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An approach to the gluon saturation is discussed within a framework of
interacting QCD pomeron field theory. The formulation is consistent with
Lorentz invariance which guarantees that the symmetry between the target
and the projectile of the scattering matrix is preserved. The dynamics of
interacting pomeron system is studied in the semi-classical approximation.
Solutions to the emerging classical equations of motion (Braun equations)
are presented. Two unexpected features of these solutions are found: a
break-down of the symmetry between the target and the projectile and their
similarity to solutions of the Balitsky–Kovchegov equation. Interpretation
of the results is given and possible consequences are shortly discussed.

PACS numbers: 24.80.+y, 24.85.+p, 11.80.La

1. Introduction

Description of chromodynamic interactions in high energy hadron and
nucleus scattering may be conveniently organised in a framework of effec-
tive field theory of interacting QCD pomerons [1–3]. The basic degree of
freedom — the QCD pomeron — is a compound colour singlet state that
consists of two reggeized gluons interacting with each other by an exchange
of elementary gluons. The QCD evolution of this ladder-like system, that
resums leading logarithms of the scattering energy squared, s, is described
by the BFKL equation [4]. The BFKL pomeron alone, however, is not suf-
ficient to maintain the unitarity of the S-matrix. It is clearly visible from a
power-like growth of the single BFKL pomeron exchange with energy — at
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a fixed impact parameter the BFKL amplitude behaves like sλ with λ ∼ 0.3,
and this behaviour would eventually lead to unitarity breaking.

The unitarity of effective pomeron field theory (PFT) is preserved if
interactions of pomerons are suitably incorporated. The lowest order ver-
tices are triple pomeron vertices corresponding to the pomeron merging and
splitting [5]. Arbitrariness of the choice of the target and the projectile,
and thus of the direction of the evolution variable in the rapidity evolution,
implies that the vertices for pomeron merging and splitting are uniquely re-
lated to each other. In more general terms, the action of PFT exhibits the
target-projectile symmetry [6].

The complete evaluation of scattering amplitudes in PFT is rather dif-
ficult as it amounts to solving non-local quantum field theory. In the dia-
grammatic language it means that all the pomeron Feynman diagrams with
arbitrary topology should be resummed, and the generic diagrams contain
closed pomeron loops (see Fig. 1(c)). An essential simplification of the the-
ory is obtained if the vertex for the pomeron splitting is neglected. Then, the
pomeron loops cannot be formed and only fan diagrams, shown in Fig. 1(a),
contribute to scattering amplitudes. This is a suitable approximation for a
description of high energy scattering of a small colour probe (e.g. a small
colour dipole) off an extended large target (e.g. a nucleus), and a resumma-
tion of such diagrams leads to the Balitsky–Kovchegov (BK) equation [7,8].
Let us stress that the BK limit requires that independent couplings of many
pomerons to the target are possible. Note, that the BK problem is, in terms
of PFT, a classical problem — only the pomeron diagrams with the tree
topology contribute.
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Fig. 1. Examples of diagrams of the effective field theory of QCD pomerons inter-

acting with triple pomeron vertices: (a) a fan diagram; (b) a tree diagram defining

the classical limit; (c) a diagram with quantum loops.

A natural next step in the analysis of PFT, beyond the BK equation,
is to consider pomeron tree diagrams (see Fig. 1(b)) in the complete the-
ory whose dynamics embodies both merging and splitting of the pomerons.
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A resummation of such diagrams is equivalent to solving classical equations
of motion in PFT (Braun equations), firstly derived by Mikhail Braun [2].
It was also argued [2] that the semi-classical approximation should provide
a reasonable description of the scattering amplitude in nucleus–nucleus col-
lisions. Possible phenomenological applications of the formalism remain to
be studied, however, and in this contribution, we shall focus on a construc-
tion of pomeron field theory with the pomeron merging and splitting on the
analysis of solutions of the Braun equations. The results presented below
are based on our recently completed work [3].

