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We illustrate the general scheme of the Sum Rule (SR) method using
2D Quantum Harmonic Oscillator (2DQHO) as a toy model. We introduce
correlator, related to Green function of 2DQHO, and describe the property
of Asymptotic Freedom for 2DQHO. We explain how the duality conception
allows one to describe excited states. Finally we present numerical results
and extract some lessons to learn from our exposition. Then we switch to
the QCD and show that QCD SRs supply us the method to study hadrons
in non-perturbative QCD.

PACS numbers: 11.55.Hx, 12.38.Lg

1. Quantum-mechanical toy model

Two-dimensional oscillator with potential V (~r) = mω2r2/2 is the sim-
plest system with confinement. We select this particular case D = 2 because
all formulas greatly simplify, for example, energy levels and wave function
values in the origin are

En = (2n+ 1)ω ; |ψn(0)|2 =
mω

π
. (1.1)

We will consider the regular quasi-perturbative method of Sum Rules (SR)
to determine energy E0 and |ψ0(0)|2 of the ground state. We follow here
partially the lectures [1].

The general scheme of the SR method [2] can be easily understood on
the example of a correlator M(µ), which has the spectral expansion:

M spec(µ) = |ψ0(0)|2 e−E0/µ + “higher states” . (1.2)
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Suppose that we can construct the perturbative expansion of this correlator:

Mpert(µ) = M0(µ) +
∑

n≥1

C2n
ω2n

µ2n
, (1.3)

where M0(µ) corresponds to “free movement” and has the spectral represen-
tation:

M0(µ) =

∞
∫

0

ρ0(E) e−E/µ dE . (1.4)

The sum rule — it is simply

M spec(µ) = Mpert(µ) .

Usually it appears that higher state contributions can be well approximated
by “free states” outside interval (0, S0). As a result we have SR in the form:

|ψ0(0)|2 e−E0/µ =

S0
∫

0

ρ0(s) e
−s/µ ds+ C2

ω2

µ2
+ C4

ω4

µ4
+ . . . (1.5)

Our aim: to determine |ψ0(0)|2 and E0 from this SR by calculating spectral
density ρ0(E) of “free particle” and coefficients C2n by demanding stability
of this SR in variable µ ∈ [µL, µU] with appropriate value of S0.

In order to select M(µ) with these properties for our 2DQHO let us
consider 2-time Green function1

G(0, 0|~x, t) =
∑

k≥0

ψ∗
k(~x)ψk(0)e

−iEkt , (1.6)

which is the probability amplitude for the transition (x = 0, t = 0) → (~x, t).
To get M(µ) we put x = 0, t = 1/iµ

M(µ) = G(0, 0|0, 1/iµ) =
∑

k≥0

∣

∣ψk(0)
∣

∣

2
e−Ek/µ = M spec(µ) . (1.7)

In our case
∣

∣ψk(0)
∣

∣

2
= mω/π, so we have the exact result for our M(µ):

M(µ) =
mω

2π sinh (ω/µ)
. (1.8)

1 Due to the fact that ψk(0) = 0 for all states with L ≥ 1 only S-states contribute to
this sum.
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How fast is convergence of spectral expansion (1.7) for M(µ)? Let us es-
timate it for µ = ω. Exact result (1.8) gives us M(ω) = (mω/2π) · 0.851,
whereas numerically

M spec(ω) =
mω

2π
(0.736 + 0.100 + 0.013 + 0.002 + . . . ) .

Ground state contributes 86%, first excitation — 12%, while the second —
only 1.5%.

Now we turn to the perturbative expansion of M(µ) in powers of (ω/µ):

Mpert(µ) =
mµ

2π

(

1 − ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . .

)

, (1.9)

Here mµ/2π corresponds to the Green function of free particle:

M free(µ) =
mµ

2π
. (1.10)

Numerically at µ = ω we have

Mpert(ω) =
mω

2π
(1 − 0.167 + 0.019 − 0.002 + . . . ) .

First correction specifies free result by 17%, while the second by 3%. This
perturbative expansion can be rewritten

M(µ) −M0(µ)

M0(µ)
= − ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . . , (1.11)

that means Asymptotic Freedom: M(µ) behaves like M0(µ) at large µ� ω!
And it is violated by power corrections of the type

(

ω2/µ2
)n

.
We see in Fig. 1 that for large µ asymptotic freedom works well: M(µ) '

M0(µ), but we need more and more resonances to saturateM(µ). For small µ

in spectral part survives only ground state |ψ0|2e−E0/µ, but the perturbation
expansion breaks down. In order to model higher resonances let us consider
the spectral representation of our correlator M(µ):

M spec(µ) =
∑

k≥0

mω

π
e−Ek/µ ≡

∞
∫

0

ρosc(E) e−E/µ dE . (1.12)

Here the spectral density is just the sum of δ-functions:

ρosc(E) =
∑

k≥0

mω

π
δ(E −Ek) . (1.13)
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Fig. 1. In both panels the exact correlator, M(µ), (1.8), is shown by the solid line.

Left panel displays also the ground state contribution only, M spec
0 (µ) (the upper

dashed line) and M0(µ)+O(ω2/µ2) (the lower dashed line). In the right panel the

ground + 1-st excited state contribution only, M spec
0+1 (µ), is shown by the dashed

line to the right, whereas M0(µ) +O(ω4/µ4) — by the dashed line to the left.

