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After summarizing briefly some numerical results for four-dimensional
supersymmetric SU(2) Yang–Mills quantum mechanics, we review a recent
study of systems with an infinite number of colours. We study in detail a
particular supersymmetric matrix model which exhibits a phase transition,
strong-weak duality, and a rich structure of supersymmetric vacua. In the
planar and strong coupling limits, this field theoretical system is equivalent
to a one-dimensional XXZ Heisenberg chain and, at the same time, to a gas
of q-bosons. This not only reveals a hidden supersymmetry in these well-
studied models; it also maps the intricate pattern of our supersymmetic
vacua into that of the now-popular ground states of the XXZ chain.

PACS numbers: 03.65.Fd, 11.30.Pb

1. Introduction

This lecture reviews a recent progress in studying the large N limit of
simple supersymmetric quantum mechanical systems which result from the
dimensional reduction of field theories with gauge symmetry. Models of
this type have been studied for a long time [1–3] and have many different
applications, depending on the space-time dimension, D, of the unreduced
theory [4, 5] (cf. Table I). For D = 2 they can be often solved analytically
[1,4,6,7], providing quantitative realization of supersymmetry. In four space-
time dimensions one of them is nothing but the small volume limit of the
Yang–Mills gluodynamics revealing the spectrum of zero volume glueballas
as a special case [8–11]. Finally, for D = 10 they make contact with the
M -theory via the BFSS hypothesis [12].

Although we shall be mainly concerned with the large N limit, we would
like to give one example of the N = 2 model.
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TABLE I

A “road map” of a parameter space of supersymmetric Yang–Mills quantum me-
chanics. Black dots denote models well understood/solved, while open circles mark
ones under study. A checkmark labels parameters of a system discussed in this lec-
ture.
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1.1. Four-dimensional supersymmetric Yang–Mills quantum mechanics

at finite N

The system has three bosons and two fermions, both in the adjoint rep-
resentation of SU(2). The Hamiltonian reads [1]
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1
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The spectrum is obtained numerically by diagonalizing H in the gauge
invariant eigen-basis of the occupation numbers of all degrees of freedom
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The Hilbert space was cut by restricting the gauge invariant total number
of bosonic quanta

B =
∑

b,i

a†
i
ba

i
b < Bmax .

It turned out that the physical (i.e. convergent with the cutoff eigenener-
gies) could be computed for sizes of bases well within a reach of a reasonably
fast PC. The spectrum obtained in this way is shown in Fig. 1 [5]. It reveals
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Fig. 1. The spectrum, and its supersymmetry structure, of the D = 4 supersym-

metric Yang–Mills quantum mechanics.

a series of dynamical supermultiplets with degenerate eigenenergies. The
eigenstates within a supermultiplet are indeed the supersymmetric images
of one another. These states are localized and they form a discrete spec-
trum. In addition there is also a continuum. It occupies central sectors of
the figure, i.e. ones with the conserved fermion number F = 2, 3, 4. Super-
multiplets of non-localized states occur at every second value of the angular
momentum. Moreover, in these sectors the discrete and continuous spectra
coexists at the same energies. This unusual feature of gauge interactions has
never been observed so directly before. There are two supersymmetric vacua
with fermion numbers F = 2 and 4. This is nothing but the zero-volume
manifestation of the existence of the λλ condensate in the space extended
theories [13]. The condensate assumes two different (in fact opposite for
SU(2)) values, again in agreement with the non-trivial predictions of the
unreduced theory [14, 15] .
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2. The large N limit and the planar calculus

Above approach, even though quite successful, is naturally limited to
the low number of colours. For higher N the Hilbert spaces become too
large. Fortunately at infinite N Fock bases simplify enormously allowing
again to reach quantitative results [16–20]. This simplification is usually
phrased in terms of the Feynman diagrams and topological expansion [21].
However it can be also formulated in the way suitable for the Hamiltonian
formalism [16, 17]. To this end introduce matrix creation and annihilation
(c/a) operators.

aik =
√

2aaT a
ik, fik =

√
2faT a

ik , i, k = 1, . . . , N .