It is important to stress here that the field-theoretical approach to QCD
saturation in not the only one. In fact, much more activity has been devoted
to studies of the s-channel picture of high energy scattering [9] which de-
veloped into the Colour Glass Condensate (CGC) formulation [10,11]. This
very successful framework explores the connection of high energy scattering
to dynamics of stochastic systems [11]. A description of the framework and
recent developments may be found for instance in lectures given during the
School [12–14]. The relation of the CGC to PFT is an important issue. In
principle, both formulations are based on the same underlying gauge the-
ory and use similar approximations — so one expects that the formulations
are equivalent. Some evidence that supports that, indeed, the equivalence
occurs follows from the fact that both the approaches lead, in the suitable
limit, to the BK equation. Thus, the triple pomeron vertices responsible
for the pomeron merging are equivalent in the PFT and in the CGC [15].
Furthermore, in both the approaches the vertex for pomeron splitting is
uniquely determined by the symmetry between the target and the projectile
and the vertex for pomeron merging. Therefore, although no explicit proof
exists, one expects that up to triple pomeron vertices the CGC and PFT
formulations agree.

So far, we discussed mostly the dynamics of the rapidity evolution of the
interacting pomeron system. The complete formulation of the scattering
problem requires, however, that the (multiple) couplings of the pomerons to
external sources are specified. Naively, one would start from eikonal cou-
plings, meaning that the multi-pomeron coupling factorises (up to the combi-
natoric symmetry factor) into the product of the independent single pomeron
couplings. Consequently, an arbitrary large number of the pomerons could
couple to the source at given impact parameter. This assumption, however,
is invalid in the case of the source given by an elementary colour dipole.
An elementary colour dipole may be coupled (at the leading logarithmic
approximation) only to a single BFKL pomeron [1, 16]. This is a conse-
quence of the bootstrap equation describing the gluon reggeisation. Clearly,
this implies that the unitarisation of the dipole-dipole scattering in QCD
cannot be achieved without pomeron loops and therefore the semi-classical
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approach is useless in this case. The situation is different for an extended
and complex object, like a nucleus. Then, the eikonal multi-pomeron cou-
pling may provide a reasonable approximation. In fact, this assumption was
used by Kovchegov in his derivation of the BK equation [8]. Thus, a non-
trivial application of Braun equations is possible only to a scattering of two
large and complex objects, like two nuclei. This situation is very different
from problems typically considered in the CGC formulation: a small dipole-
nucleus (or a small dipole-nucleon) scattering or dipole-dipole scattering,
and this should be kept in mind when the results obtained within those two
approaches are compared.

The paper is organised as follows. In the next section the formalism of
effective QCD pomeron field theory is presented and the Braun equations
are derived. In Sec. 3 solutions of the Braun equations are described. In
Sec. 4 we provide some insight into the results of Sec. 3 coming from a toy
model of reggeon field theory in zero transverse dimensions. Concluding
remarks are given in Sec. 5.

2. Effective action of pomeron field theory

A convenient starting point for a construction of the effective action
of PFT is the BK equation. In the initial formulation the BK equation
described the rapidity evolution of the dipole scattering amplitude off a
large target, N(y; r, b), where the dipole spans the vector r and it is located
at the transverse position b. We will, however, use the representation [17]
of the BK equation in which the basic degree of freedom is an unintegrated
gluon density f(y, k2, b) depending on the rapidity y, the gluon virtuality
k2 and the transverse position b. The unintegrated gluon density in the
transverse space may be related in the small-x limit to the collinear gluon
distribution of the target A

∫

A

d2
b f(y, k2, b) =

∂xg(x, k2)

∂ log k2
, (1)

where y = log(1/x). For the large target one may assume that the target is
locally uniform and that the evolution of N(y; r, b) is approximately local
in b, so b enters only through the initial condition. Thus, in the following
analysis the argument b of the gluon density will be suppressed. In this
representation the BK equation reads (a2, b2 and c2 below denote gluon
virtualities) [17]



Symmetric and Non-Symmetric Saturation 3537

∂yf(y, k2) =

∫

da2

a4
K0(k

2, a2)f(y, a2) − 2πα2
s



k2

∫

k2

da2

a4
f(y, a2)

×

∫

k2

db2

b4
f(y, b2) + f(y, k2)

∫

k2

da2

a4
log

(

a2

k2

)

f(y, a2)



 , (2)

and K0 is the amputated forward BFKL kernel given by

∫

db2

b4
K0(a

2, b2)f(b2) =
Ncαs

π
a2

∫

db2

b2

[

f(b2) − f(a2)

|b2 − a2|
+

f(a2)

[4b4 + a4]
1

2

]

.

