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SPHERICALLY SYMMETRIC SOLUTIONS
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We briefly present a relationship between General Relativity coupled
to certain spin-0 and spin-2 field theories and higher derivatives metric
theories of gravity. In a special case, described by the Einstein–Bach equa-
tions, the spin-0 field drops out from the theory and we obtain a consistent
spin-two field theory interacting gravitationally, which overcomes a well
known inconsistency of the theory for a linear spin-two field coupled to the
Einstein’s gravity. Then we discuss basic properties of static spherically
symmetric solutions of the Einstein–Bach equations.

PACS numbers: 04.20.–q, 04.20.Jb

1. Introduction

In General Relativity (GR) among physically relevant solutions we have
static spherically symmetric spacetimes, when the metric (in the canonical
coordinates) is given by

g = gµνdx
µdxν = −A(r)dt2 +B(r)dr2 + r2

(

dθ2 + sin2 θdφ2
)

. (1)

In vacuum, the Einstein–Hilbert action IE−H =κ
∫

d4x
√

−det(gµν)R, where
R is a Ricci scalar of the metric g, implies the most important Schwarzschild
solution

A(r) =
1

B(r)
= 1 − 2M

r
.

Adding to the Einstein–Hilbert Lagrangian the Maxwell term −1/4FµνF
µν

and the cosmological constant Λ we extend the 1-parameter Schwarzschild
class to a 3-parameter class of metrics given by

A(r) =
1

B(r)
= 1 − 2M

r
+
e2

r2
+
Λ

2
r2 .
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In the case of Λ = 0 6= e this is called the Reissner–Nordström solution,
when Λ 6= 0 = e this is the Köttler solution. The above spacetimes were
discovered in first two years since GR had been established.

In general, when we are to describe a matter field interacting with gravity
we usually add to the Einstein–Hilbert term the action of the given matter
field in a form just as in a flat spacetime but instead of standard partial
derivatives we put covariant ones. This rule is called the minimal coupling
principle. However, such a procedure fails for a linear spin-two field, which
may exist in the Minkowski spacetime [1].

It has been noticed by various authors [2, 3] that the inconsistency of
a theory for a linear massive spin-two field interacting with Einstein’s gravity
can be overcome by the nonlinear field generated in higher-derivative gravity
upon reduction to a second-order theory.

In this paper we sketch briefly the main aspects of the Lagrangian field
theory for the massive spin-two field which arises in the appropriate Legendre
transformation of a Lagrangian quadratically depending on Ricci tensor. For
a systematic exposition of the theory we refer to [4]. Furthermore, our goal is
to clear up some basic properties of static spherically symmetric solutions of
the Einstein–Bach equations, four-dimensional Lorentzian manifolds arising
from the action principle for the following Lagrangian density

L = R+
1

m2

(

1

3
R2 −RµνR

µν

)

= R+
1

2m2

(

LGB − CαβµνC
αβµν

)

, (2)

where Rµν , Rαβµν , Cαβµν are correspondingly Ricci, Riemann and Weyl

tensors of the metric g and LGB = RαβµνR
αβµν −4RµνR

µν +R2, the Gauss–
Bonnet term, is a total divergence in four dimensional spaces, i.e. it does
not contribute to the field equations.

Since CαβµνC
αβµν — the square of the Weyl tensor is the Lagrangian

density of the Weyl Conformal Theory (WCT), and its field equations are
just the Bach equations we justify our terminology.

2. Dynamical equivalence of Jordan, Helmholtz–Jordan

and Einstein frames

2.1. Jordan frame

By Jordan Frame (JF) we will mean a higher derivative metric theory of
gravity, where a Lagrangian density is given by a quadric polynomial of the
metric g̃ and its Ricci tensor

L = R̃+ aR̃2 + bR̃µνR̃
µν . (3)

The coefficients a and b, as well as 1/m2 have dimension [length]2. There
are possible more general Lagrangians, however, our choice is quite sufficient
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for conceptual and practical purposes. From the action principle we obtain
a system of fourth order partial differential equations for a Lorentzian metric
g̃ on a four dimensional manifold M . The important idea is that (M, g̃) need
not be considered as a real spacetime with a physical metric, but rather
a unifying tensor field on an abstract space.

