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Topology of exponential and scale-free trees and simple graphs is in-
vestigated numerically. The numbers of the nearest neighbors, the next-
nearest neighbors, the next-next-nearest neighbors, the 4-th and the
5-th neighbors are calculated. The functional dependence [A.E. Motter,
T. Hishikawa, Y.-Ch. Lai, Phys. Rev. E66, 065103(R) (2002)] of the
node-to-node distance dij on the product of connectivities kikj has been
studied numerically. The results of simulations for exponential networks
agree with the existing analytical predictions.
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1. Introduction

Complex networks have been attracting great attention for decades.
They describe many real-world systems and are of interest for physics, so-
ciology, biology, computer science, telecommunication and other areas of
research [1, 2]. Mathematical description of networks is provided by graph
theory [3]. Graph is a set of vertexes (nodes) connected by edges (links).
The main local characteristic of a graph is the node degree, i.e. the num-
ber of links incoming to or outgoing from a node. For almost fifty years,
the paradigm of “typical node” has been present in the science of networks.
Networks of typical nodes were described by Erdős and Rényi [4] (classi-
cal random graphs — CRG). In their model, N nodes are connected ran-
domly with L links: each inter-node link is realized with the probability
p = 2L/[N(N − 1)]. In this model, the node degree distribution is given

∗ Dedicated to Professor Andrzej Z. Maksymowicz on the occasion of his 65th birthday.
† homepage http://home.agh.edu.pl/malarz/, e-mail: malarz@agh.edu.pl

(309)



310 K. Malarz

by a Poisson law, i.e. Pk(k) = exp(−{k}){k}k/k!, where {· · · } denotes the
mean over all N nodes, and the node degrees observed on a graph fluctuate
around {k}.

As pointed out by Albert and Barabási in their seminal paper [5], net-
works in real world more often exhibit a power-like degree distribution, i.e.

Pk(k) ∝ k−γ . In the Albert–Barabási (A–B) model, the node degrees assume
all integer values in the thermodynamic limit and there is no characteristic
value of the degree. Thus, with this observation the Hungarian mathemati-
cians’ world of networks with typical nodes became a world of scale-free
networks.

CRG and A–B networks are two examples belonging to two different
families of networks [6]. The first one belongs to the class of homogeneous

networks, which may be described via a statistical ensemble. The A–B
networks have a temporal structure, as they come into being via growth
process. The A–B networks are an example of causal networks.

For networks, the act of growing means subsequent attachments of new
nodes, each with M links, to previously existing nodes. The procedure
of selection of those “old” nodes influences the network topology and the
resulting degree distribution. When old nodes are selected randomly with
the same probability then exponential networks are created. This means
that the resulting degree distribution is exponential [2]. On the other hand,
when the attachment is preferential — i.e. the probability of choosing a
node is proportional to its degree — the degree distribution is power-like
and network can be termed as scale-free [1].

The number of edges M also influences the network topology:

• when M = 1, the path between any pair of nodes is unique; the growing
structure is called a tree,

• when M > 1, cyclic paths are possible and graph looses its tree-like
properties,

• when M > 1 and all nodes, to which new links are attached, are
distinct a simple graph, without multiple edges, arises.

Such an attaching procedure produces no self-connecting links.
Several characteristics of real or simulated networks may be practically

useful. For example many papers discuss the networks resistance to possible
damage [7], the tolerance with respect to random and/or intentional attack
[8] or transport properties in terms of either the percolation theory [9] or
the shortest path finding [10, 11]. Newman et al. applied the generating
function formalism [12] to evaluate the number of nodes

zm = z1
2−mz2

m−1 (1)
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in subsequent (m-th) layer from a randomly chosen origin [13]. In Eq. (1) z1

and z2 are typical values of the number of nodes nearest neighbors and the
number of nodes next-nearest neighbors of a node, respectively. The first
one (z1) is obviously equal to the average node degree z1 = {k1}. The latter
(z2) was evaluated lately by Shargel et al. [14] as

z2 = {k2} − {k}. (2)

Using the same technique, Motter et al. [15] derived the average node-
to-node distance dij dependence on the product kikj of the node degrees for
random networks:

〈dij〉 = A − B ln(kikj), (3)

where 〈· · · 〉 denotes the average over all node pairs, the product of the pair
degrees being equal to kikj . Recently, Hołyst et al. [16] have confirmed this
dependence numerically and presented some examples of real-world networks
which obey the Motter et al. theoretical predictions.

In this paper we check if Motter et al. [15], Hołyst et al. [16] and Shargel
et al. [14] predictions apply to the growing exponential networks. Namely,
we evaluate number of neighbors in subsequent layers. The node-to-node
distance vs. product of their degrees is also simulated. For completeness,
the calculations and discussion include the growing scale-free A–B networks.