(3)

It is easy to verify that the nonlinear term describing joining of two
pomerons, (f, f) → f is generated from the amplitude of the Bartels triple
pomeron vertex [5] (in the forward limit),

(f †|V3P |f ⊗ f) = −2πα2
s

∫

da2

a4
a2f †(y, a2)

∫

a2

db2

b4
f(y, b2)

∫

a2

dc2

c4
f(y, c2)

−2πα2
s

∫

da2

a4
f †(y, a2)f(y, a2)

∫

a2

db2

b4
log

(

b2

a2

)

f(y, b2)

(4)

by functional differentiation with respect to the auxiliary pomeron field
f †(y, k2). In fact, beyond the BK limit, it is necessary to consider the dy-
namics of the field f †(y, k2) and it turns out the fields f(y, k2) and f †(y, k2)
may be interpreted as the Gribov fields.

The BK equation accounts only for the pomeron merging. Construction
of triple pomeron vertex for the pomeron splitting is easy. Namely, in order
to distinguish merging of the pomerons from a splitting of a pomeron the
direction of the evolution in rapidity must be specified. This choice is,
however, completely arbitrary and the form the action should not depend
on it. In consequence, the effective action is invariant under the transform,

f ↔ f †, y → −y , (5)

and the form of the splitting vertex (f †⊗f †|V †
3P |f) is given by (f †|V3P |f⊗f)†.
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Thus, neglecting all multi-pomeron vertices higher than the triple pome-
ron vertices one obtains the effective action of PFT in the following form:

A[f, f †;Y ] =
4π3

N2
c − 1

Y
∫

0

dy
{

L0[f, f †] + L3[f, f †] + L†
3[f, f †] + LE[f, f †]

}

,

(6)
where the Lagrange function for the free propagation reads

L0[f, f †] =
1

2

∫

da2

a4

[

f(y, a2)∂yf
†(y, a2) − f †(y, a2)∂yf(y, a2)

]

+

∫

da2

a4

∫

db2

b4
f †(y, a2)K0(a

2, b2)f(y, b2) . (7)

The Lagrange function describing merging of two pomerons takes the form

L3[f, f †] = (f †|V3P |f ⊗ f) , (8)

and splitting of a pomeron contributes with

L3[f, f †] = (f † ⊗ f †|V3P |f) . (9)

The coupling of the pomerons to the external sources is represented by

LE[f, f †] =

∫

da2

a4

[

f †
E(y, a2)f(y, a2) + f †(y, a2)fE(y, a2)

]

, (10)

where the external sources will be assumed to be localised in rapidity,

fE(y, a2) = fA(a2)δ(y) , f †
E(y, a2) = f †

B(a2)δ(y − Y ) . (11)

Clearly, fA represents the amplitude of emission of the pomeron described

by the field f(y, k2) from the source at y = 0 and f †
B is the coupling of

f †(y, k2) to an external source at y = Y .
The elements of the action are graphically represented in Fig. 2.
The action lacks the appropriate treatment of the transverse position

and thus it is not suitable to describe the pomeron quantum loops, for
which correlations of the pomerons in the transverse plane are essential.
Nevertheless, the action treated in the semi-classical framework may be used
to approximately resum the BFKL pomeron tree diagrams (see Fig. 1(b)) in
scattering of two large objects, for instance of two nuclei. For a scattering in
which the projectile and the target have sizes much larger than the typical
momenta in the QCD pomeron, the momentum transfer any pomeron line
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f

f
 

+ f +

f f

V3P V3P
+

f + f +

f

d)
f E

f +
E

f +

f

c)b)a)

dy −K0

y

.

.

Fig. 2. Elements of the effective action: (a) the BFKL pomeron propagator; (b) the

merging vertex; (c) the splitting vertex and (d) the external sources of the fields.

The arrow indicates the direction of evolution.

originating from the external particles is bounded to be small by the form-
factors of the sources and it may be therefore neglected.