Jordan frame can be then reformulated as the Einstein gravity described
by the metric field alone g, and the other fields contained in the multiplet
acting as a “matter source” in the Einstein field equations.

Gµν = κTµν .

A tool providing a proper decomposition of the unifying field g̃ into a multi-
plet of gravitational fields is a specific Legendre transformation to the Hamil-
ton picture. Although the Legendre transformation is essentially unique, the
resulting multiplet can be given different physical interpretations and, there-
fore, JF can be transformed into frames including fields of definite spin in
two ways. The first possibility is that the field g̃ remains the metric tensor,
now carrying two degrees of freedom, while the other degrees of freedom
(carried previously by its higher derivatives) are encoded into fields of defi-
nite spins: this is the Helmholtz–Jordan Frame (HJF). A second possibility
is to introduce via an appropriate redefinition of the Legendre transforma-
tion a new spacetime metric g, while the symmetric tensor g̃ is decomposed
into the metric g and a mixture of spin-2 and spin-0 fields, forming the mas-
sive, non-geometric components of the gravitational multiplet. This is the
Einstein Frame (EF).

2.2. Helmholtz–Jordan frame

In order to provide general covariance of HJF and its dynamical equiv-
alence to JF we should choose properly quantities, which will play a role of
generalized velocities, since only a generally covariant theory may be a con-
sistent theory of a spin-two field. We make Legendre transformations of the
Lagrangian with respect to the two irreducible components of R̃µν : its trace

R̃ and the traceless part S̃µν ≡ R̃µν − 1
4R̃g̃µν . Assuming 4a + b 6= 0 and

b 6= 0 we define a scalar and tensor canonical momentum via corresponding
Legendre transformations:

χ+ 1 ≡ ∂L
∂R̃

, πµν ≡ ∂L
∂S̃µν

.

The new triplet of field variables {g̃µν , χ, π
µν} defines the Helmholtz–Jordan

Frame (HJF). Then we construct the Hamiltonian density and express it in
terms of the metric an the canonical momenta
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H =
∂L
∂R̃

R̃+
∂L
∂S̃µν

S̃µν −L =
1

4a+ b
χ2 +

1

4b
πµνπ

µν

and the Helmholtz Lagrangian density

LH ≡ ∂L
∂R̃

R̃(g̃, ∂g̃, ∂2g̃) +
∂L
∂S̃µν

S̃µν(g̃, ∂g̃, ∂
2g̃) −H(g̃µν , χ, π

µν)

= R̃+ χR̃+ πµν S̃µν − 1

4a+ b
χ2 − 1

4b
πµνπ

µν .

From the Helmholtz Lagrangian one can derive Hamilton equations of mo-
tion for g̃µν which are exactly Einstein equations G̃µν = T̃µν(g̃, χ, π), where

T̃µν ≡ 1√−g̃
δ

δg̃µν

(

√

−g̃(R̃−LH)
)

.

Furthermore, we can derive propagation equations for the fields:

• the linear Klein–Gordon for scalar χ

• a quasi-linear second order for πµν , which is the Klein–Gordon when
linearized around the Minkowski space.

and the corresponding masses are real under so-called non-tachyon condi-
tions

• 3a+ b > 0 , m2
χ =

1

2(3a+ b)
,

• −b > 0 , m2
π = −1

b
.

Especially interesting case is

• when 3a+ b = 0 the only solution of the scalar field is χ = 0.
Then the Bianchi identity for the Einstein tensor G̃µν implies four
constraints ∇νπ

µν =0. There is also an algebraic constraint g̃µν π̃
µν =0,

and no other. This ensures a pure spin-two character of πµν .