The physical basis can be conveniently generated by acting with the gauge
invariant building blocks (bricks)

(a†a†), (a†a†a†), (a†a†a†a†), . . . , (a†
N

) , (.) ≡ Tr [.]

and their products, on the empty Fock state |0〉. Similarly for the fermionic
sectors one employs bricks with mixed fermionic and bosonic operators. It
turns out that in the large N limit only the single trace operators are rel-
evant. All products of traces are either non-leading or do not provide new
information (see [22] for recent results on that point). This observation cul-
minates in the set of simple rules to calculate explicitly matrix elements of
various Hamiltonians. One basically applies the Wick theorem employing
the commutation rules

[aik, a
†
jl] = δilδkj

and identifying the leading contributions. Details of such “planar calculus”
have been presented in [16, 17, 19]. Here we summarize only two examples.

A normalized state with n gluons in the F = 0 sector reads

|n〉 =
1

Nn
Tr [(a†)n]|0〉 . (1)

The normalization factor

N 2
n = 〈0|Tr [an]Tr [(a†)n]|0〉

= 〈0|(12)(23) . . . (n1)[1′2′][2′3′] . . . [n′1′]|0〉 ,
(12) ≡ ai1i2 , [12] ≡ a†i1i2 .

receives the maximal contribution only when the adjacent creation and an-
nihilation operators are contracted. This gives

N 2
n = nNn .
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Similarly a matrix element of a typical term in a generic Hamiltonian

Hn+2,n = g2〈n+ 2|Tr
[

a†a†a†a
]

|n〉

can be explicitly calculated

Hn+2,n = g2N
√

n(n+ 2) ,

and shown to depend only on the ’t Hooft coupling λ = g2N .
The rest of this lecture will be devoted to a rather simple system which

turns out to be surprisingly rich. The model may be considered as a distant
cousin of the D = 1 + 1 supersymmetric Yang–Mills theory reduced to the
one point in space.

3. A simple supersymmetric system

Consider one fermion and one boson with the following supersymmetry
generators and the Hamiltonian [16].

Q =
√

2Tr
[

fa†(1 + ga†)
]

,

Q† =
√

2Tr
[

f †(1 + ga)a
]

,

H = {Q,Q†} = HB +HF . (2)

Explicitly

HB = a†a+ g
(

a†
2
a+ a†a2

)

+ g2a†
2
a2,

HF = f †f + g
(

f †f(a† + a) + f †(a† + a)f
)

+ g2
(

f †afa† + f †aa†f + f †fa†a+ f †a†fa
)

.

This Hamiltonian conserves the gauge invariant fermion number F = Tr [f †f ]
and can be diagonalized in sectors with well defined F . For any finite N
calculation of matrix elements of H quickly becomes cumbersome. At infi-
nite N , however, the planar rules illustrated above give simple and compact
expressions.

3.1. Hamiltonian matrix at large N

The gauge invariant basis in the F = 0 sector can be chosen as (1) with
n = 0, 1, 2, 3, . . .. Only HB contributes in this case. The matrix elements in
the planar approximation read

〈0, n|H|0, n〉 = (1 + λ(1 − δn1))n ,

〈0, n+ 1|H|0, n〉 = 〈0, n|H|0, n + 1〉 =
√
λ
√

n(n+ 1) . (3)
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In the sector with one fermion the basis is

|n〉 =
1

Nn
Tr [(f †a†)n]|0〉, n = 0, 1, 2, . . . .

Now, and for higher F , both HB and HF contribute. The Hamiltonian
matrix is again simple

〈1, n|H|1, n〉 = (1 + λ)(n+ 1) + λ ,

〈1, n+ 1|H|1, n〉 = 〈1, n|H2|1, n+ 1〉 =
√
λ(2 + n) . (4)

The system reveals many interesting features already in these two lower
sectors [16], therefore we postpone the discussion of higher F ’s and turn to
the physics of ensembles with at most one fermion.

3.2. Numerical results

The Hamiltonian matrix is sparse but infinite with rows and columns
labeled by the gauge invariant number of bosons B = Tr [a†a]. To obtain,
the spectrum numerically we introduce the cutoff, Bmax, limiting the number
of bosonic quanta

B < Bmax ,

and increase the cutoff until the spectrum converges. Results are shown in
Fig. 2 for few values of the ’t Hooft coupling. The convergence with Bmax

is satisfactory for λ 6= 1 and is faster for lower eigenvalues. There, the lim-
iting, “infinite volume”, results can be easily recovered. The less trivial way
so see this is to check for the supersymmetry which is broken by the cutoff
and should be recovered only at infinite Bmax. Fig. 3 shows first few energy
levels in four lower fermionic sectors. The degeneracies between bosonic and
fermionic partners of the F = (0, 1) supermultiplets are excellent. More-
over, there is also an unbalanced supersymmetric vacuum state with zero
eigenenergy1. These results provide also the non-trivial test of our planar
rules: the planar approximation does not break supersymmetry.