In the next section we explain our numerical approach. In Section 3
we present results of Monte Carlo simulations of the average number of
subsequent neighbors (3.1) and the inter-nodes distance dependence on the
product of node degrees (3.2). The last section summarizes the results.

2. Numerical approach

Numerical approach is based on an “on-line” construction of the distance
matrix D during the network growth [17–20]. An element dij of the distance
matrix gives the length of the shortest path between nodes i and j, i.e. the
minimal number of edges which connect these vertexes. The numbers dij in
i-th row/column inform how far is the node i from another node j. Then,
the number zm(i) representing the number of occurrences of the m value in
the i-th matrix row/column gives the information how many neighbors of
the node i are at the distance m [20]. The average number of the matrix
elements of a given value in all rows/columns — i.e. in the whole matrix —
gives a typical number zm of subsequent neighbors, for example, the nearest
neighbors for m = 1, the next-nearest neighbors for m = 2, the next-next-
nearest neighbors for m = 3, etc. Additionally, the number of unities (“1”)
in the i-th row/column gives degree of the i-th node: k(i) = z1(i).
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3. Results of simulations

We construct the distance matrix D for N = 103 nodes. The results are
averaged over Nrun = 104 independent simulations.

3.1. Number of nodes in subsequent layers

Fig. 1 shows how the deviation δm ≡ z2−m
1

zm−1

2
− zm between zm calcu-

lated from Eq. (1) and from the direct simulations behaves as the function of
the system size N for m = 3, 4, 5. As one can see, starting with N ≈ 100 this
difference decreases with N for the exponential networks. For the scale-free
networks either the number of nodes (N = 103) is still too small to observe
a good agreement between zm and z2−m

1
zm−1

2
or Eq. (1) does not hold for

the A–B graphs.
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Fig. 1. Dependence of δm = z1
2−mz2

m−1 − zm (m = 3, 4, 5) on network size N for

growing exponential and scale-free trees (M = 1) and simple graphs (M = 2).

By construction, the average number of the nearest neighbors z1 is 2
and 4 for trees and simple graphs, respectively. The number of next-nearest
neighbors z2 depends on the applied rules of growth: when the growth is
governed by the preferential attachment rule, we have z2 ≈ 14 and z2 ≈ 38
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for M = 1 and M = 2, respectively. For the exponential networks, these
numbers are z2 ≈ 4 (M = 1) and z2 ≈ 17 (M = 2). As the average
number of the nearest neighbors z1 is exactly equal to the average nodes
degree {k}, it may be evaluated from the degree distribution Pk(k) as {k} =
∑∞

k=M kPk(k), as well. For the exponential network this distribution [2, 20]
is given by

Pk(k ≥ M) =

{

2−k for M = 1,

3/4 · (3/2)−k for M = 2,
(4)

while for the scale-free networks [21, 22] it is

Pk(k ≥ M) =
2M(M + 1)

(k + 2)(k + 1)k
. (5)

The mean number of the next-nearest neighbors (z2) may be evaluated
from Eq. (2) which diverges for scale-free networks with N → ∞. For finite
but large network this sum

σ ≡
N−1
∑

k=M

k(k − 1)Pk(k) = 2M(M + 1)
N−1
∑

k=M

k − 1

(k + 2)(k + 1)
(6)

grows logarithmically with N , σ = 3.99 ln N − 7.55 (M = 1) and σ =
11.96 ln N − 22.6 (M = 2) as presented in Fig. 2.
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Fig. 2. Dependence σ(N) for growing scale-free networks.

The results are collected in Table I.
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TABLE I

Average number of the nearest neighbors z1 and the next-nearest neighbors z2

for different evolving scale-free and exponential networks with N = 103 nodes.

The results are averaged over Nrun = 104 samples. Theoretical predictions of

the average nodes degrees {k}(= z1) and {k2} − {k}(= z2) are also included.