Analogously we have integral representation for free correlator:

M0(µ) =
mµ

2π
≡

∞
∫

0

ρ0(E) e−E/µ dE , (1.14)

where ρ0(E) = m/(2π). Asymptotic freedom dictates global duality of these
two densities (term “global” is related with integration over the whole spec-
trum)

∞
∫

0

ρosc(E) dE =

∞
∫

0

ρ0(E) dE . (1.15)

At first glance these spectral densities have completely different behavior, see
Fig. 2. But we have very interesting relations between 2kω-partial integral

moments of this dual densities, namely, 〈EN 〉2kω ≡
∫ 2kω+2ω
2kω ENρ(E) dE:

2(k+1)ω
∫

2kω

ρosc(E) dE =
mω

π
=

2(k+1)ω
∫

2kω

ρ0(E) dE , (1.16)

2(k+1)ω
∫

2kω

E ρosc(E) dE =
mω2(2k+1)

π
=

2(k+1)ω
∫

2kω

E ρ0(E) dE . (1.17)

ForN≥2 we have approximate relation 〈EN 〉osc2kω =〈EN 〉02kω

[

1+O
(

N2/k2
)]

.
So, we have duality between each excited resonance in oscillator and free
particle in some spectral domain. That means local duality.
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Fig. 2. Left panel: the exact spectral density ρosc(E) (1.13), is shown by solid

vertical lines, imitating δ-functions, whereas free spectral density, ρ0(E), by the

horizontal solid line. Right panel: the phenomenological model ρmod(E) (1.18), is

shown by solid vertical line, imitating δ-function, and by the solid line, correspond-

ing to ρ0(E) and starting from the threshold S0.

Now we can model higher state contributions by “higher states” = “free
states” outside interval (0, S0) or:

ρmod(E) = |ψ0(0)|2 δ (E −E0) + ρ0(E) θ (E − S0) (1.18)

and this gives us

Mmod(µ) = |ψ0(0)|2 e−E0/µ +

∞
∫

S0

ρ0(s) e
−E/µ dE . (1.19)

After all we have the following SR

|ψ0(0)|2e−E0/µ =

S0
∫

0

ρ0(E) e−E/µ dE + power corrections , (1.20)

or, equivalently, with Ψ0(0) ≡ ψ0(0)
√

π/ω:

|Ψ0(0)|2e−E0/µ =
µ

2ω

{

1 − e−S0/µ − ω2

6µ2
+ . . .

}

. (1.21)

We also have a daughter SR produced from (1.21) by applying ∂/∂µ−1

|Ψ0(0)|2E0 e
−E0/µ =

µ2

2ω

{

1 −
(

1 +
S0

µ

)

e−S0/µ +
ω2

6µ2
+ . . .

}

. (1.22)

If we divide (1.22) by (1.21) we obtain SR for E0

E0 = µ
1 − (1 + S0/µ) e−S0/µ + ω2/(6µ2) + . . .

1 − e−S0/µ − ω2/(6µ2) + . . .
. (1.23)
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The strategy of processing these SRs is:

• To determine E0 ≈ E0(S0, µ) by minimal sensitivity to variation of
µ ∈ [µL;µU] at appropriate S0;

• To determine |Ψ0(0)|2 ≈ Ψ2
0 (S0, E0, µ) by minimal sensitivity to varia-

tion of µ at appropriate S0.

How we should determine the fidelity window [µL;µU]? Power corrections
are of the type (ω/µ)2n and they are huge at µ� ω. We demand:

∆pert(µ) ≡
∑

n≥1

C2n(ω/µ)2n

M0(µ)
≤ 0.33 , forall µ ≥ µL . (1.24)

Higher states are not suppressed by e−Ek/µ ≈ 1 at large µ� ω. We demand:

∆H.S.(µ) ≡
∞
∫

S0

ρ0(E)

M0(µ)
e−E/µdE ≤ 0.33 , forall µ ≤ µU . (1.25)

Then the fidelity window is µL ≤ µ ≤ µU: Only for µ inside it is reasonable
to demand minimal sensitivity of SRs to variations in µ!

Let us first consider SR setup with fixed E0: We fix the energy of the
ground state to the exact value, E0 = ω, and obtain the following fidelity
window, µL = 0.73ω and µU = 1.80ω, see Fig. 3, left panel. The result
|Ψ0(0)|2 = 0.99 is obtained with only 2 power corrections included and for
S0 = 2.08ω (the exact value is |Ψ0(0)|2 = 1), see Fig. 3, right panel.

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

µ

µUµL

∆H.S.(µ)∆pert(µ)

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.8

0.9

1

1.1

1.2

1.3

µ

µUµL

S0 = 2.08 ω|Ψ0(0)|2(µ)

Fig. 3. Left panel: determination of the fidelity window using criteria (1.24) and

(1.25). Right panel: we show here the l.h.s. of Eq. (1.21) with E0 fixed at the

exact value E0 = ω as a function of µ. Dashed line corresponds to the position of

the exact value of |Ψ0(0)|2. Positions of µL and µU are shown by vertical arrows in

both panels and µ is displayed in units of ω.
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Now we consider SR in the complete setup, that means that we determine
the energy of the ground state from daughter SR (1.23). We take into
account 3 power corrections and obtain the fidelity window [0.74ω; 1.8ω]
and E0 = 0.98ω for S0 = 1.88ω, see Fig. 4, right panel.
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Fig. 4. Left panel: we show here the l.h.s. of Eq. (1.23), E0(S0, µ)/ω, as a function

of µ in units of ω. Dashed line corresponds to the position of exact value of E0.