2.3. Einstein frame

We construct a true spacetime metric g from the metric tensor in Jordan
frame,

gµν ≡
(

− det(g̃αβ)
)

−

1

2

∣

∣

∣

∣

∣

det(
∂L
∂R̃αβ

)

∣

∣

∣

∣

∣

−

1

2 ∂L
∂R̃µν

=

√

∣

∣

∣

∣

det(g̃αβ)

det(gαβ)

∣

∣

∣

∣

∂L
∂R̃µν

, (4)
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where gµν is the inverse of gµν , gµαgαν = δµ
ν . The Legendre transformation

(4) is a map of the metric manifold (M, g̃µν) to another one, (M, gµν). One

assumes that det(∂L/∂R̃µν) 6= 0 to view gµν as a spacetime metric. In
EF all indices are raised and lowered with the aid of g and, therefore, it is
convenient to alter our notation and denote g̃µν by ψµν and its inverse g̃µν

by γµν . For the generic Lagrangian as in (3),

gµν =

√

∣

∣

∣

∣

det(ψµν)

det(gµν)

∣

∣

∣

∣

[

(1 + 2aR̃)γµν + 2bR̃µν
]

, (5)

one introduces Φµν

g̃µν = ψµν = Φµν + gµν .

The doublet of the fields {gµν , Φµν} defines the Einstein frame EF. In gen-
eral Φµν is an admixture of spin-two and scalar fields. When 3a+ b = 0 this
is a pure spin-2 field. Having constructed the Hamiltonian density and re-
lated Helmholtz Lagrangian density one may derive the equations of motion
for the metric, which are Einstein ones, Gµν(g) = Tµν(g, ψ) and nonlinear
propagation equations for Φµν , which reduce to the Klein–Gordon equations
when linearized around the Minkowski space.

Although in both (HJF and EF) frames a higher derivative gravity pro-
vides a consistent description of a self-gravitating massive spin-two field,
mathematical similarity to GR and physical arguments indicate that EF is
physically more acceptable [4].

Jordan frame
L = R̃+ aR̃2 + bR̃µνR̃

µν

{g̃} satisfies fourth order field. eqs.

Lagrange picture
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Fig. 1. The relations between possible frames.
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3. Spherically symmetric solutions

3.1. The field equations

The Einstein–Bach equations which follow for the Lagrangian (2) are

Gµν +
1

m2

(

−2Rµν + 2RαµνβR
αβ +

1

2
gµνRαβR

αβ

)

+
1

m2

(

1

6
gµν(2R −R2) +

1

3
∇µ∇νR+

2

3
RRµν

)

= 0 .

Since now, for the metric in JF we use g without a tilde. Taking the trace
of this tensor equations we obtain the following constraint

R = 0 . (6)

Therefore, the field equations reduce to

Rµν +
1

m2

(

−2Rµν + 2RαµνβR
αβ +

1

2
gµνRαβR

αβ

)

= 0 . (7)

Our field equations contain explicitly parameter m and, therefore, it is con-
venient to use variables rescaled by m. Under static spherically symmet-
ric ansatz (1) we define t → τ = mt, r → x = mr and A(r) → A(x),
B(r) → B(x). Then m drops out from the field equations. Though one
can assume more general spherically symmetric ansatz including an explicit
dependence on time coordinates of the metric, but our aim here is to study
only static solutions. Taking µ = ν = 1 in (7) and reducing it with help of
(6) one obtains the first of the following equations. The second one is just
(6) expressed in terms of A(x) and B(x).

A
′

B
′′

2xAB2
− B

′′

x2B2
+

1

x

(

A
′3

4A3B
+
A

′2
B

′

4A2B2
− A

′

B
′2

AB3

)

+
1

x2

(

− 3A
′2

4A2B
+
A

′

B
′

2AB2
+

5B
′2

4B3

)

+ (B − 1)

(

− B
′

x3B2
+

2

x4B
− 1

x2

)

+
A

′

xA
= 0 , (8)

A
′′

A
− A

′2

2A2
− A

′

B
′

2AB
+

2

x

(

A
′

A
− B

′

B

)

+
2

x2
(1 −B) = 0 . (9)
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3.2. Aspects of integrability

The first question concerning the integrability of our system is whether
there exists an explicit solution. Up to now, the only one known for the
full equations (not reduced) is the Schwarzschild solution. However, it cor-
responds to the vacuum one with vanishing spin-2 field (in both HJF and
EF), namely to the Schwarzschild solution.