Let us return to the symmetry of the action defined by Eq. (5). This
symmetry causes the action to be self-dual [6]. Indeed, after integration by
parts of the “time derivative” part of the action

Y
∫

0

dy
1

2

[

f(y, a2)∂yf
†(y, a2) − f †(y, a2)∂yf(y, a2)

]

(12)

is transformed to

Y
∫

0

dy
[

−f †(y, a2)∂yf(y, a2)
]

+ (. . .) , (13)

where (. . .) denote the boundary terms, and one gets that

δL[f, f †]

δ(∂yf(y, k2))
= −

1

k4
f †(y, k2) . (14)

This means, that the field f †(y, k2) is the canonical conjugate of f(y, k2), up
to the factor of 1/k4 which can be easily absorbed into the field definitions
and trivial complex phase factors. After invoking the symmetry (5) we
conclude that the bulk part of the action (6) may be rewritten in the self-dual
form. The symmetry of the action (6) may be completed by assuming the
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symmetric external sources, that enter LE. Then, one expects the solution
of the field equations {f, f †} to be also symmetric

f(y, k2) = f †(Y − y, k2) , (15)

that is one expects that the target-projectile symmetry is realized at the
level of the solutions of the Braun equations.

The equations of motion read [3]:

∂yf(y, k2) = [K0 ⊗ f ](y, k2) +
δ(f †|V3P |f ⊗ f)

δf †(y, k2)
+

δ(f † ⊗ f †|V3P |f)

δf †(y, k2)
, (16)

−∂yf
†(y, k2) = [K0⊗f †](y, k2)+

δ(f †|V3P |f ⊗ f)

δf(y, k2)
+

δ(f † ⊗ f †|V3P |f)

δf(y, k2)
(17)

with two-point boundary conditions,

f(y = 0, k2) = fA(k2) , f †(y = Y, k2) = f †
B(k2) . (18)

The equations are equivalent to the equations derived by Braun [2], al-
though they are formulated here using other variables. Therefore we shall
refer to equations (16), (17) as to the Braun equations. The interpreta-
tion of the degrees of freedom that we use is straightforward in terms of
perturbative QCD in the momentum space; the basic physical objects: the
unintegrated gluon density and the triple pomeron vertex in the momentum
space are represented in a transparent way.

Solutions to the classical equations of motion for the pomeron fields may
be used to determine the S-matrix for the high energy scattering in the
semi-classical approximation. In order to do that, however, the dependence
of the problem on the transverse position has to be taken into account.

Thus, assuming locality of the evolution in the transverse space the com-
plete action takes the form

Ã[f, f †;Y, b] =

∫

d2
b1 A[f(y, k2, b1), f

†(y, k2, b − b1);Y ] , (19)

where the equations of motion may be employed to obtain

A[f, f †;Y ] =
1

2

Y +
∫

0−

dy
{

LE[f, f †] −L3[f, f †] −L†
3[f, f †]

}

, (20)

leading, in the semi-classical approximation, to the S-matrix

S(Y, b) = exp{−Ã[f, f †;Y, b]} . (21)
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3. Solutions of the Braun equations

Classical equations of motion (16) and (17) for the effective pomeron
fields f(y, k2) and f †(y, k2) were solved numerically for various values of the
total rapidity Y between the target and the projectile [3]. All the results
were obtained assuming the fixed coupling constant αs = 0.2. As the default
case, we applied the initial conditions (18) in the form:

fA(k2) = f †
B(k2) = N0

k4

Q4
0 + k4

. (22)

This condition was inspired by the properties of a saturated gluon distri-
bution in the nucleon. Thus we set Q2