Right panel: the l.h.s. of Eq. (1.21) is shown as a function of µ in units of ω (solid

line). Dashed line corresponds to the position of exact value of |Ψ0(0)|2.

Our conclusions about SRs in quantum mechanics can be summarized
as follows:

• SRs give E0 and |ψ0(0)|2 with accuracy not worse than 10% ;

• Main source of the error — crude model for the spectral density of
higher states: even taking into account 10 power corrections we obtain
E0 = 0.95ω, S0 = 1.79ω, and |ψ0(0)|2 = 0.89 ;

• But: If we know E0 = 1 exactly (say, from Particle Data Group), then
accuracy can be twice higher: with taking into account 2 power cor-
rections we obtain S0 = 2.08ω and |ψ0(0)|2 = 0.99 !

• In QCD spectral density more close to perturbative!

2. QCD SRs: Way to study hadrons in nonperturbative QCD

In QCD we have a big problem: nobody knows how to analyze bound
states. The method of QCD SRs allows us to calculate properties of hadrons
(masses, decay constants, magnetic moments) without considering hadron-
ization or confinement issues. It was invented in 1977 by Shifman, Vain-
shtein & Zakharov (ITEP) [3] in order to describe J/ψ-meson, the cc̄-system,
discovered in 1974 in e+e−-annihilation at SPEAR (SLAC) and, in parallel,
in p+Be collisions at BNL. In 1979 this method was applied to describe
light hadrons in massless QCD [2].
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Main idea: to calculate correlators of hadron currents 〈0|T [J1(x)J2(0)] |0〉
by two approaches and to obtain the SR as the result of the matching.
We start with the Fourier transformed correlator of two hadron currents

Π
(

Q2
)

Lorentz12 ≡ i

∫

eiqx [〈0|T [J1(x)J2(0)] |0〉] dx , (2.1)

where Lorentz12 includes all Lorentz structures, so that Π
(

Q2
)

is scalar,
and use the dispersion integral representation

Π(Q2) =

∞
∫

0

ρ12 (s) ds

s+Q2
+ “subtractions” . (2.2)

Then we apply Borel transform defined as

Φ(M2)=B̂(Q2→M2)Π(Q2)= lim
n→∞

(−Q2)n

Γ (n)

[

dn

dQ2n
Π(Q2)

]

Q2=nM2

. (2.3)

Here we list the most important examples:

Π(Q2) C = const C log
(

Q2/µ2
)

1/Q2n 1/
(

s+Q2
)

Φ(M2) 0 −C 1/
(

Γ (n)M2n
)

e−s/M2

/M2

For us the most important are the first and the last columns in this table: we
see that Borel transform kills “subtractions” and suppresses “higher states”
(by the factor exp(−s/M 2) in the integrand) in (2.2):

BQ2→M2

[

Π(Q2)
]

≡ Φ
(

M2
)

=

∞
∫

0

ρ12 (s) e−s/M2 ds

M2
. (2.4)

In the 1-st approach we apply the Operator Product Expansion (OPE) with
account for quark and gluon condensates in QCD vacuum to obtain

Φ
(

Q2
)

= Φpert

(

Q2
)

+ cGG
〈(αs/π)GG〉

M4
+ cq̄q

αs〈q̄q〉2
M6

. (2.5)

Here 〈(αs/π)Ga
µνG

aµν〉=0.012GeV4, αs〈q̄q〉2 =0.0018GeV6 has been deter-
mined in [2] and till nowadays are practically the same [4]. The 2-nd ap-
proach uses phenomenological saturation of spectral density by hadronic
states, see (3.16),

ρhad (s) = f2
hδ

(

s−m2
h

)

+ ρpert (s) θ (s− s0) . (2.6)
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Our model is the ground state h + continuum, which starts from threshold
s = s0. Then the SR is

f2
h e

−m2
h
/M2

=

s0
∫

0

ρpert(s) e
−s/M2

ds+ cGG
〈αs

π GG〉
M2

+ cq̄q
αs〈q̄q〉2
M4

. (2.7)

Our aim: to determine f 2
h and mh from this SR by calculating spectral

density ρpert(s) and coefficients cGG and cq̄q and by demanding stability of
this SR in variable M 2 ∈ [M2

L
,M2

U
] with appropriate value of S0.

3. Mesonic currents in QCD

Let us now write down the currents related to π±-mesons in QCD:

AV: Jµ5(x) = ū(x)γµγ5d(x) , J †
µ5(x) = d̄(x)γµγ5u(x) , (3.1)

PS: J5(x) = i ū(x)γ5d(x) , J †
5(x) = i d̄(x)γ5u(x) . (3.2)

Note that Dirac equation i D̂ q(x) = mq q(x) gives us the relation:

∂µJµ5(x) = (mu +md) J5(x) . (3.3)

The decay constant fπ of the physical pion π(P ) is defined via

〈0
∣

∣Jµ5(0)
∣

∣π(P )〉 = i fπ Pµ . (3.4)

It was measured in the decay π → µνµ to be fπ = 132 MeV. Eq. (3.3) then
gives

〈0
∣

∣J5(0)
∣

∣π(P )〉 =
fπ m

2
π

mu +md
, (3.5)

meaning that the pion reveals itself both in the axial and pseudoscalar cur-
rents!