The slowing of the cutoff dependence around λ = 1 is a characteristic
signature of a phase transition. At this point the system looses the energy
gap and the spectrum becomes continuous. Any finite number of low-lying
levels collapses to zero at infinite cutoff, but the cutoff dependence becomes
characteristic of that for the continuous spectrum.

1 An apparent lack of the degeneracy between some states with higher F will be ex-
plained later.
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Fig. 2. The cutoff dependence of the spectra of H , in the F = 0 sector, and for a

range of λ’s.
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Fig. 3. Low lying bosonic and fermionic levels in the first four fermionic sectors.
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Another interesting feature of this phase transition is the rearrangement
of members of supermultiplets. This is shown in Fig. 4 where the λ de-
pendence of the first four eigenenergies from both sectors is displayed for
few values of Bmax. Away from the critical region supersymmetry is quickly
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Fig. 4. Lowest bosonic and fermionic levels, as functions of λ, for different cutoffs.
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restored and the F = 0 and F = 1 levels are un-distinguishable even for low
cutoffs. Close to the criticality partners do not have the same energies since
SUSY is broken at finite cutoff. Interestingly however, they rearrange while
the ’t Hooft coupling passes its critical value. In particular, the new vacuum
state appears when λ moves from the low to the large coupling phases. This
also implies (and was readily found) that the Witten index (restricted to the
F = 0, 1 sectors) jumps by one unit across the phase transition point.

Finally, the system has the exact strong-weak duality

b

(

E(F=0)
n

(

1

b

)

− 1

b2

)

=
1

b

(

E
(F=0)
n+1 (b) − b2

)

,

b

(

E(F=1)
n

(

1

b

)

− 1

b2

)

=
1

b

(

E(F=1)
n (b) − b2

)

.

It follows directly from the matrix representation (4) for F = 1 . However it
is not obvious in the F = 0 sector, cf. Eq. (3), but it is a direct consequence
of supersymmetry.

3.3. Analytic solution

All above results have been subsequently derived analytically [16]. For

example the second vacuum state has the form b ≡
√
λ

|0〉2 =
∞
∑

n=1

(−1

b

)n 1√
n
|0, n〉 . (5)

It is indeed annihilated by Q†, and exists only for b > 1.
Surprisingly, one can find analytically the complete spectrum and con-

struct all eigenstates in the F = 0 sector. To this end it is convenient to
introduce another, not orthonormal basis,

|Bn〉 =
√
n|n〉 + b

√
n+ 1|n+ 1〉 .

This basis is convenient since the action of the Hamiltonian on |Bn〉 is
so simple that the generating function for the expansion of the eigenstates
in that basis

f(x) =

∞
∑

n=0

cnx
n ↔ |ψ〉 =

∞
∑

n=0

cn|Bn〉

can be constructed. The solution reads

f(x) =
1

α

1

x+ 1/b
F

(

1, α; 1 + α;
x+ b

x+ 1/b

)

, b < 1 ,
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f(x) =
1

1 − α

1

x+ b
F

(

1, 1 − α; 2 − α;
x+ 1/b

x+ b

)

, b > 1 ,

E = α(b2 − 1) ,

and together with the quantization condition

f(0) = 0 , (6)

reproduces numerical eigenvalues obtained earlier in the infinite cutoff limit.
As a one check, set α = 0 in the generating function, for b > 1, to obtain

f0(x) =
1

1 + bx
log

b+ x

b− 1/b
, b > 1 , (7)

which indeed reproduces the second ground state (5).