0 = 0.5 GeV2, which corresponds to
the saturation scale in the nucleon gluon density at 10−3 < x < 10−2, and
N0 ' 0.08 GeV2, so that the collinear gluon distribution obtained from the
input is similar to the actual collinear gluon distribution xg(x,Q2) in the pro-
ton for 10−3 < x < 10−2 and for moderate Q2. The small-k2 asymptotics,
∼ k4, was chosen for consistence with the behaviour of the gluon density
that emerges from the BK equation, and at the large k2 a flat behaviour
of fA(k2) was assumed, a natural choice which follows from an absence of
the QCD evolution in the initial gluon distribution. The numerical solution
was based on a Chebyshev interpolation method in the variable log(k2) used
to discretise the differentio-integral equations (16) and (17). In order to ef-
fectively deal with the initial conditions imposed at two points of rapidity
an iterative procedure was applied which turned out to be convergent and
stable. The details of the solving procedure and the complete discussion of
the solutions is given in Ref. [3]. Various boundary conditions, besides (22)
were investigated and the qualitative features of the solutions did not de-
pend on the details. Here we shall focus on the most striking properties of
the solutions: a spontaneous breaking of the symmetry between the target
and the projectile at the level of classical solutions and a fan dominance
property.

The action of PFT, and consequently, the Braun equations are symmetric
under the target-projectile symmetry. Therefore, naively, one expects that
if a symmetric initial conditions are assumed, fA(k2) = fB(k2), then the
solution of the Braun equations is also symmetric, f †(y, k2) = f(Y − y, k2).
Indeed, this is true if the total rapidity Y is small enough. Above certain
critical rapidity Yc, however, this simple pictures breaks down and the solu-
tions of Braun equations are asymmetric, f †(y, k2) 6= f(Y − y, k2).

In Fig. 3 the solutions to the Braun equations for Y = 8 are shown. Solid
lines denote f(y, k2)/k2, and f †(y′, k2)/k2 — with y′ = Y − y — is shown
with points. The curves are plotted for y varying from zero to Y in the steps
of one. The curve labelled the “Input” shows fA(k2)/k2, where fA(k2) is
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k [GeV]
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y

f(y,k2)/k2

f+(y’,k2)/k2

Input

Fig. 3. Solutions of the Braun equations f(y, k2)/k2 = f †(y′, k2)/k2 for Y = 8.

defined by (22). Clearly, the solution is symmetric, f(y, k2) = f †(Y −y, k2).
Both components of the solutions exhibit a similar behaviour to a solution
of the BK equation at large gluon momenta k2. At small momenta, below
the saturation scale of the BK equation, f(y, k2) and f †(y′, k2) are much
flatter than fBK(y, k2), the solution to the BK equation with the input given
by (22). It turns out that the symmetry between f and f † breaks down at
certain critical rapidity Yc ' 9, for our choice of the initial conditions. For
Y > Yc only asymmetric solutions were found with our method, for which
f(y, k2) 6= f †(Y − y, k2), compare Fig. 4(a) and Fig. 4(b), which illustrate
f(y, k2)/k2 and f †(y, k2)/k2 respectively, for Y = 16. Note that, the initial
condition for f appears at y = 0 in Fig. 4(a) and the input of f † is plotted
for y = 16 in Fig. 4(b).

From Fig. 4 one sees that the symmetry between the target and the
projectile is spontaneously broken for individual classical solutions. In more
detail, the components of the asymmetric solution f(y, k2) and f †(Y −y, k2)
approach each other for Y → Y +

c , and the asymmetric solution connects
smoothly to the symmetric solution at Y → Y −

c . The asymmetry builds
up gradually with increasing Y and is very large for Y � Yc. Certainly,
the numeric value of the critical rapidity Yc is not universal, it depends on
the initial conditions and on the value of αs. It is important to note, that
for each asymmetric solution {f, f †} there exists a complementary solution

{f ′, f †′}, such that f ′(y, k2) = f †(Y − y, k2) and f †′(Y − y, k2) = f(y, k2),
reflecting the symmetry between the projectile and the target encoded in the
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Fig. 4. Solutions of the Braun equations for Y = 16 plotted as a function of rapidity

y and k: a) f(y, k2)/k2 and b) f †(y, k2)/k2.

action and the symmetric initial conditions. Knowing that, in the further
analysis of the solutions we choose arbitrarily that f(y, k2) is the larger field
and f †(y′, k2) is the smaller one.