The second question is whether there exist a first integral or an invariant
which could be used to give a local explicit solution via the implicit function
theorem. One can ask also whether there exists a sufficient number of sym-
metries either to reduce the differential equations of the system to algebraic
equations or to obtain an independent first integral. There is only one Lie
point symmetry, that of re-scalings of A(x) which is obvious since the system
is time-independent. There are no Lie–Bäcklund symmetries, at least up to
the second order derivative transformations, however one may expect there
exist non-local symmetries. Eq. (9) is linear with respect to

√

A(x) (ho-
mogenous second order) as well as with respect to 1/B(x) (inhomogenous
first order), solving it explicitly one gets

1

B(x)
=

2 exp (3Γ (x))

xA(x)
(

2 + xA
′(x)

2A(x)

)2

∫

dx

(

2 +
xA

′

(x)

2A(x)

)

A(x)

exp (3Γ (x))
, (10)

where Γ (x) =
∫

dx A
′

(x)

(4A(x)+xA
′ (x))

. Putting B(x) from the above formula one

decouples (8) and obtains a nonlinear integro-differential equation for A(x).
At last we take a closer look at the Painlevé property. For linear ordinary

differential equations (ODE’s) all singularities are fixed (points where solu-
tions are not analytic do not depend on constants of integration). However,
for nonlinear ODE’s there exist also movable singularities. There is strong
evidence that all integrable equations have the Painlevé property, that is,
all solutions are single valued (in the complex plane) around all movable
singularities [6]. To find out whether the reduced system has the Painlevé
property one can use the Ablowitz Ramani Segur (ARS) algorithm [5] or
one of its implementation in Mathematica [7]. Passing the Painlevé test im-
plies for the system (8), (9) that its solutions may be expressed in terms of
elementary functions (as in the case of the Schwarzschild solution) or special
functions: the Painlevé transcendents or the linear special functions.
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3.3. A general picture of static spherically symmetric solutions

around the center

Using standard notations and methods we assume a dominant behavior
at the origin:

A = αxp , B = βxq ,

where α, β, p, q are constants to be determined. From the system we obtain
the following three possibilities:

(i) p = 0 , q = 0 , α arbitrary, β = 1 ,

(ii) p = −1 , q = 1 , α, β arbitrary,

(iii) p = 2 , q = 2 , α, β arbitrary.

Now we construct formal solutions with given singularity structures in terms
of generalized power series expansions truncated at some power n by per-
forming calculations with help of computer algebra. Proceeding step by
step, we can determine every coefficient of the Laurent expansions in terms
of a few first ones. A formal solution is an actual solution when the corre-
sponding Laurent series has a non-zero radius of convergence.

A(x) = xp

(

n
∑

i=0

aix
i+O(x)n+1

)

, B(x) = xq

(

n
∑

i=0

bix
i+O(x)n+1

)

.

The formal expansions may be used to analyze geometric invariants: squares
of the Riemann and Ricci tensors are sufficient to distinguish regular and
singular geometry of the origin.

• case (i) Up to the sixth order we find

A(x) = a0 + a2x
2+

a2 (a0+12a2)

20a0
x4+

a2

(

a2
0+72a0a2+240a2

2

)

840a2
0

x6+O
(

x7
)

,

B(x) = 1+
a2

a0
x2+

a2(a0+6a2)

10a2
0

x4+
a2

(

a2
0+50a0a2+80a2

2

)

280a3
0

x6+O
(

x7
)

.

