed,
the derivation of asymptotic solutions of the BK equation [7] leads to the
condition

χ(γc) = γc χ
′(γc) (4)

whose solution determines γc.
This condition applied to the kernel formula (2) gives γc =

√

A0/A2 ≈
0.6275... and {A0, A1, A2} ≈ {9.55, 25.56, 24.26}. These numbers may ap-
pear anecdotic, but they fully characterize the critical parameters of the
saturation transition, as we will realize later. For different kernels, e.g. in-
cluding the next-to-leading log effects [14], they could be different, of course.
But, then the traveling wave solution will be in a different “universality class”
in mathematical terms.

3. Mapping to thermodynamics of directed polymers

From the properties in transverse-momentum space and within the
1-dimensional diffusive approximation (3), we already noticed that the BFKL
kernel models boils down to a branching, shift and diffusion operator acting
in the gluon transverse-momentum-squared space. Hence the cascade of glu-
ons can be put in correspondence with a continuous branching, velocity-shift
and diffusion probabilistic process, see Fig. 2, whose probability by unit of
rapidity is defined by the coefficients Ai of (3).

Let us first introduce the notion of gluon momenta “histories” ki(y). They
register the evolution of the gluon momenta starting from the unique initial
gluon momentum k(0) and terminating with the specific i-th momentum ki,
after successive branchings. They define a random function of the running

rapidity y, with 0 ≤ y ≤ Y, the final rapidity range when the evolution ends
up (say, for a given total energy). It is obvious that two different histories
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ki(y) and kj(y) are equal before the rapidity when they branch away from
their common ancestor.

In order to fromulate precisely the mapping to the polymer problem, we
then introduce random paths xi(t) using formal space and time coordinates
x, t , 0 ≤ t ≤ ∆t which we relate to gluon momenta “histories” as follows:

y =
t

A0
; log k2

i (y) ≡ −β (xi(t) − x(0)) + (A0 −A1)y , (5)

where (A0−A1)y is a conveniently chosen and deterministic “drift term”, x(0)
is an arbitrarily fixed origin of the unique initial gluon and thus the same
for all subsequent random paths. The random paths xi(t) are generated
by a continuous branching and Brownian diffusion process in space-time
(cf. Fig. 3).

x

t L

X_1(t) X_7(t)

Fig. 3. Branching diffusion model for polymers. The coordinates x1(t) · · ·x7(t)

correspond to the random paths along the tree in the x, t phase-space. The oblique

axis is for L = βx + A1/A0 t, which takes into account the “time-drift” in the

mapping to the QCD problem.

As we shall determine later, the important parameter β, which plays the
rôle of an inverse of the temperature T for the Brownian movements of the
polymer process, is given by

1

T
≡ β =

√

2A2/A0 . (6)

In fact, the relation (6) will be required by the condition that the stochas-
tic process of random paths describes the BFKL regime of QCD near satu-

ration. Another choice of β would eventually describe the same branching
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process but in other conditions. Hence the condition (6) will be crucial to
determine the QCD phase at saturation (within the diffusive approxima-
tion).

Let now introduce the tree-by-tree random function defined as the par-
tition function of the random paths system

Z(t) ≡
n

∑

i=1

e−βxi(t) = e−βx0+A1y ×
1

n

n=eA0y
∑

i=1

k2
i (y) ∝ eA1y × k̄2(y) , (7)

where 1
n

∑n
i=1 k

2
i (y) ≡ k̄2(y) is the event-by-event average over gluon mo-

menta at rapidity y. Note that one has to distinguish · · · i.e. the average
made over only one event from 〈 · · · 〉, which denotes the average over sam-
ples (or events).

Z(t) is an event-by-event random function. The physical properties are
obtained by averaging various observables over the events. Note that the
distinction between averaging over one event and the sample-to-sample av-
eraging appears naturally in the statistical physics problems in terms of
“quenched” disorder: the time scale associated with the averaging over one
random tree structure is much shorter than the one corresponding to the
averaging over random trees.

With these definitions, Z appears to be nothing else than the partition
function for the model of directed polymers on a random tree [15].

Let us now justify the connection of the directed-polymer properties with
the description of the gluon momentum phase near saturation by rederiv-
ing the known saturation features from the statistical model point-of-view.
Using the known properties [15] of the partition function of the polymer
problem, one finds

logQ2
s ≡ 〈 log k̄2 〉 ≡ 〈 logZ 〉 −A1Y

=

[

(2
√

A2A0 −A1)Y −
3

2

√

A0

A2
log Y

]

+ O(1) (8)

which in fact matches exactly the asymptotic expansion found in [7] for the
saturation scale.

In the same way, the solution of the statistical physics problem allows to
derive the event-by-event free energy spectrum of the logZ(t) of the system
around its average. From (7), one gets

N (k̄2, Y ) ∼ P (logZ − 〈logZ〉) ∝ log

[

k̄2

Q2
s

]

exp

{

−

√

A0

A2
log

[

k̄2

Q2
s

]

}

,

(9)
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which is the well-known geometrical scaling property, empirically found in
Ref. [17] and theoretically derived in [7] from the BK equation for the dipole
amplitude N (k̄2, Y ).

Both properties (8), (9) prove the consistency of the model with the
properties expected from saturation. We shall then look for other properties
of the cascading gluon model. It is important to realize that this consistency
fails for a choice of the parameter β different from (6). This justifies a-
posteriori the identification of the equivalent temperature of the system in
the gluon/polymer mapping framework.

4. The spin-glass phase of gluons

Let us now come to the main new results concerning the determination
of structure of the gluon momentum phase at saturation.