For Y > Yc, the general features of the larger field f are the following. At
Y ' Yc the solution is similar to the symmetric solutions found for Y < Yc.
With increasing Y a pattern appears of a travelling wave, that is formation
of a peak of f(y, k2)/k2 travelling towards larger values of log(k2) with in-
creasing rapidity with only small changes of the shape, see Fig. 5(a). Recall,
that it is behaviour characteristic for solutions of the BK equation [18].
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The smaller field f †(y, k2) evolves in a different manner. For Y > Yc it
experiences a significant overall suppression, that increases with increas-
ing Y . For instance, at Y = 16 and for y ' 8 the maximal value of
f †(y, k2)/k2 is about three orders of magnitude smaller than the maximal
value of f(y, k2)/k2. The shape of f †(y′, k2)/k2 in k2 exhibits some inter-
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Fig. 5. Comparison of solutions of the Braun equations (solid line) to the solution

of the BK equation (points) for Y = 12: (a) the larger solution f(y, k2)/k2 and (b)

the smaller solution f †(y, k2)/k2.



Symmetric and Non-Symmetric Saturation 3545

esting features. At small values of k2, f †(y′, k2)/k2 tends to a flat function.
This should be compared with the case of the BK where f BK(y, k2)/k2 ∼ k2

at small k2. On the other hand, at large k2 the decrease of f †(y′, k2)/k2

with increasing k2 is slower than the decrease of fBK(y, k2)/k2. Thus, the
overall picture is that f †(y′, k2)/k2 is much flatter than fBK(y, k2)/k2.

We have already related briefly the larger component f(y, k2) of the
solution to the Braun equations to the solution of the Balitsky–Kovchegov
equation fBK(y, k2). A more detailed comparison is performed in Fig. 5
for Y = 12. Clearly, both f(y, k2) and f †(y′, k2) are very similar to the
corresponding components of the BK solution, f BK(y, k2) and f †BK(y′, k2)1.
Some small deviations are visible only for very small gluon momenta and
y > Y/2. In fact, both the overlap between f(y, k2) and fBK(y, k2) and
between f †(y′, k2) and f †BK(y′, k2) further improves with growing Y , and
at Y � Yc one expects that the differences between solutions of the Braun
equations and solutions of the BK equation are negligible. This property
will be referred to as a “fan dominance”.

4. Reggeon field theory in zero transverse dimensions

The results that we have found in the case of PFT are somewhat surpris-
ing at the first sight, in particular the lack of the target-projectile symmetry
in the classical field trajectories calls for an explanation. Therefore it should
be useful to study a simpler analogue of PFT — reggeon field theory in
zero transverse dimensions (RFT-0). This model was formulated and thor-
oughly analysed long time ago [19, 20] but it attracts some attention also
nowadays [21]. The dynamics of RFT-0 is driven by the action

ARFT−0[q(y), p(y);Y ] =

Y
∫

0

dyLRFT−0 , (23)

with the Lagrangian:

LRFT−0 =
1

2
q ∂yp −

1

2
p ∂yq + µ q p − λ q (q + p) p + q0 p + q p0 , (24)

where µ is the intercept of the pomeron, λ is the triple pomeron coupling
and {q, p} are (up to complex phase factors) Gribov fields depending only
on rapidity and responsible for the creation and annihilation of pomerons.
They correspond to f and f † of pomeron field theory. The functions q0(y)

1 Evolution of the smaller component f †BK(y′, k2) in the BK limit was performed by
solving the system (16) and (17) with the terms neglected that were generated by
the triple pomeron vertex corresponding to the pomeron splitting (the contribution

to the action of L†
3).
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and p0(y) are the external sources of the q and p fields respectively. In
analogy to the assumptions of the previous section we consider a scattering
process at rapidity Y with the source terms

q0(y) = g1δ(y) , p0(y) = g2δ(y − Y ) . (25)

The action is invariant under the duality transformation

p ↔ q and y → Y − y (26)

for symmetric boundary conditions g1 = g2 (obviously, the bulk action is
invariant for any external couplings).