4. Higher fermionic sectors: F = 2, 3

Single trace states with two fermions

|n1, n2〉 =
1

Nn1n2

Tr
[

a†
n1

f †a†
n2

f †
]

|0〉 ,

are labeled by two integers whose ordering is important modulo a cyclic
permutation. Pauli principle eliminates states with n1 = n2, hence we can
always take n2 < n1. The planar rules give for the Hamiltonian matrix in
this sector [19]

〈n1, n2|H|n1, n2〉 = (n1 + n2 + 2)(1 + b2)

−b2(2 − δn1,0) − 2b2δn2,n1+1 ,

〈n1 + 1, n2|H|n1, n2〉 = b (n1 + 2) = 〈n1, n2|H|n1 + 1, n2〉 ,
〈n1, n2 + 1|H|n1, n2〉 = b (n2 + 2) = 〈n1, n2|H|n1, n2 + 1〉 .

〈n1 + 1, n2 − 1|H|n1, n2〉 = 〈n1, n2|H|n1 + 1, n2 − 1〉
= 2b2(1 − δn2,n1+1) .

Planar states in the three fermion sector are labeled by three integers modulo
cyclic translations

|n1, n2, n3〉 =
1

Nn1n2n3

Tr [a†
n1

f †a†
n2

f †a†
n3

f †]|0〉 ,

0 ≤ n1 , n1 ≤ n2 , n1 ≤ n3 .

Again the Hamiltonian matrix was explicitly calculated

〈n1, n2, n3|H|n1, n2, n3〉 = (n1 + n2 + n3 + 3)(1 + b2)

−b2(3 − δn1,0 − δn2,0 − δn3,0) ,
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〈n1 + 1, n2, n3|H|n1, n2, n3〉 = b(n1 + 2)∆ = 〈n1, n2, n3|H|n1 + 1, n2, n3〉 ,
plus cyclic ,

〈n1 + 1, n2 − 1, n3|H|n1, n2, n3〉 = b2∆ = 〈n1, n2, n3|H|n1 + 1, n2 − 1, n3〉 ,
plus cyclic ,

where ∆ = 1/
√

3 if n1 = n2 = n3, and ∆ =
√

3 if the final state is of this
form, otherwise ∆ = 1.

Numerical computation of the spectrum proceeds as before. There is
again a phase transition causing the critical slowing down around λc = 1.
Away from it, the eigenenergies converge satisfactorily, with the infinite vol-
ume results shown in Fig. 3. The spectrum in higher fermionic sectors is es-
sentially different from the F = 0, 1 case. We again find dynamical F = (2, 3)
supermultiplets, however not all states with three fermions have their super-
partners in the F = 2 sector. Instead, they are degenerate with ones from
the F = 4 sector. This pattern continues now for all F as follows from count-
ing the number of states: it is an increasing function of F . Another novel
feature is that the spectrum is rather irregular, while the eigenenergies are
almost equidistant for F = 0, 1. There is again the rearrangement of mem-
bers of supermultiplets across the phase transition. Interestingly however,
the two new SUSY vacua with F = 2 appear in the strong coupling phase,
while there is none at weak coupling.

Similarly to the F = 0 case, the two vacua can be constructed ana-
lytically. To this end consider the “extreme” strong coupling limit of the
Hamiltonian (2) [19]

HSC = lim
λ→∞

1

λ
H=Tr

(

f †f
)

+
1

N

[

Tr
(

a†
2
a2

)

+Tr
(

a†f †af
)

+Tr
(

f †a†fa
)]

.

(8)
Surprisingly, HSC conserves the number of bosonic quanta as well and proves
very useful in mapping the structure of the model in all fermionic sectors
(cf. the following section). Coming back to F = 2, one can identify the
finite dimensional (F = 2, B) sectors with zero eigenvalues, and construct
the corresponding eigenstates. They read

|F = 2, v〉∞1 = |0, 1〉 , (9)

|F = 2, v〉∞2 = |0, 3〉 − 2|1, 2〉 , (10)

the superscript referring to the infinite value of the ’t Hooft coupling. These
states can then be used to construct the two vacua at finite λ > 1
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|F = 2, v〉λ1 =

∞
∑

n=1

(−
√
λ)−n|0, n〉 ,

|F = 2, v〉λ2 = (1 +QsH
−1
s Q†

w)−1|F = 2, v〉∞2 , (11)

with Qs = gTr [fa†
2
] , Hs = {Qs, Q

†
s} , Q†

w = Tr [f †a] [19].
The restoration of supersymmetry can also bee seen on the level of eigen-

states. Members of supermultiplets transform among themselves by SUSY
charges Q and Q†, which become the well defined matrices in the planar
bases. To see SUSY in this way define the following supersymmetry frac-
tions

qmn ≡
√

2

Em +En
〈F + 1, Em|Q†|F,En〉 , (12)

which are the coordinates of the supersymmetric images of eigenstates in the
corresponding fermionic sectors. Fig. 5 shows that SUSY fractions indeed
quickly stabilize with increasing Bmax.
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Fig. 5. First five supersymmetry fractions.

