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Supersymmetric Yang–Mills quantum mechanics (SYMQM) in four di-
mensions for SU(2) gauge group is considered. In this work a two-fermionic
sector with the angular momentum j = 0 in discussed. Energy levels from
discrete and continuous spectra are calculated. To distinguish localized
states from non-localized ones the virial theorem is applied.
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1. Introduction

In this work we consider supersymmetric Yang–Mills quantum mechanics
(SYMQM) [1,2]. Theory for SU(N → ∞) gauge group in D = 10 dimensions
is related to M -theory and allows researches on the BFSS hypothesis [3]. For
a smaller number of dimensions and a smaller number of colours, like in our
case where D = 4 and N = 2 respectively, such mechanics pose excellent
theoretical laboratory [4] to test amazing properties of supersymmetry, i.e.

coexistence of discrete and continuous spectrum [5], action of supersymmet-
ric generators or unique features of SUSY vacuum states [2, 6–8]. Moreover
SYMQM without fermions describe glueballs which are also considered in
many non-supersymmetric theories [4, 9, 10]. Here, in order to calculate the
energy spectrum of our model the method proposed by van Baal in Ref. [8]
is used. In this work eigenvalues as well as eigenfunctions of Hamiltonian
of the model are computed. Finally, to distinguish the localized states form
the non-localized ones the virial theorem is applied.
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2. Hamiltonian

The zero-volume Hamiltonian [8,9], i.e. in the long wave approximation
[2, 6], reads

H = −
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)2
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(2.1)

where in the bosonic part, i.e. in HB , HT is the kinetic Hamiltonian, HV

with

B̂a
i = −

1

2

∑

i,j,k,a,b,d

εijkεabdĉ
b
j ĉ

d
k , (2.2)

corresponds to a bosonic potential while the fermionic part is denoted by
HF , where σj = τ j are Pauli matrices. Bosonic variables, ĉa

i , have colour
indices a = 1, 2, 3 and spatial indices i = 1, 2, 3. Except the colour indices
the anticommuting Weyl spinors, λα

a , have spinor indices α = 1, 2. Thus, in
this system the maximum number of fermions is 3 × 2 = 6.

3. The cut Fock space

The operators of the number of fermionic quanta, nF , and the total angu-
lar momentum of the system, j commute with the Hamiltonian. Therefore,
solving the eigenproblem of the Hamiltonian we can separately consider the
sectors with fixed values of nF and j. The system has particle-hole symme-
try so it is enough to consider sectors with nF = 0, 1, 2, 3. Unfortunately,
the operator of number of bosonic quanta, nB, does not commute with H.
Since the model has an infinite number of bosons solving it numerically we
have to cut somewhere the Fock space off. A good choice for this cut-off is
a maximal number of bosonic quanta in the system, B ≥ nB.

We are especially interested in the sector where nF = 2 and j = 0.
In this sector the localized and non-localized states coexist. Moreover, it
contains the supersymmetric vacuum state. To find the energy spectrum we
use van Baal approach [8, 11]. For j = 0 and nF = 2 the Hamiltonian can
be rewritten in terms of three bosonic variables

r2 =
∑

j,a

(ĉa
j )

2 , u = r−4
∑

j,a

(B̂a
j )2 , v = r−3 det ĉ , (3.1)

or equivalently in (x1, x2, x3) where
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∑
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xj . (3.2)
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For example the bosonic potential has a form

HV = u
r4

2
=

(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3)

2
. (3.3)

The minimum of HV is localized in six valleys along the xi-axis. The other
parts of the Hamiltonian have much more complicated structure [8, 12].

We construct the Fock space acting ĉb
j and λa

α̇ on the empty state [4,8] :

|n〉 =
∑

contractions
{a1, . . . , ar}

ĉa1

k1
. . . ĉam

km
λ̄α̇

am+1
. . . λ̄β̇

ar
|0〉 , (3.4)

where sum goes over gauge and rotation invariant combinations of the op-
erators. For nF = 2 we have two independent ways of the fermionic action:

Ij
a = −2i

∑
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εc,b,aλ̄
c
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∑
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α̇λ̄b

β̇
εα̇β̇|0〉 ,

(3.5)
where σ̄j0 = 1

2τj and εαβ = ε
α̇β̇

= −iτ2 lowers spinor indices. Making

contractions of (3.5) to bosons we obtain six independent invariants
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b
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(3.6)
Other basis vector can be obtained acting with invariant combinations

of bosonic variables, i.e. (r, u, v), on these six vectors. This gives following
basis vectors

|n〉 =

6∑

m=1

hn
m(r, u, v)|em(u, v)〉 , (3.7)

where hn
m(r, u, v) are arbitrary functions. Following Refs. [8, 12] they are

chosen as eigenfunctions of the harmonic oscillator. In this basis the matrix
of the kinetic Hamiltonian, HT , is tridiagonal.

4. Diagonalization of the Hamiltonian matrix

The Hamiltonian (2.1) in the basis (3.7) gives the eigenequation

∑

n

Hn′nvn
k = Ekv

n′

k , (4.1)
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where Hn′n = 〈n′|H|n〉 is the Hamiltonian matrix [8, 12] while Ek are its
eigenvalues. The matrix for cut-off B ≤ 11 is plotted in Fig. 1. Intensity
of gray scale shows the amplitude of the matrix elements. We can see five
broad branches of the bosonic Hamiltonian, which corresponds to change of
nB by 0,±2,±4 and two other narrower branches of the fermionic part, HF ,
where this change equals ±1. For B = 60 this matrix has 10416 × 10416
elements and its diagonalization is much more time consuming1.