Ric2 = RµνR
µν and Riem2 = RαβµνR

αβµν are finite when x→ 0, therefore,
around the center the spacetime geometry is regular.

• case (ii)

A(x) = x−1

(

a0 + a0b0x+ a3x
3 +

a3b0
6
x4 − a3b

2
0

5
x5 +O

(

x6
)

)

B(x) = x

(

b0−b20x+b30x
2+

(

5a3b0
3a0

−b40
)

x3+

(

−23a3b
2
0

6a0
+ b50

)

x4+O
(

x5
)

)

.
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Riem2 blows up at x = 0 as 1/x6, this implies a singularity at the center.
Taking a3 = 0 and a0b0 = 1 we obtain the Schwarzschild solution.

• case (iii) Up to the fourth order we find

A(x) = x2
(

a0 + a1x+ a2x
2

+
−8a4

1+a0a
2
1 (19a2−a0b0) + 6a2

0

(

a2
2−a2

0b0 (9 + b0)
)

18a2
0a1

x3+O
(

x4
)

)

,

B(x) = b0x
2
(

1 +
a1

a0
x+

a2
1 + 2a0 (−4a2 + a0b0)

6a2
0

x2

−12a4
1 + a0a

2
1 (−25a2 + 11a0b0) + 10

(

−a2
0a

2
2 + a4

0b0 (9 + b0)
)

18a3
0a1

x3

+O
(

x4
)

)

.

Generically Ric2 and Riem2 blows up as 1/x8 and the center is singular.
When the Ricci tensor is non-zero in JF, then the corresponding solutions
have non-vanishing spin-2 fields in HJF and EF, this describes a generic
situation. Nevertheless, the expansions around the center say nothing about
the asymptotic behavior of the related solutions.

type free parameters p q Ric2 Riem2

(i) a0, a2 0 0 regular regular

(ii) a0, a3, b0 −1 1 regular x−6

(iii) a0, a1, a2, b0 2 2 x−8 x−8

4. Conclusions

• Every vacuum solution in General Relativity corresponds to the same
vacuum solution in JF, HJF and EF, especially the Schwarzschild so-
lution in GR is also a solution of JF, HJF and EF.

• The static spherically symmetric case is exactly solvable; in general,
the solutions may be expressed in terms of the nonlinear transcendental
functions.

• There are non-trivial solutions of the Einstein–Bach equations, since
we can construct static spherically symmetric solutions different from
the Schwarzschild as well as the Minkowski space. The formal series
solutions around the center exhibit three distinct behaviors, among
which there are perfectly regular ones.
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• Since the linearization procedure around the Minkowski space of the
equations of motion for the spin-2 field results in the Klein–Gordon
equations (in both HJF and EF), it clearly suggests that there are
solutions of the Einstein–Bach equations with the asymptotic behavior
A ≈ 1−(2M )/x+ “Yukawa-like term”, i.e. for which a deviation from
the Schwarzschild solution vanishes exponentially. In consequence, e.g.

π00 ≈ (βH00 exp(−x))/x, where βH00 is constant. The question of the
behavior of such solutions in the neighborhood of the center is open.

• In EF we have a new metric g which determines a new canonical
radial variable (let us call it s), nevertheless, geometric behavior of the
solutions in the asymptotic region cannot be qualitatively different,
Φ00 ≈ (βE00 exp(−x))/x ≈ (β exp(−s))/s and consequently AE ≈
1 − (2M )/x + “Yukawa-like term”, though their analytic expressions
in both variables x and s may differ significantly. Here the Yukawa-like
term means, that it vanishes asymptotically faster then any rational
function.

• The above arguments clarify that our consistent description of a mas-
sive spin-2 field interacting gravitationally is reasonable at least in EF.

• Possible applications in cosmology and astrophysical systems seem to
be very attractive. We point out e.g. the galactic rotation curves
problem, dark matter, dark energy.

The author thanks to Dr. Z. Golda from the Astronomical Observatory
of the Jagellonian University for many helpful comments.
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