Supersymmetry fractions are also useful in defining the restricted Witten
index which smoothly interpolates, at finite cutoff, between the two phases.
The straightforward restriction of the sum

W (T, λ) =
∑

i

(−1)Fie−TEi
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to the F = 2, 3 eigenstates does not suffice since some of the states with
three fermions remain unbalanced. Instead one can define

WR(T, λ) =
∑

i

(

e−TEi − e−TĒi

)

, Ēi =

∑

f Ef |qfi|2
∑

f |qfi|2

i.e. we take as the energy of the supersymmetric partner the energy weighted
by supersymmetric fractions. This definition enforces summation only over
complete supermultiplets away from the critical region, while provides the
smooth smearing among possible candidates around λc. The index defined
this way changes smoothly at finite cutoff, and varies by two units as ex-
pected (cf. Fig. 6) [19].

5. Arbitrary F

A simple generalization of the F = 2, 3 cases for arbitrary number of
fermions reads [18]

|n〉 = |n1, n2, . . . , nF 〉 =
1

N{n}
Tr (a†

n1

f †a†
n2

f † . . . a†
nF
f †)|0〉 . (13)

So the states of the basis may be labeled by F bosonic occupation num-
bers {n1, n2, . . . nF } (configurations) modulo cyclic shifts. Some states are
excluded by the Pauli principle. For example

{n, n} , or {2, 1, 1, 2, 1, 1}

are not allowed, since they change sign while retaining their identity after
the suitable number of cyclic shifts. When calculating normalizations and
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matrix elements one should keep track of symmetry factors defined as the
number of cyclic shifts which bring a state back to itself. For example the
state |2, 1, 2, 1, 2, 1〉 has the symmetry factor d = 3. Alternatively one can
label planar states with the periodic binary strings (necklaces) with, e.g.,
zeros/ones corresponding to the bosonic/fermionic creation operators (for a
more complete discussion see [18]).

Detailed calculation of spectra for arbitrary fermion number is now in
progress. However many properties, e.g. the supersymmetry structure, has
been inferred from the strong coupling limit of the model.

TABLE II

Sizes of gauge invariant bases in the (F,B) sectors.

11 1 1 6 26 91 273 728 1768 3978 8398 16796
10 1 1 5 22 73 201 497 1144 2438 4862 9226
9 1 1 5 19 55 143 335 715 1430 2704 4862
8 1 1 4 15 42 99 212 429 809 1430 2424
7 1 1 4 12 30 66 132 247 429 715 1144
6 1 1 3 10 22 42 76 132 217 335 497
5 1 1 3 7 14 26 42 66 99 143 201
4 1 1 2 5 9 14 20 30 43 55 70
3 1 1 2 4 5 7 10 12 15 19 22
2 1 1 1 2 3 3 3 4 5 5 5
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 1 0 1 0 1 0

B
F 0 1 2 3 4 5 6 7 8 9 10

As already mentioned, the strong coupling Hamiltonian (8) conserves
both fermionic and bosonic numbers of quanta. Hence the Hilbert space
splits into the finite dimensional sectors, cf. Table II, and the Hamilto-
nian in each sector becomes a finite matrix. Still the HSC has the exact
supersymmetry with the strong-coupling charges

QSC =
1√
N

Tr
[

fa†
2
]

, Q†
SC =

1√
N

Tr
[

fa†
2
]

, (14)

acting along the “diagonals” 2F+B = const. of Table II. Diagonalizing few of
these matrices we have indeed found expected degeneracies2. Interestingly,
we have also found experimentally [18, 20] that the zero energy eigenstates
are located only in the sectors with

2 Obviously no cutoff was required this time.
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B = F ± 1, F even . (15)

which form the regular “magic” staircase, shown in the boldface, in Table II.
This observation, when combined with the weak coupling (harmonic os-

cillator) limit, explains the structure of SUSY vacua for all F and at any
value of the ’t Hooft coupling. Namely, for any even F there are two su-
persymmetric vacua for any λ in the strong coupling phase. On the other
hand, there is only one SUSY vacuum in the weak coupling phase and it has
F = 0.