Currents related to ρ±-mesons in QCD are

Jµ(x) = ū(x)γµd(x) , J †
µ(x) = d̄(x)γµu(x) . (3.6)

The decay constant fρ of physical ρ±(P, ε)-meson with polarization ε and
momentum P , satisfying (P ε) = 0 and (ε, ε) = −1, is defined through

〈0
∣

∣Jµ(0)
∣

∣ρ(P, ε)〉 = fρmρ εµ . (3.7)

Decay ρ0 → e+e− allows to measure fρ0 = 150 MeV, then from isospin

symmetry we can deduce fρ± =
√

2 fρ0 = 210 MeV.
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Interesting question: Why do we put T -product of currents in the def-
inition (2.1) of correlators? To answer it we consider the vector current
correlator Πµν in more detail. Lorentz invariance and vector current con-
servation dictate

Πµν(q) = i

∫

d4x eiqx〈0
∣

∣T [Jµ(x)Jν(0)]
∣

∣0〉 =
[

qµ qν−gµν q
2
]

Π(q) . (3.8)

Inserting 1̂ in between currents, we obtain

Π(q) =
−i (2π)3

3q2

∑

X(p)

δ(~p− ~q) θ(p0)
∣

∣

∣
〈0

∣

∣Jµ(0)
∣

∣X(p)〉
∣

∣

∣

2

×
∞
∫

0

dt
[

ei(q0−p0)t + e−i(q0+p0)t
]

. (3.9)

From Sokhotsky identity we have

∞
∫

0

dt e±iαt = π δ(α) ± iP 1

α
, (3.10)

that gives us

ImΠ(q2) = −π (2π)3

3q2

∑

X(p)

δ(~p− ~q) δ(p0 − |q0|)
∣

∣

∣
〈0

∣

∣Jµ(0)
∣

∣X(p)〉
∣

∣

∣

2
. (3.11)

As a result we have

1

π
ImΠ(q2) = ρ(q2)θ(|q0|) = ρ(q2) (3.12)

with

ρ(q2) θ(q0) =
−(2π)3

3q2

∑

X(p)

δ(4)(q − p) θ(p0)
∣

∣

∣
〈0

∣

∣Jµ(0)
∣

∣X(p)〉
∣

∣

∣

2
. (3.13)

Lorentz invariance dictates that ρ(q2) ≥ 0. Indeed,

〈0
∣

∣Jµ(x)
∣

∣X(p)〉 = [Apµ +B εµ] e−ipx (3.14)

with p ·ε = 0, and therefore, ε ·ε = −1. From current conservation it follows
A = 0, i.e. (B = fX mX , see (3.7))

〈0
∣

∣Jµ(x)
∣

∣X(p)〉〈X(p)
∣

∣J†
µ(x)

∣

∣0〉 =
∣

∣fX

∣

∣

2
m2

Xε
2 = −

∣

∣fX

∣

∣

2
m2

X ≤ 0 . (3.15)
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This gives us

ρ(s) =
∑

X

∣

∣

∣
fX

∣

∣

∣

2
δ(s−m2

X) ≥ 0 . (3.16)

Now we can say why we put T -product in correlators — then spectral densi-
ties, defined only by real particles, are Lorentz invariant and depend only on
q2 ! Indeed, we see that the structure ei(q0−p0)t + e−i(q0+p0)t in (3.9) appears
due to the presence of the T -product in the definition of the correlator (3.8).
And just this structure generates as a result θ(|q0|) in (3.12).

Relation to the cross section of e+e−
→hadrons. We have (3.12) for the

spectral density ρ(q2). This function naturally appears in 1-photon QED de-
scription of the process e+e− → hadrons if current Jµ is the electromagnetic
current due to quarks:

q

ν µ

e+

e−

X(p) ⇔ ū(k)γµu(k
′)
ie2

q2
〈X(p)|Jµ(q)|0〉 .

Here k and k′ are the momenta of ingoing e+ and e−. Then we can deduce

σe+e−→hadrons(s) =
16π3 α2

s
ρ(s) =

4π α2

3 s
R(s) , (3.17)

where we explicitly extracted as a factor the cross-section σe+e−→µ+µ−(s) =

4π α2/(3 s) of the process e+e− → µ+µ−. Equivalently:

R(s) ≡ σe+e−→hadrons(s)

σe+e−→µ+µ−(s)
, ρ(s) =

1

12π2
R(s) . (3.18)

Now we can look to the quark–hadron duality, that is duality of hadron
spectral density ρhad(s), which is measured in τ -decay to ντ+hadrons , and
quark spectral density ρpert(s) predicted by QCD:

s2
∫

s1

ρpert(s) ds =

s2
∫

s1

ρhad(s) ds . (3.19)

Looking in Fig. 5 we can produce the following observations:

• Real hadron spectral density is more smooth than in QHO case;

• Duality is working!

• Asymptotics starts at s ≥ 3 GeV2.
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Fig. 5. We show here perturbative spectral density 4π2ρpert(s) (dashed line) in

comparison with spectral density 4π2ρhad(s) measured by ALEPH Collaboration.