The classical trajectories {q, p} obey the equations of motion,

∂yq = µ q − λ q2 − 2λ q p , (27)

−∂yp = µp − λ p2 − 2λ q p (28)

with the two-side initial conditions

q(0) = g1 , p(Y ) = g2 . (29)

For g1 < µ/λ and g2 < µ/λ the classical trajectories are confined inside
a triangle in the phase space spanned by points with (p, q) coordinates:
(0, 0), (0, µ/λ) and (µ/λ, 0). The problem possesses multiple solutions pro-
vided that rapidity Y is large enough. Thus, for Y smaller than a critical
value Yc (depending on g1, g2, λ and µ) there exists a unique solution,
{q̄1(y; g1, g2), p̄1(y; g1, g2)}. In the case of g1 = g2 = g the solution preserves
the symmetry between the target and the projectile,

q̄1(y; g, g) = p̄1(Y − y; g, g) . (30)

As in the case of PFT, above the critical rapidity Yc, two more solutions
{q̄2(y; g, g), p̄2(y; g, g)} and {q̄′2(y; g, g), p̄′2(y; g, g)} become possible which do
not inherit the symmetry between the target and the projectile embedded
in the action and the boundary conditions,

q̄2(y; g, g) 6= p̄2(Y − y; g, g) and q̄′2(y, g, g) 6= p̄′2(Y − y; g, g) . (31)

The three solutions are exemplified in Fig. 6(a) plotted in the phase space
{p, q}. The parameters of the model were chosen to be µ/λ=5, g1 =g2 =0.7,
and µY = 8. For this rapidity, one finds the symmetric trajectory 1 and two
asymmetric trajectories: 2 and 2’. At yet larger values of rapidity Y more
solutions are possible, corresponding to cycles in the phase space and giving
larger values of the action, so we neglect those cycles in the present analysis.
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As in the case of PFT the emergence of the asymmetric solutions may
be interpreted in terms of the spontaneous breaking of a discrete symmetry
of the action. The symmetry between the target and the projectile is built
in the action (23) and in the boundary conditions but some solutions of the
equations of motion are not symmetric. This is possible, as the boundary
conditions are defined at two points of rapidity and the classical solutions
need not be unique. The symmetry, however, still holds for the full set of
solutions,

q̄′2(y; g, g) = p̄2(Y − y; g, g) and p̄′2(y; g, g) = q̄′2(Y − y; g, g) . (32)

This means that under the duality transformation (26) each solution is trans-
formed into itself (solution 1) or into another solution (solutions 2 and 2 ′),
and the full set of solutions {p̄, q̄} is invariant under the duality transforma-
tion of p ↔ q and y → Y − y.

RFT-0
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p

1

2

2 ,

g1

g2

0

1

2

3

4

5
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(a) (b)

Fig. 6. Classical solutions of the RFT-0: (a) the {q, p} trajectories for Y > Yc;

(b) value of the action ARFT−0[q̄(y; g, g), p̄(y; g, g); Y ] for the symmetric solution

(dotted line) and the asymmetric solution (dashed line) as a function of scaled

rapidity µY .

The observed phenomenon of spontaneous symmetry breaking occurs at
the classical level. At the quantum level, however, the target-projectile sym-
metry should hold, as quantum transitions are possible between the states
of the system corresponding to the classical trajectories. One sees it, for
instance, from the form of the S-matrix in the semi-classical approximation
using the three solutions {1, 2, 2′}. This corresponds to an evaluation of the
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S-matrix by applying the saddle-point method to the path integral:

S(Y ; g1, g2) =

∫

[Dq Dp] exp {−ARFT−0[q(y), p(y);Y ]} . (33)

Note, that the system evolves in rapidity which is formally equivalent to an
evolution in the Euclidean time, thus the S-matrix is dominated by clas-
sical trajectories with the minimal value of the action. The value of the
action corresponding to trajectories 1 and 2 is plotted in Fig. 6(b) as a
function of the total rescaled rapidity µY . Note, that trajectory 2 is only
possible for Y > Yc, and the critical rapidity µYc ' 4 for our choice of
parameters. Clearly, the value of the action is smaller for the asymmetric
trajectories, therefore the asymmetric trajectories are expected to dominate
the Euclidean path integral defining the scattering amplitude at large ra-
pidities. The calculation of the quantum weights for Y > Yc was performed
in [20] leading to,

S(Y ; g1, g2) ' − exp {−ARFT−0[q̄1, p̄1;Y ]}

+exp {−ARFT−0[q̄2, p̄2;Y ]} + exp
{

−ARFT−0[q̄
′
2, p̄

′
2;Y ]

}

,

(34)

where the minus sign of the first term comes form the complex phase factors
picked up by the trajectory 1 at the turning points. One sees that the
symmetry between the target and the projectile is restored for the S-matrix
already at the semi-classical level, by summation over the complete set of
(asymmetric and symmetric) classical trajectories.

