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We discuss the non-perturbative regime of QCD, which is supposed
to be relevant for the description of the transient phase as quark–gluon
plasma formed during heavy-ion collisions at very high energies. Since
there is not yet an available field-theoretical scheme for non perturbative
QCD in those conditions, we study the dynamics of strongly interacting
gauge-theory matter (modelling quark–gluon plasma) using the AdS/CFT
duality between gauge field theory at strong coupling and a gravitational
background in Anti-de Sitter space. The relevant gauge theory is a-priori
equipped with N = 4 supersymmetries, but qualitative results may give
lessons on this issue. As an explicit example, we show that perfect fluid hy-
drodynamics emerges at large times as the unique nonsingular asymptotic
solution of the nonlinear Einstein equations in the bulk. The gravity dual
can be interpreted as a black hole moving off in the fifth dimension.

PACS numbers: 11.25.Tq, 12.38.Mh

1. Introduction

From the first years of the running of heavy-ion collisions at RHIC, it
has been advocated that various observables are in good agreement with
models based on hydrodynamics [1] and with quark–gluon plasma (QGP)
in a strongly coupled regime [2]. To a large extent it seems that the QGP
behaves approximately as a perfect fluid as was first considered in [3]. A
schematic view of the theoretical expectations in given in Fig. 1. It is a
challenge of QCD to derive from first principles the properties of the dy-
namics of a strongly interacting plasma formed in heavy-ion collisions and
in particular to understand why the perfect-fluid hydrodynamic equations
appear to be relevant.
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Fig. 1. Scenario for the quark–gluon plasma (QGP) formation. After a pre-

equilibrium stage in a heavy-ion collision, probably governed by a weak-coupling

but dense regime, the QGP is formed with local equilibrium and hydrodynamic

properties.

Even if the experimental situation is still developing and rather complex,
it is worth simplifying the problem in order to be able to attack it with
appropriate theoretical tools. Recently the AdS/CFT correspondence [4, 5]
emerged as a new approach to study strongly coupled gauge theories. This
has been largely worked out in the supersymmetric case, in particular for
the conformal case of N = 4 super Yang–Mills theory (SYM). Interestingly
enough, since the QGP is a deconfined and strongly interacting phase of
QCD, we could expect that results for the nonconfining N = 4 theory may
be relevant or at least informative as far as the unknown strong coupling
QCD problem is concerned. We will start from this assumption in our work.

In this lecture we focus on the spacetime evolution of the gauge theory
(4d) energy-momentum tensor, and derive its asymptotic behaviour from
the solutions of the nonlinear Einstein equations of the gravity dual.

Imposing the absence of curvature singularities in the gravity dual, we
will show that, in the boost invariant setting (as in [3]), perfect fluid hy-
drodynamics emerges from the AdS/CFT solution at large times. The new
material contained here comes from Refs. [6].

2. String/Gauge fields Duality

As an introduction to our lecture, let us briefly recall some aspects of
the String/Gauge Duality. The AdS/CFT correspondence [4] has many
interesting formal and physical facets. Concerning the aspects which are of
interest for our problem, it allows one to find relations between gauge field
theories at strong coupling and string gravity at weak coupling in the limit
of large number of colours (Nc →∞). It can be examined quite precisely
in the AdS5/CFT4 case which conformal field theory corresponds to SU(N)
gauge theory with N =4 supersymmetries.
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Let us recall the canonical derivation leading to the AdS5 background,
see Fig. 2. One starts from the (super)gravity classical solution of a system
of N D3-branes in a 10−d space of the (type IIB) superstrings. The metric
solution of the (super)Einstein equations read

ds2 =
1√
f

(

−dt2 +
∑

1−3

dx2
i

)

+
√

f(dr2 + r2dΩ5) , (1)

where the first four coordinates are on the brane and r corresponds to the
coordinate along the normal to the branes. In formula (1), one defines

f = 1 +
R4

r4
; R = 4πg2

YMα′2N , (2)

where g2
YMN is the ‘t Hooft–Yang-Mills coupling and α′ the string tension.