4. Condensates in QCD

In quantum mechanics we saw that in the presence of confinement po-
tential

M
(

τ−1
)

−M0

(

τ−1
)

=
m

2π

[

−1

6
ω2 τ +

7

360
ω4 τ3 + . . .

]

.

This difference vanishes at short distances τ � 1/ω and one can calculate
exact M(µ) perturbatively, expanding in powers of the oscillator potential.
In QCD confining potential V conf(r) is not even known. How to proceed
further? The suggestion of QCD SR approach is:

• To construct perturbative expansion in terms of quark and gluon prop-
agators;

• To postulate that quark and gluon propagators are modified by the
long-range confinement potential;

• To suppose that this modification is soft: at τ → 0 the difference
between exact and perturbative propagators vanishes.

In realizing this program we write the exact propagator S exact(x, 0) of a field
ψ as a vacuum average in the exact vacuum |0〉

iSexact(0, x) = 〈0|T (ψ̄(x)ψ(0))|0〉 . (4.1)

Wick theorem allows us to write T -product as the sum

T (ψ̄(x)ψ(0)) = ψ̄(x)

]

ψ(0)+ : ψ̄(x)ψ(0) : (4.2)

of the “pairing” and the “normal” product. Then

Sexact(0, x) = S0(x, 0) + 〈0| : ψ̄(x)ψ(0) : |0〉 , (4.3)
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which can be considered as the starting point to calculate power corrections
in QCD. The examples in QCD are: 〈q̄q〉 ≡ 〈0| : q̄(0) q(0) : |0〉 referred to
as quark condensate; 〈q̄D2q〉, characterizing average virtuality of the vac-
uum quarks; gluon condensate 〈GG〉 ≡ 〈0| :Ga

µν (0)Ga
µν(0) : |0〉, etc. Here

Dµ ≡ ∂µ − igAµ is the covariant derivative and Gµν = (i/g)[Dµ, Dν ] is the
gluonic field strength.

Condensates and PCAC for pions in QCD. We derived the relations (3.3)
and (3.4), (3.5). In order to see their consequences consider now correlator

Πµ55(q) = i

∫

d4x eiqx〈0
∣

∣T
[

Jµ5(x)J
†
5(0)

]

∣

∣0〉 ≡ i qµΠAP(q2) (4.4)

and its contraction with qµ

i q2ΠAP(q2) = −
∫

d3~x e−i~q~x
〈

0
∣

∣

∣

[

J05(0, ~x); J †
5(0)

]
∣

∣

∣
0
〉

− (mu +md)

∫

d4x eiqx
〈

0
∣

∣

∣
T

[

J5(x)J
†
5 (0)

]
∣

∣

∣
0
〉

= i 〈ūu+ d̄d〉 + i (mu +md) Π55(q
2) . (4.5)

Inserting pions in between currents of ΠAP(q2) in (4.4) we have

ΠAP(q2) ≈ fπ m
2
π

mu+md

fπ

m2
π−q2

∣

∣

∣

q2→∞
=

−f2
π m

2
π

mu+md

1

q2

[

1+O

(

m2
π

q2

)]

. (4.6)

Comparing asymptotics O(1/q2) of (4.5) and (4.6) gives us the famous PCAC
relation:

f2
π m

2
π = −〈ūu+ d̄d〉 (mu +md) +O

(

m2
q

)

. (4.7)

In fact we should add other possible PS-meson states to obtain

f2
π m

2
π + f2

π′ m2
π′ + . . . = −〈ūu+ d̄d〉 (mu +md) +O

(

m2
q

)

. (4.8)

In the chiral limit, mq → 0, PCAC relation tells us:

• fπ 6= 0, then mπ → 0 ⇒ pion is Goldstone boson;

• mπ′ 6= 0, then fπ′ → 0 ⇒ no decays π′ → µνµ !

• mπ ≈ fπ ≈ 130 MeV ⇒ 〈q̄q〉 ≈ −(260 MeV)3 at mu = md = 4 MeV.
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5. QCD SRs for π-mesons

We study axial-axial correlator Πµ5;ν5(q)

i

∫

d4x eiqx
〈

0
∣

∣

∣
T

[

Jµ5(x)J
†
ν5(0)

] ∣

∣

∣
0
〉

≡ gµνΠ1(q
2) + qµqνΠ2(q

2) .

Hadronic contribution to Borel transform of Π2(q
2):

Φhadr
(

M2
)

= BQ2→M2

[

Πhadr
2 (q2)

]

=
f2

π

M2
+
f2

A1

M2
e
−m2

A1
/M2

+ . . . .