The question why the supersymmetric vacua are located in the magic
sectors (15) will be answered in the next section.

6. Two equivalencies with statistical systems

Interestingly, our strong-coupling model is equivalent to the two well
known and nontrivial statistical systems [20].

6.1. A gas of q-bosons

Consider a one dimensional, periodic lattice with size F . At each lattice
site put a bosonic degree of freedom described by its c/a operators a†i, ai.
The strong coupling Hamiltonian (8) is equivalent to the following one ex-
pressed solely in terms of bosonic variables

H = B +

F
∑

i=1

δNi,0 +

F
∑

i=1

bib
†
i+1 + bib

†
i−1 , (16)

where Ni = a†iai, B = N1 +N2 + . . .+NF , and the action of bi, b
†
i is

b†|n〉 = |n+ 1〉, b|n〉 = |n− 1〉, b|0〉 ≡ 0 (17)

that is, they create and annihilate one quantum without the usual
√
n factors.

They satisfy the following commutation rules

[b, b†] = δN,0 (18)

with the same non-linear (in b’s) δ operator as in the Hamiltonian. Using
the planar rules discussed earlier, one can show that the action of the first
two terms of (8) on the planar basis is exactly the same as the action of the
first two terms of (16) in the eigenbasis of Ni [20]. The last two terms of (8)
are the same as the hopping terms of (16). Since the planar states acquire a
phase (−1)F−1 upon cyclic shifts, the planar system has the same spectrum
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as (16) in the eigen-sector of the lattice shifts, U , with λU = (−1)F−1. This
equivalence was cross-checked numerically for 3 ≤ F,B ≤ 7.

The c/a operators are known in the literature [23, 24]. Their algebra is
the special case of the q-deformed harmonic oscillator algebra

[b, b†] = q−2N (19)

with q → ∞. Transitions (17) without the square roots are often referred to
as assisted (i.e. independent of the occupancy) transitions. The system of
q-bosons described by the Hamiltonian (16) is, to our knowledge, regarded
as non-soluble. In view of the second equivalence, discussed below, it turns
out to be in fact soluble.

6.2. The XXZ Heisegberg chain

The second equivalence has been proved employing another representa-
tion of the planar states (13) [20]

1

Nn
|Tr

[

a†
m1

(f †)n1a†
m2

(f †)n2 . . . (f †)nk

]

|0〉 ≡ |(0)m1(1)n1 . . . (0)mr (1)nr 〉 ,

(r ≥ 1, mi, ni > 0) . (20)

Where the states are labeled by the binary strings with, e.g. 0/1 correspond-
ing to the bosonic/fermionic creation operators. In this basis, the action of
the strong coupling Hamiltonian (8) is equivalent to that of the XXZ chain

H
(∆)
XXZ = −1

2

L
∑

i=1

(

σx
i σ

x
i+1 + σy

i σ
y
i+1 + ∆ σz

i σ
z
i+1

)

for the particular values of the anisotropy parameter ∆. The detailed cor-
respondence reads

HSC(F,B) =

{

−H(+1/2)
XXZ + 3

4L , F odd,

+H
(−1/2)
XXZ + 3

4L , F even, B odd,
(21)

where the spin Hamiltonians are restricted to the translationally invariant
sectors with the lattice size and the total spin fixed by (F,B):

L = F +B , Sz =

L
∑

i=1

sz
i =

1

2
(F −B) . (22)

Remarkably, this equivalence implies the existence of the magic staircase
of the supersymmetric vacua discussed above. More than thirty years ago
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Baxter has found that, for ∆ = −1/2, the ground states with Sz = ±1/2
have particularly simple eigenenergy E0 = −3

4L for infinite L [25]. Recently
his findings have been extended by Riazumov and Stroganov to any finite,
odd L [26]. In view of (21), (22) the Riazumov–Stroganov states are nothing
but our strong coupling vacua [20]. Moreover, supersymmetry requires a host
of degeneracies among the seemingly unrelated excitations of the XXZ chain.
Amusingly, since the supersymmetry transformations change the lattice size,
these excitations live on different lattices!3