One considers the limiting behaviour considered by Maldacena, where one
zooms on the neighbourhood of the branes while in the same time going to
the limit of weak string slope α′. The near-by space-time is thus distorted
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Fig. 2. Schematic view of the Gauge/String Duality. Left: The string background

is the Anti-de Sitter space (AdS); Right: the gauge theory is a Conformal field

theory (CFT) on the 4-d N -branes.
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due to the (super) gravitational field of the branes. One goes to the limit
where

R fixed ;
α′(→ 0)

r(→ 0)
→ z fixed . (3)

This, from the second equation of (2) obviously implies

α′ → 0 , g2
YMN ∼ 1

α′2
→ ∞ , (4)

i.e. both a weak coupling limit for the string theory and a strong coupling
limit for the dual gauge field theory. By reorganizing the two parts of the
metrics one obtains

ds2 =
1

z2

(

−dt2 +
∑

1−3

dx2
i + dz2

)

+ R2dΩ5 , (5)

which corresponds to the AdS5 × S5 background structure, S5 being the
5-sphere. More detailed analysis shows that the isometry group of the
5-sphere is the geometrical dual of the N =4 supersymmetries. More intri-
cate is the quantum number dual to Nc, the number of colours, which is the
invariant charge carried by the Ramond–Ramond form field.

3. Bjorken hydrodynamics

Coming back to the physical world, a model of the central rapidity region
of heavy-ion reactions based on hydrodynamics was pioneered in [3] and in-
volved the assumption of boost invariance. Our goal is to study the dynamics
of strongly interacting gauge-theory matter assuming boost invariance.

We will be interested in the spacetime evolution of the energy-momentum
tensor Tµν of the gauge-theory matter. It is convenient to introduce the
proper-time (τ) and space-rapidity (y) coordinates in the longitudinal posi-
tion plane:

x0 = τ cosh y x1 = τ sinh y . (6)

In these coordinates, all components of the energy momentum tensor can be
expressed (see [6]) in terms of a single function f(τ):

Tµν =









f(τ) 0 0 0

0 −τ3 d
dτ f(τ)−τ 2f(τ) 0 0

0 0 f(τ)+ 1
2τ d

dτ f(τ) 0
0 0 0 f(τ)+ 1

2τ d
dτ f(τ)









(7)
where the matrix Tµν is expressed in (τ, y, x1, x2) coordinates.
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Furthermore the function f(τ) is constrained to verify

f(τ) ≥ 0 , f ′(τ) ≤ 0 , τf ′(τ) ≥ −4f(τ) . (8)

The dynamics of the gauge theory should pick a specific f(τ). A perfect
fluid or a fluid with nonzero viscosity and/or other transport coefficients
will lead to different choices of f(τ).

We thus address the problem of determination of the function f(τ) from
the AdS/CFT correspondence. Let us first describe two distinct cases of
physical interest:

For a perfect fluid (Bjorken hydrodynamics) f(τ) ∼ 1/τ
4

3 , while for a
“free streaming case” expected just at the beginning of the interaction [11] ,
f(τ) ∼ 1/τ. In the following we introduce a family of f(τ) with the large τ
behaviour of the form

f(τ) ∼ τ−s. (9)

4. Boost-invariant geometries

The most general form of the bulk metric respecting boost-invariance
can be written

ds2 =
−ea(τ,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2

⊥

z2
+

dz2

z2
. (10)

The three coefficient functions can be (non trivially) derived from the Ein-
stein equations

Rµν − 1

2
gµνR − 6 gµν = 0 , (11)

in the asymptotic limit where τ → ∞. Interestingly enough, they depend
only on the scaling variable v = z/τ s/4, where s labels the one-parameter
family of solutions (9).

After quite painful calculations, the solution reads [6]

a(v) = A(v)−2m(v) , b(v) = A(v)+(2s−2)m(v) , c(v) = A(v)+(2−s)m(v) ,
(12)

where

A(v) =
1

2

(

log(1 + ∆(s) v4) + log(1 − ∆(s) v4)
)

m(v) =
1

4∆(s)

(

log(1 + ∆(s) v4) − log(1 − ∆(s) v4)
)

(13)

with

∆(s) =

√

3s2 − 8s + 8

24
. (14)
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Specializing first to the perfect fluid case, this gives rise to the following
asymptotic geometry

z2 ds2 = −

(

1 − e0

3
z4

τ4/3

)2

1 + e0

3
z4

τ4/3

dτ2 +
(

1 + e0

3
z4

τ4/3

)

(τ2dy2 + dx2
⊥
) + dz2 . (15)

Remarkably enough this geometry can be identified (in a suitable metric) to
be a moving Black Hole, which evolves in the fifth dimension z.