The striking property of the directed polymer problem on a random tree
is the spin-glass structure of the low temperature phase. As we shall see this
will translate directly into a specific clustering structure of gluon transverse
momenta in their phase near the “unitarity limit”, see Fig. 4.

K_s1 K_s4

t
L

x

Fig. 4. The clustering structure of gluons near saturation. The drawing represents

the s1 · · · s4 clusters near momenta ks1 · · · ks4. They branch either near t � 1 or

(∆t− t) � 1, where ∆t is the total amount of time evolution.

Following the relation (6), one is led to consider the polymer system at
temperature T with

Tc − T

Tc
≡ 1 −

βc

β
= 1 − γc , (10)
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where γc is the critical exponent defined by (4). We are thus naturally led to
consider the low-temperature phase (T < Tc), at some distance Tc −T from
the critical temperature Tc =1/

√
2. In the language of traveling waves [16],

this corresponds to a “pulled-front” condition with “frozen”and “universal”
velocity and front profile.

As derived in [15], the phase space of the polymer problem is structured
in “valleys” which are in the same universality class as those of the Random
Energy Model (REM) [19] and of the infinite range Sherrington-Kirkpatrick
(SK) model [20].

Translating these results in terms of gluon momenta moduli, the phase
space landscape consists in event-by-event distribution of clusters of mo-
menta around some values k2

si ≡ 1/(ni)
∑

i∈si k
2
i , where ni is the cluster

multiplicity. The probability weights to find a cluster si after the whole
evolution range Y is defined by

Wsi =

∑

i∈si k
2
i

∑

i k
2
i

, (11)

where the summation in the numerator is over the momenta of gluons within
the sth

i cluster (see Fig. 4). The normalized distribution of weights Wsi thus
allows one to study the probability distribution of clusters. The clustering
tree structure, (called “ultrametric” in statistical mechanics) is the most
prominent feature of spin-glass systems [21].

Note again that, for the QCD problem, this property is proved for mo-
menta in the region of the “unitarity limit”, or more concretely in the mo-
mentum region around the saturation scale. This means that the cluster
average-momentum is also such that k2

si = O(Q2
s). Hence the clustering

structure is expected to appear in the range which belongs to the traveling
wave front [7] or, equivalently, of clustering with finite fluctuations around
the saturation scale.

In order to quantify the cluster structure, one may introduce a well-
known “overlap function” in statistical physics of spin-glasses [21]. Translat-
ing the definitions (cf. [15]) in terms of the QCD problem, one introduces
an event-by-event indicator of the strength of clustering which is built in
from the weights (11), namely Y =

∑

siW
2
si. The non-trivial probability

distribution of overlaps Π(Y) possesses some universality features, since it
is identical to the one of the REM and SK models and shares many quali-
tative similarities with other systems possessing a spin-glass phase [22, 23].
Examples are given in Fig. 5.

The rather involved probability distribution Π(Y) is quite intringuing.
It possesses a priori an infinite number of singularities at Y = 1/n, n integer.
It can be seen when the temperature is significantly lower from the critical
value, see for instance the curve for 1 − T/Tc = 0.7 in Fig. 5. However, the
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Fig. 5. The probability distribution of overlaps Π(Y). The figure (the simulation

is by courtesy from [18], using the method of Ref. [23]) is drawn both for the

theoretical QCD value γc = 0.7, and for γc = 0.3 for comparison. The statistics

used for the simulation is 108 events in 103 bins for γc = 0.3 and 3.25 106 events

in 102 bins for γc = 0.7.

predicted curve for the QCD value 1 − T/Tc ∼ 0.3 is smoother and shows
only a final cusp at Ws = 1 within the considered statistics. It thus seems
that configurations with only one cluster can be more prominent than the
otherwise smooth generic landscape. However, it is also a “fuzzy” landscape
since many clusters of various sizes seem to coexist in general.

5. Summary

We investigated the landscape of transverse momenta in gluon cascading
around the saturation scale at asymptotic rapidity. Limiting our study to a
diffusive 1-dimensional modelization of the BFKL regime of gluon cascad-
ing, we make use of a mapping on a statistical physics model for directed
polymers propagating along random tree structures at fixed temperature.
We then focus our study on the region near the unitarity limit where infor-
mation can be obtained on saturation, at least in the mean-field approxi-
mation. Our main result is to find a low-temperature spin-glass structure of
phase space, characterized by event-by-event clustering of gluon transverse
momenta (in modulus) in the vicinity of the rapidity-dependent saturation
scale. The weight distribution of clusters and the probability of momenta
overlap during the rapidity evolution are derived.
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Interestingly enough the clusters at asymptotic rapidity are branching
either near the beginning (“overlap 0” or y/Y � 1) or near the end (“overlap
1” or 1 − y/Y � 1) of the cascading event. The probability distribution of
overlaps is derived and shows a rich singularity structure.

On a phenomenological ground, it is remarkable that saturation density
effects are not equally spread out on the event-by-event set of gluons; our
study suggests that there exists random spots of higher density whose dis-
tribution may possess some universality properties. In fact it is natural to
expect this clustering property to be present not only in momentum modu-
lus (as we could demonstrate) but also in momentum azimuth-angle. This
is reminiscent of the “hot spots” which were some time ago [24] advocated
from the production of forward jets in deep-inelastic scattering at high en-
ergy (small-x). The observability of the cluster distribution through the
properties of “hot spots” is an interesting possibility.

Many aspects depicted in this lecture come from constant collaboration and
discussion inside (and outside) our “Saturation Team” in Saclay 2006, in
particular Edmond Iancu, Cyrille Marquet, Gregory Soyez.
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