Finally, since the XXZ model is exactly soluble (e.g. by the Bethe Ansatz
[28]), our supersymmetric system is also soluble at infinite coupling. As one
application we give here the algebraic determination of the Bethe phase
factors for the first three steps of the magic staircase. The eigenenergies of
HXXZ(∆) are [29]

EXXZ(∆) = −L∆

2
+ 2m∆ − 2

m
∑

j=1

cos pj , (23)

where the momenta −π < pj < π satisfy the following set of Bethe equations

eiLpj = (−1)m−1
m
∏

l=1

ei(pj−pl)
eipl + e−ipj − 2∆

eipj + e−ipl − 2∆
, j = 1, . . . ,m . (24)

With m denoting the number of down spins in a chain. For the supersym-
metric model m = B and (23) translate into

ESC(F,B) = F + 2
B

∑

j=1

cos pj , for F odd , ∆ = +
1

2
, (25)

ESC(F,B) = F − 2

B
∑

j=1

cos pj , for F even , and B odd ∆ = −1

2
. (26)

Solving numerically Eqs. (24) we have found that the supersymmetric vacua
occur at F even and B odd, and are always given by the yet simpler sub-
ansatz of the Bethe Ansatz

p1 = 0, p2k+1 = −p2k, k = 1, . . . ,
B − 1

2
(27)

which reduces the number of independent variables roughly by a factor of 2.
Still, the Bethe equations can only be solved numerically in general. How-
ever, for the first three sectors the problem can be managed algebraically.
We shall discuss it separately for each sector.

3 Supersymmetry of the, ∆ = −1/2, XXZ chain and other statistical systems, has
been discussed in the literature, albeit in slightly different contexts (see, e.g. [27] and
references therein). We thank Jan de Gier for bringing this to our attention.
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6.2.1. F = 4, B = 3

This corresponds to L = 7, m = 3, and Eq. (27) implies

p1 = 0, p2 = p , p3 = −p , (28)

and (24) reduces to (z = eip)

z6 = 1 . (29)

The admissible solution, which gives ESC = 0, is

z = ei
π
3 . (30)

6.2.2. F = 4, B = 5

Now L = 9, m = 5, and with the aid of (27) Bethe equations reduce to
(x = eip2 , y = eip4)

x8 =
xy + x+ y

x+ y + 1

xy + x+ 1

xy + y + 1
,

y8 =
xy + x+ y

x+ y + 1

xy + y + 1

xy + x+ 1
. (31)

Solving (31) is difficult in general, however one can easily find solutions with
vanishing energy (26)

ESC(4, 5) = 2 − 2

(

x+ y +
1

x
+

1

y

)

= 0 . (32)

Introducing two symmetric variables

s = x+ y , p = xy , (33)

one obtains from (31), (32) the following two equations for s and p

s+ p

s+ 1
= ±p4 , (34)

s+
s

p
= 1 . (35)

The admissible solution is on the negative branch and reads
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x =
1

64

(

16 + i
√

2

√

15 +
√

33(7 −
√

33)

−4

√

−16(3 +
√

33) − i2
√

2

√

15 +
√

33(9 +
√

33)

)

,

y =
1

64

(

16 + i
√

2

√

15 +
√

33(7 −
√

33)

+4

√

−16(3 +
√

33) − i2
√

2

√

15 +
√

33(9 +
√

33)

)

.

(36)

This pair indeed satisfies both Bethe equations, together with (32), and
therefore corresponds to our supersymmetric vacuum.

6.2.3. F = 6, B = 5

This sector corresponds to L = 11, m = 5. Now the reduced Bethe
equations are

x10 =
xy + x+ y

x+ y + 1

xy + x+ 1

xy + y + 1
,

y10 =
xy + x+ y

x+ y + 1

xy + y + 1

xy + x+ 1
. (37)

As previously, we look for the solutions which satisfy ESC(6, 5) = 0, that is

x+ y +
1

x
+

1

y
= 2 , or

s

p
=

2

1 + p
. (38)

The second equation follows from the product of the Bethe equations

p5 = ±p+ s

1 + s
, or

s

p
= −1 ∓ p4

1 ∓ p5
. (39)

These equations reduce to the fourth order polynomial equation for p. Again
there is only one admissible solution and it lies on the negative branch

x =
1

72

(

36 + i
√

2

√

11 +
√

13(7 +
√

13)

−6
√

2

√

6(−3 +
√

13) + i
√

2

√

11 +
√

13(−5 +
√

13)

)

,
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y =
1

72

(

36 + i
√

2

√

11 +
√

13(7 +
√

13)

+6
√

2

√

6(−3 +
√

13) + i
√

2

√

11 +
√

13(−5 +
√

13)

)

. (40)

As the last exercise let us show that these numbers are indeed unimodular
which is not obvious at first sight. However it is easy to calculate

|x+ y|2 =
1

3

(

7 +
√

13
)

, |x− y|2 =
1

3

(

5 −
√

13
)

, therefore |x|2 + |y|2 = 2 .