B 11109876543
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Fig. 1. The 112× 112 Hamiltonian matrix in the base (3.7) for cut-off B ≤ 11.

The dependence of the energy, Ek, on the cut-off is shown in Fig. 2.
We can see two different behaviours of the energy levels. The first levels
converge rapidly. They correspond to localized states. The other ones never
converge but they slowly fall down as E(B) ∼ 1/B. Cut-off analyses of free
particle systems gives conjecture that the latter levels gives the continuous
spectrum at B → ∞ [13].

The eigenfunctions of H read

|Φk(r, u, v)〉 =
∑

n

vn
k |n〉 =

∑

n

vn
k

6∑

m=1

hn
m(r, u, v)|em〉 . (4.2)

1 The evaluation time grows exponentially with B. To speed up calculation the van
Baal’s Mathematica code [8] was rewritten to C++ .
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Fig. 2. Energy spectrum as a function of cut-off B ≥ nB .

Examples of such wavefunctions were presented in [12]. Indeed, the rapidly
converging states are localized in the centre of the x-coordinate system.
On the other hand, the non-localized ones penetrate the system along the
potential valleys [12]. For these states realization of the B → ∞ limit is more
complicated and it is performed with fixed energy E and changing k, i.e.

|Φ(E)(r, u, v)〉 = lim
B→∞

|Φk(EK=E,B)(r, u, v) 〉. (4.3)

Given the explicit form of the energy eigenstates using (4.2) we can
calculate averages of other operators

〈O〉k = 〈Φk(r, u, v)〉|O|Φk(r, u, v)〉 . (4.4)

The only technical problem is to rewrite the operators in terms of (r, u, v).

5. Virial theorem

In order to distinguish the localized states from the non-localized ones
we apply the virial theorem. One can derive it from the Heisenberg equation

dF̂

dt
=

∂F̂

∂t
+

1

i}
[F̂ , Ĥ] . (5.1)
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For a motion in a compact space the virial, ~x·~p, is a limited physical variable.
Therefore, its average does not change with time:

0 =
d

dt
〈~x · ~p〉 =

1

i}
〈[~x · ~p, Ĥ ]〉 , (5.2)

where the second equality follows from (5.1).
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Fig. 3. The test function (5.6) for the bound states as a function of cut-off B ≥ nB

for the lowest fifteen energies. Here to guide the eye joined triangles correspond

to states from discrete spectrum while stars are related to states with continuous

spectrum.

In the case of Hamiltonian H = T +V where T is the kinetic energy and
the potential energy scales as V (α~x) = αnV (~x) one obtains from (5.2):

−2〈T 〉 + n〈V 〉 = 0 . (5.3)

In our case

~x · ~p = −ir
∂

∂r
, (5.4)

and the consecutive parts of the Hamiltonian scale as

HT (αr) = α−2HT (r) HV (αr) = α4HV (r) and HF (αr) = αHF (r) .
(5.5)

Therefore for the bound states the test function

f ≡ −2〈HT 〉 + 4〈HV 〉 + 〈HF 〉 = 0 . (5.6)

Applying (4.4) the averages 〈HX〉 are calculated over the eigenstates of
the Hamiltonian (4.2) as
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EX = 〈HX〉k = 〈Φk(r, u, v)|HX |Φk(r, u, v)〉 . (5.7)

Substituting the obtained values of the averages to (5.6) we can check
the relation (5.6) for the bound states. We plot the test function (5.6) as
a function of the cut-off f(B) in Fig. 3. One can easily see that for the
localized states the relation (5.6) is fulfilled with a very good approximation
even for not so high B.

For the states with the continuous spectrum, condition (5.6) is not sat-
isfied. This is seen in Fig. 3 where we compare the test functions for the
bound states and the states related to the continuous spectrum as a function
of cut-off B ≥ nB. The test function (5.6) related to the bound states are
nearly equal to zero while the test function for the states which form the
continuous spectrum seem to grow with B.

6. Summary

In this work we discuss supersymmetric Yang–Mills quantum mechanics
(SYMQM) [1, 2] in four dimensions for SU(2) gauge group. Investigation of
such models allow to understand complicated properties of the supersym-
metric theories, i.e. coexistence of localized and non-localized states, non-
triviality of the supersymmetric vacuum, which are common for different
supersymmetric theories.

We focus on the sector with the number of fermionic quanta nF = 2 and
the total angular momentum j = 0. This sector possess both discrete and
continuous spectrum [5], and the supersymmetric vacuum state [4,8,12]. In
order to find the energy spectrum we use a method proposed by van Baal in
Ref. [8] where the cut-off of our Fock space, i.e. B, is defined as a maximal
number of bosonic quanta, nB. To confirm localization of states the virial
theorem is used (5.2).

The result of the Hamiltonian spectrum agree with the previous works
[4, 8, 14]. However, here the calculations have been performed for the very
high cut-off B = 60. For this cut-off not only the spectra of bound states
converge but also the corresponding eigenstates [12].

Our calculation shows that the quantum virial theorem is applicable for
the systems with more complicated potential, e.g. one considered in this
work which consists of two different parts. Moreover, the virial theorem can
be used to determinate localization of the states where it is not possible to
calculate the Hamiltonian eigenstates and where the averages of operators
can be computed in a different way. Thus in some cases the virial method
as the localization test of states is easier and more applicable that direct
calculation.
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In the future using this method one can calculate matrix representations
for other operators (4.4) and test various properties and laws for this model.
Furthermore, using similar methods one can also try to solve the models in
more dimensions and for different gauge groups [15].
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Trzetrzelewski. This work was supported by the grant of the Ministry of
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