The following diagrams contributes to the OPE of this correlator

q 5µ 5ν q 5µ 5ν q 5µ 5ν

ΦOPE

(

M2
)

= Φpert

(

M2
)

+ Φ2V

(

M2
)

q 5µ 5ν q 5µ 5ν q 5µ 5ν

+ Φ3L

(

M2
)

+ Φ4Q

(

M2
)

+ ΦGG

(

M2
)

with Φ{2V,3L,4Q}(M
2)={16, 16, 144} (παs〈q̄q〉2)/(81M 6). We see that in the

quark condensate contribution the most important one is Φ4Q. As a result
we have the following SR for the pion decay constant

f2
π =

M2

4π2

(

1 − e−s0/M2
) [

1 +
αs

π

]

+
1

12π

〈αsGG〉
M2

+
176

81

παs〈q̄q〉2
M4

. (5.1)

Numerically, as can be seen from Fig. 6, we obtain fπ = 0.128 ± 0.13 GeV
from this SR, whereas in the spectral model with A1-meson we obtain slightly
higher value fπ = 0.137±0.13 GeV, to be compared with f exp

π = 0.132 GeV.
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Fig. 6. Left panel: we show here the l.h.s. of Eq. (5.1), f 2
π(M2), as a function of

M2 (solid line). Right panel: the same as in the left panel, but for the spectral

model π+A1 + continuum. Dashed lines correspond to 10% variations of the best

thresholds. Positions of M2
L and M2

U are shown by vertical arrows in both panels.

6. Generalized QCD SRs for mesonic distribution amplitudes

The pion distribution amplitude (DA) parameterizes the matrix element
of the nonlocal axial current on the light cone [5]

〈0 | d̄(z)γµγ5E(z, 0)u(0) |π(P )〉
∣

∣

∣

z2=0
= ifπPµ

1
∫

0

dx eix(zP )ϕTw-2
π (x, µ2) . (6.1)

Here the gauge-invariance is guaranteed by the Fock–Schwinger string

E(z, 0) = P exp



ig

z
∫

0

Aµ(τ)dτµ





in between separated quark fields. The physical meaning of this DA — the
amplitude of the transition π(P ) → u(Px) + d̄(P (1 − x)). It is convenient
to represent the pion DA:

ϕπ(x;µ2) = ϕAs(x)
[

1 +
∑

n≥1

a2n(µ2)C
3/2
2n (2x− 1)

]

, (6.2)

where C
3/2
n (2x − 1) are the Gegenbauer polynomials (1-loop eigenfunctions

of ER-BL kernel) and ϕAs(x) = 6x (1−x). This representations means that
all scale dependence in ϕπ(x;µ2) is transformed to the scale dependence
of the set

{

a2(µ
2), a4(µ

2), . . .
}

. ER-BL solution at the 2-loop level is also
possible with using the same representation (6.2) [6–9].

In order to construct reliable SRs for the pion DA moments one needs,
as has been shown in [10, 11], to take into account the nonlocality of QCD
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vacuum condensates. For an illustration of the nonlocal condensate (NLC)
model we use here the minimal Gaussian model

〈q̄(0)q(z)〉 = 〈q̄ q〉 e−|z2|λ2
q/8 . (6.3)

The single scale parameter λ2
q = 〈k2〉 characterizes the average momentum

of quarks in the QCD vacuum and has been estimated in QCD SR approach
and also on the lattice [12–16]:

λ2
q = 0.35 − 0.55 GeV2 . (6.4)

That means that λ2
q is of an order of the typical hadronic scalem2

ρ≈0.6GeV2.
We write down as an example the NLC QCD SR for the pion DA itself.

To produce it one starts with a correlator of currents Jµ5(x) and J †
ν5;N (0) =

d̄(0) n̂ γ5 (n∇)Nu(0) with light-like vector n, n2 = 0, obtains SRs for the
moments 〈xN 〉π and then realizes inverse Mellin transform from the moments
〈xN 〉π to the DA ϕπ(x):

f2
π ϕπ(x) =

sπ0
∫

0

ρpert(x; s) e−s/M2

ds+
〈(αs/π)GG〉

24M2
ϕGG(x;∆)

+
8παs〈q̄q〉2

81M4

∑

i=2V,3L,4Q

ϕi(x;∆) . (6.5)

The local limit λ2
q/M

2 ≡ ∆ → 0 of this SR is specified by the appearance
of δ-functions concentrated at the end-points x = 0 and x = 1, for example,
ϕGG(x;∆) = [δ(x) + δ(1 − x)] and ϕ4Q(x;∆) = 9[δ(x) + δ(1 − x)]. The
minimal Gaussian model (6.3) generates the contribution ϕ4Q(x;∆) shown
in the left panel of Fig. 7 in comparison with perturbative one for the stan-
dard (local) and the NLC types of the SR. We see that in the local version
due to completely different behavior of perturbative and condensate terms
it is difficult to obtain some kind of consistency. Alternatively, the NLC
contribution is much more similar to the perturbative one — and for this
reason in the NLC SR we have a very good stability! After processing the
SR (6.5) for the moments (at µ2'1.35GeV2)

〈

ξN
〉

π
=

1
∫

0

ϕπ(x) (2x− 1)N dx , (6.6)

we restore the pion DA ϕπ(x) by demanding that it should reproduce these
5 moments and applying the minimally possible number of the Gegenbauer
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Fig. 7. Left panel: we show here contributions to the r.h.s. of Eq. (6.5) due to

perturbative loop (dotted line) and due to 4Q-condensate: ϕloc
4Q(x) — in standard

QCD SRs, and ϕNLC
4Q (x,M2) (with M2 = 0.55− 0.80 GeV2) — in NLC QCD SRs.