(41)
Further, since x = a+ b and y = a− b, one can observe that

(ab∗)2 =
1

72

(

−11 +
√

13
)

, ⇒ |x|2 = |y|2 (42)

which together with (41) implies that x and y are indeed pure phase factors.
As a byproduct one obtains

Re (xy∗) ≡ cos (p2 − p4) =
1

6

(

1 +
√

13
)

. (43)

7. Discussion

The direct diagonalization of a Hamiltonian matrix is usually considered
a viable tool, for finding a spectrum, only for finite matrices. It turns out
however, that the approach works in many cases with the infinite dimensional
Hilbert space as well. Although such Hilbert spaces appear already in many
quantum mechanical systems with finite number of degrees of freedom, the
true challenge for the Hamiltonian formalism is posed by the field theoreti-
cal problems. An interesting family of systems results from the dimensional
reduction of the field theoretical models to a one point in space. As such,
they again have the finite number of degrees of freedom, however they in-
herit many advanced features of the parent field theories, for example their
symmetries including supersymmetry. The straightforward diagonalization
proved quite successful in uncovering quite rich and nontrivial spectra of
supersymmetric Yang–Mills quantum mechanics in various dimensions.

This lecture reviews the recent study of a system with the infinite number
of degrees of freedom, namely a particular supersymmetric gauge quantum
mechanics (also referred to as a matrix model) with the infinite number of
colours. The model was conceived as the illustration of the planar calculus
in the Fock space. However it was subsequently found that the system has
an interesting physics which connects to many recently discussed issues. For
example, the system undergoes the discontinuous phase transition in the
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’t Hooft coupling which is accompanied by the remarkable rearrangement of
dynamical supermultiplets. It enjoys the strong-weak duality in the lowest
(and simplest) fermionic sectors where the complete, exact spectrum can be
found analytically. The full structure of intervening supermultiplets begins
with two fermions and goes on ad infinitum. In each bosonic sector two new
supersymmetric vacua appear in the strong coupling phase while there is
only one in the weak coupling region. The behavior in the strong coupling
phase has been found by studying the system at the infinite value of the ’t
Hooft coupling and then extending it to the whole strong coupling regime.

At infinite coupling the model reveals also its connections with the statis-
tical physics, which proves, among other things, that a quantum mechanics
at infinite N becomes a bona fide field theory. The supersymmetric planar
model is exactly equivalent to the one-dimensional quantum XXZ Heisenberg
chain, and at the same time, to the one-dimensional lattice gas of q-bosons.
The strong coupling vacua found in the SUSY matrix model turn out to
be nothing but simple ground states of the XXZ chain which were found
more than thirty years ago. In addition, the XXZ chain appears to have the
hidden supersymmetry which results in many degeneracies among various
energy eigenstates. An unusual feature of these supersymmetry transforma-
tions is that they connect states propagating on different lattices.

Second equivalence is with a gas of q-bosons, with the infinite defor-
mation parameter. The latter mapping holds exactly in all fermionic and
bosonic sectors while the former does not work for even F and B.

The chain of correspondences discovered in [20] implies also that the
specific, nonlinear ∞-bosonic Hamiltonian is in fact soluble via solubility of
the XXZ chain. Vice versa: the same solubility implies that the supersym-
metric matrix model is exactly soluble at the infinite value of the ’t Hooft
coupling. It is also quite conceivable that this solubility holds in the whole
strong coupling phase [19].

Summarizing: planar calculus applied directly in the Fock space turned
out be rather promising tool in studying some simple, but non-trivial, mod-
els. It allowed to find phenomena which bear a tantalizing similarity to ones
found in the much more advanced systems [30–35]. It remains to be seen if
this approach can be extended to the full, i.e. space extended field theories.



3656 J. Wosiek
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