Four last lines show the least-square fit coefficients A and B in the dependence

〈dij〉 = A − B ln(kikj) and their predictions Ath and Bth given by Eq. (7).

scale-free exponential

M 1 2 1 2
∑

∞

k=M kPk 2 4 2 4

z1 = {k} 1.998 3.994 1.998 3.994
∑

∞

k=M k(k − 1)Pk ∞ ∞ 4 18
∑N−1

k=M k(k − 1)Pk 19.95 59.86

{k2} − {k} 13.68 39.66 3.966 17.81

z2 13.68 38.11 3.966 17.37

z2

2
/z1 93.6 363.6 7.88 75.6

z3 44.8 201.5 7.72 71.5

A 7.68 5.09 12.8 6.77

B 0.783 0.438 1.73 0.746

Ath 4.93 4.68 12.0 6.64

Bth 0.519 0.443 1.46 0.679

3.2. Node-to-node distances and node degrees

Using the generating function formalism [12,13], Motter et al. [15] derived
an expression for the length of the shortest path between the nodes for a
given value of the product of connectivities kikj :

〈dij〉 =

[

1 +
ln(Nz1)

ln(z2/z1)

]

−

[

1

ln(z2/z1)

]

ln(kikj)

≡ Ath − Bth ln(kikj) . (7)

Lately, such a kind of dependence 〈dij〉 vs. (kikj) has been shown to be
valid in few real-world networks, including biological and scientific papers
citation networks, public-transportation systems of several Polish towns, and
simulated CRG and A–B networks [16].

Here we show that this logarithmic dependence (3) holds for exponential
networks with M = 1, 2. The results are presented in Fig. 3 and in Table I.
The least-square fit was confined to the two first decades of kikj values for
the scale-free networks and to the one-and-half decade of kikj values for the
exponential ones.
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Fig. 3. Dependence 〈dij〉 vs kikj for growing exponential and scale-free trees

(M = 1) and simple graphs (M = 2). The solid lines are the plots of Eq. (7)

while the dotted lines result from a least-square fit. N = 103, Nrun = 104.

4. Discussion and conclusions

Generating function formalism [13–15,25,26] has a mean-field nature and
should work only for homogeneous trees. This mechanism is founded upon
the assumption that there are no correlations between nodes degrees. But
this assumption does not hold for growing (causal) trees, where the oldest
nodes — probably well connected — are geometrically close [27].

However, the Motter et al. formula (7) works surprisingly well also for
growing networks, where triangles and other cyclic paths are possible. Re-
sults of numerical simulations agree with the Motter et al. [15] predictions
particularly well for exponential networks. Also zm is reproduced quite fairly
in the simulation. For scale-free networks this agreement is only qualitative.
It seems, that the theoretical predictions given by Eqs. (1) and (7) (and
obviously given by Eq. (2)) agree with the results of simulations for only
networks for which {k2} is finite.

The average number of vertexes in all generations, zm, is well known for
homogeneous [25] and causal [24] trees. The number zm of m-th neighbors
derived in [13, 15] agree very well for small m = 3, 4, 5 with the results
of computer simulations for exponential networks where the old nodes, to
which the new ones are attached, are chosen equiprobably.



316 K. Malarz

Again, this should be valid for trees, but it works also for M = 2 when the
random attachment is used. On the other hand the sum

∑∞
k=M k (k − 1)Pk

(k) diverges for power-like distributions Pk(k). For finite but large lattices
this sum (σ, Eq. (6)) increases logarithmically with the system size N . In
all four investigated cases the numerically computed value of z2 (given by
number of “2” in the distance matrix) agrees with {k2}−{k} (averaged over
all graph nodes).

For larger m formula (1) fails when applied to real networks, i.e. with
finite N . Usually, the second layer contains more nodes than the first one,
from which follows that z2 > z1. Then — according to Eq. (1) — zm

increases with m ∈ Z, but for finite systems it must start to decrease for
large m. In particular, any of N nodes which constitute the network has
no neighbors in N -th layer and does not posses N -th neighbors (zm = 0 for
m ≥ N). The distribution of the node-to-node distances for the growing
networks discussed here were presented in [18,20] and evaluated analytically
for trees in Ref. [23].

Still, the method of evaluation of zm (m = 3, 4, 5) based on Eq. (1) may
be quite useful. The main effort should be given to a theoretical evaluation
of the average number of nodes in the second layer, i.e. the number of occur-
rences of “2” in the distance matrix, basing only on the degree distribution
Pk(k). Such an evaluation of z2 would allow, in principle, to reproduce the
whole function zm.

Although the node-to-node distance 〈dij〉 depends logarithmically on the
product of the node i and j degrees (Fig. 3, Eq. (3), Ref. [16]), the depen-
dence of the node-to-node distance on the node degrees is not trivial [11].
We have demonstrated, that Eq. (3) can be extended to the case of the
growing exponential networks. The Motter et al. predictions for the coeffi-
cients A and B in Eq. (3) given by Eq. (7) agree for these networks quite
fairly.

Author thanks Krzysztof Kułakowski, Zdzisław Burda and Andrzej
Lenda for their valuable help and many fruitful discussions. Calculations
were carried out in ACK-CYFRONET-AGH. The machine time on SGI 2800
is financed by the Polish Ministry of Education and Science under grant No.
KBN/SGI2800/AGH/018/2003.
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