Right panel: moments 〈ξ2N 〉π with N = 1, . . . , 5, obtained using the NLC SR

(6.5), are shown by triangles with error-bars. We show also for comparison the

asymptotic DA moments (squares).

harmonics in representation (6.2). It appears the NLC SRs for the pionDA
produce a bunch of self-consistent 2-parameter models atµ2'1.35GeV2

ϕNLC
π (x;µ2) = ϕAs(x)

[

1 +
∑

n=1,2

a2n(µ2)C
3/2
2n (2x− 1)

]

. (6.7)

The central point corresponds to aBMS
2 = +0.188, aBMS

4 = −0.130 in the
case λ2

q = 0.4 GeV2, whereas other allowed values of parameters a2 and
a4 are shown in the left panel of Fig. 8 as the gray slanted rectangle [17].

.
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Fig. 8. Left panel: the allowed values of parameters a2 and a4 of the bunches (6.7)

at µ2 = 1.35 GeV2 for three values of the nonlocality parameter λ2
q : 0.4 GeV2 (gray

region), 0.5 GeV2 (black region), and 0.6 GeV2 (dark gray region). Right panel: the

inverse moment 〈x−1〉π , obtained using the NLC SR (6.5), is shown by the solid

line (central value) with error-bars, shown as dashed lines.
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We verify that this solution is self-consistent by estimating the inverse mo-
ment of the pion DA, 〈x−1〉π, in two ways. The first is based on (6.7) and
gives us

〈x−1〉bunch
π = 3.17 ± 0.20 . (6.8)

The second way uses the special SR for this moment, obtained through the
basic SR (6.5). It is worth to emphasize here that the moment 〈x−1〉SR

π could
be determined only in NLC SRs because the end-point singularities absent.
This SR produces the estimate, see Fig. 8, right panel:

〈x−1〉SR = 3.30 ± 0.30 (6.9)

at µ2 ' 1.35GeV2. We see that both estimates are in a good agreement.
Comparing the obtained pion DA with the Chernyak&Zhitnitsky (CZ)

one [18], see Fig. 9, reveals that although both DAs are two-humped they
are quite different: our DA is strongly end-point suppressed. This can also
be verified in the right panel of the figure, where contributions of different

bins to inverse moment 〈x−1〉π, calculated as
∫ x+0.02
x φ(x)dx and normalized

to 100%, are shown for CZ and BMS DAs.
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2

2.5 ���������

� 0.2 0.4 0.6 0.8 1

2
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8
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x

CZ

↙

BMS
↙

Fig. 9. Left panel: we show here the comparison of curves for three DAs — BMS

(solid line), CZ (dashed line), and the asymptotic DA (dotted line). Right panel:

histograms for contributions of different bins to inverse moment 〈x−1〉π are shown

for CZ and BMS DAs.

7. LCSR analysis of CLEO data on Fγγ∗π(Q2) and pion DA

Why does one need to use Light-Cone SRs (LCSRs) in analyzing the ex-
perimental data on γ∗(Q)γ(q) → π0-transition form factor? For Q2 � m2

ρ,

q2 � m2
ρ the QCD factorization is valid only in the leading twist approxi-

mation and the higher twists are of importance [19]. The reason is evident:
if q2 → 0 one needs to take into account interaction of a real photon at
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long distances of order of O(1/
√

q2). To account for long-distance effects
in perturbative QCD one needs to introduce the light-cone DA of the real
photon.

	�

����
� �������
�������

Instead of doing so, Khodjamirian [20] suggested to use the LCSR ap-
proach, which effectively accounts for long-distances effects of the real pho-
ton using the quark–hadron duality in the vector channel and dispersion
relation in q2.

We refined the NLO analysis of the CLEO data [21] by taking into ac-
count the following items:

(i) an accurate NLO evolution for both ϕ(x,Q2
exp) and αs(Q

2
exp) with

accounting for quark thresholds;

(ii) the relation between the “nonlocality" scale and the twist-4 magnitude
δ2Tw-4 ≈ λ2

q/2 was used to re-estimate δ2
Tw-4 = 0.19 ± 0.02 atλ2

q =

0.4GeV2;

(iii) the possibility to extract constraints on 〈x−1〉π from the CLEO data
and to compare them with what we have from NLC QCD SRs.

The results of our analysis [22] are displayed in Fig. 10. Solid lines in
all figures enclose the 2σ-contours, whereas the 1σ-contours are enclosed
by dashed lines. The three slanted and shaded rectangles represent the
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Fig. 10. Three 2σ-contours of the admissible regions following from the analysis

of the CLEO data for different values of δ2: (a) for λ2
q = 0.6 GeV2 and δ2Tw-4 =

(0.29± 0.03) GeV2; (b) for λ2
q = 0.5 GeV2 and δ2Tw-4 = (0.235± 0.025) GeV2; (c) for

λ2
q = 0.4 GeV2 and δ2Tw-4 = (0.19± 0.02) GeV2.
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constraints on (a2, a4) posed by the QCD SRs [17] for corresponding values
of λ2

q = 0.4, 0.5, 0.6GeV2 (from left to right). All values are evaluated at

µ2 = 2.4 GeV2 after the NLO evolution.