Finally, we have checked that the phenomenon of “fan dominance” at
large rapidities that was found in the case of PFT occurs also in RFT-0.
Thus, both the “fan dominance” and the breaking of the target-projectile
symmetry seem to be generic properties of the eikonal interacting pomeron
theories in the semi-classical approximation.

5. Concluding remarks

In this contribution a construction of interacting pomeron field theory
was described that respects the symmetry between the target and the pro-
jectile. The theory treated in the semi-classical approximation leads to
equations of motion for the pomeron field — the Braun equations. Above
certain critical value of the total rapidity available in the scattering the
target-projectile symmetry is broken for individual solutions, even though
the boundary conditions are symmetric. This exhausts the definition of the
spontaneous symmetry breaking at the classical level. At the quantum level,
however, the target-projectile symmetry remains valid. It happens because
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the S-matrix is determined by a complete weighted sum over all trajectories,
and the action which determines the weights is symmetric. This is visible
already in the semi-classical approximation (see e.g. (34)), where the con-
tributions of asymmetric classical trajectories combine to yield a symmetric
answer.

The symmetry of the S-matrix ensures that the inclusive observables are
also symmetric. One should ask if there exist any observables that could
serve as experimental signatures of the asymmetry between the target and
the projectile in heavy ion collisions. Such measurements would have to
break the quantum coherence and superselect one of the asymmetric classi-
cal solution in the classical measurement process. As a first guess we would

propose investigation of the average transverse momentum p̄T =
√

〈p2
T
〉 of

the particles produced in central collisions of heavy ions as a function of ra-
pidity y in the c.m.s. frame on the event-by-event basis. With the symmetry
between the target and the projectile being preserved the observable p̄T(y)
measured for individual events should be the same after changing the defi-
nition of rapidity y → −y. If the symmetry is broken in the event, however,
p̄T(y) should exhibit a clear trend. Certainly, in order to give an evidence
of the symmetry breaking, such asymmetric events should occur much more
frequently than fluctuations in a symmetric system.

A word of caution is necessary here. The analysis of PFT that we have
performed is based on the semi-classical approximation and the assumption
of eikonal pomeron couplings. Accuracy of both approximations is poorly
controlled. Although there is some evidence that the semi-classical approxi-
mation may work reasonably well in RFT-0, this may be false in PFT. The
issue of multiple pomeron couplings to a complex source is also rather ob-
scure — strict results exist only for an elementary colour dipole. Thus, it
requires more investigations to establish the validity of Braun equations in
phenomenological applications, for instance in describing the dynamics of
nucleus-nucleus collisions.

Finally, it would be rather important to systematically compare and re-
late PFT with the Colour Glass Condensate approach. In particular, a pos-
tulated equivalence of the two approaches should be proved (or disproved).
In fact, in this moment the CGC approach seems to be more advanced in the
treatment of quantum effects (or pomeron loops) and it should be fruitful
to translate the developments of CGC into the language of PFT. On the
other hand, the existing results in CGC correspond mostly to the case of
an asymmetric scattering: a small and simple probe scattering off a large
and complex target and, to our knowledge, the symmetric scattering prob-
lem of two large objects was not studied in depth yet, down to the level of
explicit solutions. Therefore, a direct comparison of the CGC results and
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the results of the analysis described in this contribution is not easy, as those
results refer to very different processes. Thus, we would like to view the
described approach to the high energy hadron scattering as complementary
to the CGC approach.

Let me thank Sergey Bondarenko for a fruitful collaboration on the sub-
ject discussed in this lecture. I am grateful to the Organisers for the in-
vitation and the opportunity to participate in the School. The support
of the grant of the Polish State Committee for Scientific Research (KBN)
No. 1 P03B 028 28 is gratefully acknowledged.
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