For the free streaming case, one finds

z2 ds2 = −
(

1 +
v4

√
8

)
1−2

√
2

2
(

1 − v4

√
8

)
1+2

√
2

2

dt2

+

(

1 +
v4

√
8

)
1

2
(

1 − v4

√
8

)
1

2

τ2dy2

+

(

1 +
v4

√
8

)
1+

√
2

2
(

1 − v4

√
8

)
1−

√
2

2

dx2
⊥ + dz2 , (16)

which is qualitatively different from the perfect fluid case, in particular it
displays singularities or zeroes at v4 =

√
8 in all coefficients. More generally,

it is possible to show [6] that the perfect fluid case is the only one free of
physical singularities, namely singularities which cannot be removed by a
change of coordinates. In order to check this feature, we considered the
metric-invariant curvature scalar

R
2 = RµναβRµναβ . (17)

As an illustration, we represent this property in Fig. 3, where the value of R
2

is studied as a function of the distance from the horizon, for s values at the
perfect fluid point and very near-by values.

Let us add some comments on the specific features of our approach and
results. We concentrate on looking for solutions of the full nonlinear Ein-
stein equations. It would be interesting to confront this approach with the
linearization methods of Refs. [7]. In particular viscosity terms are expected
to appear in the study of subasymptotic terms Ref. [9]. Note that the pos-
sibility of black hole formation in the dual geometry has been argued in
Ref. [8]. More specifically, the geometry of a brane moving w.r.t. a black
hole background has been advocated in Ref. [10] for the dual description of
the cooling and expansion of a quark–gluon plasma. In our case we could
interpret the solution (15) as a kind of ‘mirror’ situation in terms of a black
hole moving off from the AdS boundary.
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Fig. 3. The curvature scalar R
2. R

2 is calculated as a function of w = v/∆(s)1/4

for the perfect fluid case s = 4/3 (solid line), s = 4/3 − 0.1 (dotted line) and

s = 4/3 + 0.2 (dashed line).

5. Summary

We have introduced a general framework for studying the dynamics of
matter (plasma) in strongly coupled gauge theory using the AdS/CFT cor-
respondence for the N = 4 SYM theory. We constructed dual geometries for
given 4-dimensional gauge theory energy-momentum tensor profiles. Further
imposing boost-invariant dynamics inspired by the Bjorken hydrodynamic
picture, we have found the corresponding asymptotic solutions of the nonlin-
ear Einstein equations. Among the family of asymptotic solutions, the only
one with bounded curvature scalars is the gravity dual of a perfect fluid
through its energy-momentum tensor profile. This selected nonsingular so-
lution, given by the metric (15), corresponds to a black hole moving off in the
5th dimension as a function of the physical proper time. As an application
of this framework, we can obtain [6] the thermalization time of the perfect
fluid, which describes the decay back to equilibrium of a scalar excitation
of the perfect fluid out of equilibrium, by computation of the quasi-normal
modes of the moving Black Hole. In some sense, the moving Black Hole
is a quite stable geometric configuration. We conjecture that it may rep-
resent, through the Gauge/Gravity duality, a powerful “attractor” for the
QGP evolution, or even perhaps for more general evolution of a strongly
coupled system of quarks and gluons e.g. in a high energy hadron–hadron
reaction.



3532 R. Peschanski

I warmly thank Romuald Janik for his major contribution in the fruitful
collaboration whose results are discussed in this lecture.

REFERENCES

[1] P.F. Kolb, U.W. Heinz, nucl-th/0305084.

[2] see e.g. E.V. Shuryak, Nucl. Phys. A750, 64 (2005) [hep-ph/0405066].

[3] J.D. Bjorken, Phys. Rev. D27, 140 (1983). Note that the pionneering work of
L.D. Landau on hydrodynamics for particle production, On the multiparticle
production in high-energy collisions, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953)
did not lead to boost-invariant solutions.

[4] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor.
Phys. 38, 1113 (1999)] [hep-th/9711200]; S.S. Gubser, I.R. Klebanov,
A.M. Polyakov, Phys. Lett. B428, 105 (1998) [hep-th/9802109]; E. Wit-
ten, Adv. Theor. Math. Phys. 2, 253 (1998) [hep-th/9802150].

[5] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep.
323, 183 (2000) [hep-th/9905111].

[6] R.A. Janik, R. Peschanski, Phys. Rev. D73, 045013 (2006)
[hep-th/0512162]; Phys. Rev. D74, 046007 (2006) [hep-th/0606149].

[7] G. Policastro, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 87, 081601 (2001)
[hep-th/0104066];

[8] H. Nastase, hep-th/0501068.

[9] R.A. Janik, hep-th/0610144.

[10] E. Shuryak, S.J. Sin, I. Zahed, hep-th/0511199.

[11] Y.V. Kovchegov, Nucl. Phys. A774, 869 (2006) [Eur. Phys. J. A29, 43
(2006)] [hep-ph/0510232].