We see that the CLEO data definitely prefer the value of the QCD non-
locality parameter λ2

q = 0.4GeV2. We also see in Fig. 10(c) (and this con-
clusion was confirmed even with 20% uncertainty in twist-4 magnitude, see
also Fig. 11) that CZ DA (n) is excluded at least at 4σ-level, whereas the
asymptotic DA (u) — at 3σ-level. In the same time our DA (6) and most
of the bunch (the slanted shaded rectangle around the symbol 6) are inside
1σ-domain. Instanton-based models are all near 3σ-boundary and only the
Krakow model [23], denoted in Fig. 11 by symbol F, is close to 2σ-boundary.
In the left panel of Fig. 11 we demonstrate the 1σ, 2σ and 3σ-contours (solid,
dotted and dashed contours around the best-fit point (:)), which have been
obtained for values of the twist-4 scale parameter δ2

Tw-4 = [0.15–0.23]GeV2.
As one sees from the straight dashed line within the hatched band, corre-
sponding in this figure to the mean value of 〈x−1〉SR

π /3 − 1 and its error
bars, the nonlocal QCD sum-rules result with its error bars appears to be
in good agreement with the CLEO-constraints on 〈x−1〉exp

π at the 1σ-level.
Moreover, the estimate 〈x−1〉SR

π is close to 〈x−1〉EM
π /3 − 1 = 0.24 ± 0.16,

obtained in the data analysis of the electromagnetic pion form factor within
the framework of a different LCSR method in [24,25]. These three indepen-
dent estimates are in good agreement to each other, giving firm support that
the CLEO data processing, on one hand, and the theoretical calculations,
on the other, are mutually consistent.

Another possibility, suggested in [26], to obtain constraints on the pion
DA in the LCSR analysis of the CLEO data — to use for the twist-4 con-
tribution renormalon-based model, relating it then to parameters a2 and
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Fig. 11. The results of the CLEO data analysis for the pion DA parameters

(〈x−1〉exp
π /3 − 1, evaluated at µ2

0 ≈ 1 GeV2, in the left panel, and a2 and a4,

evaluated at µ2
SY = 5.76 GeV2 — in the right panel). In the right panel the lattice

results of [29] are shown for comparison as shaded area, whereas the renormalon-

based 1σ-ellipse of [27] is displayed by the dashed line.
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a4 of the pion DA. Using this method we obtain [27] the renormalon-based
constraints for the parameters a2 and a4, shown in the right panel of Fig. 11
in a form of 1σ-ellipses (dashed contour).

New high-precision lattice measurements of the pion DA second moment

〈ξ2〉π =
∫ 1
0 (2x− 1)2ϕπ(x) dx appeared rather recently [28,29]. Both groups

extracted from their respective simulations, values of a2 at the Schmedding–
Yakovlev scale µ2

SY around 0.24, but with different error bars.

It is remarkable that these lattice results are in striking agreement with
the estimates of a2 both from NLC QCD SRs [17] and also from the CLEO-
data analyses — based on LCSR — [21,22], as illustrated in the right panel
of Fig. 11, where the lattice results of [29] are shown in the form of a vertical
strip, containing the central value with associated errors being smaller than
in [28]. Noteworthily, the value of a2 of the displayed lattice measurements
(middle line of the strip) is very close to the CLEO best fit in [22] (:).

8. Pion form factor and CEBAF data

It is worth to mention here the results of our analysis of the pion electro-
magnetic form factor using NLC dictated pion DA and Analytic Perturbative
QCD [30]. These results are in excellent agreement with CEBAF data on
pion form factor, shown as diamonds in Fig. 12, where the green strip in-
cludes both the NLC QCD SRs uncertainties, generated by our bunch of the
allowed pion DA, and by the scale-setting ambiguities at the NLO level.
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Fig. 12. Predictions for the scaled pion form factor calculated with the BMS bunch (gray

strip) encompassing nonperturbative uncertainties from nonlocal QCD sum rules [17]

and renormalization scheme and scale ambiguities at the level of the NLO accuracy.

The dashed lines inside the strip indicate the corresponding area of predictions obtained

with the asymptotic pion DA. The experimental data are taken from [31] (diamonds)

and [32], [33] (triangles).
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From the phenomenological point of view, the most interesting result here
is that the BMS pion DA [17] (out of a “bunch” of similar doubly-peaked
endpoint-suppressed pion DAs) yields to predictions for the electromagnetic
form factor very close to those obtained with the asymptotic pion DA. Con-
versely, we see that a small deviation of the prediction for the pion form
factor from that obtained with the asymptotic pion DA does not necessarily
imply that the underlying pion DA has to be close to the asymptotic profile.
Much more important is the behavior of the pion DA in the endpoint region
x→ 0 , 1.

9. Conclusions

Let me conclude with the following observations:

• NLC QCD SR method for the pion DA gives us the admissible bunches
of DAs for each value of λq.

• NLO LCSR method produces new constraints on the pion DA param-
eters (a2 and a4) in conjunction with the CLEO data.

• Comparing results of the NLC SRs with new CLEO constraints allows
to fix the value of QCD vacuum nonlocality: λ2

q ' 0.4GeV2.

• This bunch of pion DAs agrees well with recent lattice data and with
JLab F(pi) data on the pion form factor.

I also suggest to the reader to look in the very interesting discussion of the
QCD SR approach and its developments written by one of its creators [34].

This investigation was supported in part by the Bogoliubov–Infeld Pro-
gramme, grant 2006, by the Heisenberg–Landau Programme, grant 2006,
and the Russian Foundation for Fundamental Research, grant No. 06-02-
16215.
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