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In this paper we show that the compensation of loss in the linear frac-
tional oscillator by an active device can result in auto-oscillations. Due to
the main feature of linear fractional oscillations, namely a finite number of
zeros, the limit cycle in such a generator has a short life time depending
on the order of fractional derivative. The electronic circuit, leading to such
auto-oscillations, is studied as an example, and its differential equation is
derived. The active device characteristic is represented in the piecewise-
linear approximation. The features of electric elements are discussed.

PACS numbers: 05.45.–a, 05.40.Fb, 07.50.–e

1. Introduction

The fractional generalization of harmonic oscillatory motion has attracted
more attention in recent years [1–5]. After a formal study of some aspects of
the fractional oscillator, basically from the mathematical point of view to the
solution of a differential equation with fractional derivative [6,7], the main in-
terest to this problem shifted onto physical aspects of the dynamical system
such as the total energy and the dynamical response [9, 10]. The fractional
oscillator behaves dynamically like a damped harmonic oscillator, but the
similarity is only in appearance. If the damping in a damped harmonic os-
cillator rides on an external frictional force, the fractional oscillations damp
because of entirely internal causes. It turns out [3] that the understanding
of the intrinsic absorption arises from the interpretation of the fractional
oscillator as an ensemble average of ordinary harmonic oscillators randomly
interacting with environment. Since the harmonic oscillators differ slightly
in frequency, then each response is compensated by an antiphase response
of other oscillators. In this connection it should be pointed out that the
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interaction with environment is expressed in terms of the stochastic arrow
of time [11]. This permits one also to reach a progress in one more issue.
Formerly the equation of fractional oscillator was not obtained from any
physical principles. Instead of the formal change of the second-order deriva-
tive in the harmonic oscillatory equation on a fractional derivative, the new
approach derives the equation of fractional oscillator from the Hamilton for-
malism [4]. However, mainly the success concerns linear fractional systems.
In fact, there are many cases in which linear treatments are not sufficient.
The more general systems described by nonlinear fractional differential equa-
tions have been studied not enough [12–16]. The ordinary calculus brings
out clearly that essentially new phenomena occur in nonlinear systems which
cannot in principle occur in linear systems.

The purpose of this paper is to present the simplest case, when the frac-
tional motion tends to self-excited or self-sustained fractional oscillations.
Systems of this kind, when their differential equation are expressed in terms
of integer-order derivatives, are very common in nature. They occur always
when a periodic motion is maintained through absorption of energy from
a constant flow of energy. But the fractional calculus introduces a novelty
to this matter. The fractional oscillations have a finite number of zero. The
mathematical model of the fractional generator is studied in Sec. 2. The
generator may be reproduced in the form of the electronic circuit. Just in
Sec. 3 we consider this device. The brief discussion of the obtained results
together with the future perspectives sums up our analysis in Sec. 4.

2. Mathematical model

There are many physical models composed of linear system solutions
which result in nonlinear phenomena. One of the best examples is the
Adronov–Vitt–Khaikin model [17], where the limit cycle arises from solu-
tions of two linear differential equations describing damped oscillations:

ẍ + 2kẋ + ω2
0x = ω2

0g , ẋ > 0 , (1)

ẍ + 2kẋ + ω2
0x = 0 , ẋ ≤ 0 , (2)

where g, k, ω0 are constant. The presence of the right-hand term in Eq. (1)
is interpreted as a driving force. The solution of Eq. (2) takes the form

x(t) = Re−kt cos(γt + θ) , γ =
√

ω2
0 − k2

with an arbitrary phase θ. By the substitution of variables y = x − g the
Eq. (1) reduces to Eq. (2) in the variable y. The phase trajectory outgoing
from the point (x1(t), 0) for ẋ ≤ 0 is rotated around the point (0, 0) whereas
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for ẋ > 0 it is winded around the point (g, 0). As a result, there exists
a close loop crossing the positive semi-axis x in xc = g/(1 − ρ), where
ρ = exp(−kπ/γ) < 1. In fact, this model describes a triode generator [17,18].

Recently, the clear physical interpretation has been established for a lin-
ear fractional oscillator [3]. Briefly recall it. The fractional oscillator results
from an ensemble average of identical harmonic oscillators noninteracting
with each other, but interacting with environment. It should be pointed out
that the dispersion properties of the fractional oscillator is enough similar
to the case described by an ensemble of harmonic oscillators with damping.

Now we modify the system of Eqs. (1), (2) to the fractional form:

Dαx + ωα
0 x = ωα

0 g, ẋ > 0 , (3)

Dαx + ωα
0 x = 0 , ẋ ≤ 0 , (4)

with 1 < α < 2. Here the fractional operator Dα is supposed from the
definition [19]:

Dαx(t) =
1

Γ (n − α)

t
∫

0

x(n)(τ)

(t − τ)α+1−n
dτ , n − 1 < α < n ,

where x(n)(t) means the n-derivative of x(t), and Γ (z) is the gamma func-
tion. Then Eq. (4) describes fractional damped oscillations. The substitu-
tion y=x− g reduces Eq. (3) to Eq. (4). In fact, the system of Eqs. (3), (4)
describes a dissipative model. It is reasonable to ask what behavior is demon-
strated by the dynamical system in comparison with the Adronov–Vitt–
Khaikin’s case. Here we are going to clear up this question. The model
from Eqs. (3), (4) will be regarded as a peculiar generator. The sketch of its
electronic scheme is shown in the next section.

For the sake of simplicity we choose the initial conditions with ẋ(0) = 0.
Then the solution of Eq. (4) is written as

x(t) = x(0)Eα(−ωα
0 tα) , (5)

where Eα(z) is the one-parameter Mittag–Leffler function [20]. According
to [7,8], for 1 < α < 2 the function eα(t) = Eα(−tα) can be decomposed into
two parts. In other words, it may be expressed in terms of a simple sum [8].
The first contribution gives a completely monotonic function tending to
zero as t tends to infinity. The second part has an oscillatory character with
an exponential decay. Owing to two contributions, this fractional model
exhibits a finite number of damped oscillations. It is easy to show that the
same is in the case for the derivative ẋ(t).
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Really, the derivative of the Mittag–Leffler function ėα(t) is also decom-
posed into two parts:

ḟα(t) = − 1

π

∞
∫

0

e−rt rα sin πα

r2α + 2rα cos πα + 1
dr , (6)

ġα(t) =
2

α
e t cos(π/α) cos[t sin(π/α) + π/α] . (7)

The two terms compete with each other. Following this competition, the
function ėα(t) has zeros. Since ḟα(t) and ġα(t) have a different character of
decay, the number of the zeros is finite. For sufficiently large t the zeros of
ėα(t) may be found approximately from the equation

2

α
e t cos(π/α) ≈ t−α−1

Γ (−α)
, (8)

where the envelope of the expression (7) is compared with the first term

from the asymptotic expansion of ḟα(t).
It is evident that only one zero is present for the derivative ė1(t). Now

putting α = 1 + ε, in the limit ε → 0 the first-order approximation gives

Γ (−α) = −Γ (−ε)

1 + ε
∼ 1

ε
, cos(π/α) ∼ −1 .

The asymptotic position T of the zero having the largest argument is deter-
mined from Eq. (8) so that

e−T ∼ ε (1 + ε)

2
T−2− ε .

This implies that

T ∼ ln

(

2

ε

)

+ 2 ln(T ) .

From that it is seen that for ε → 0 the value T tends to infinity. Since the
term T increases faster than ln(T ), for the sake of simplicity one may neglect
ln(T ) with respect to T . Then we get

T ∼ ln

(

2

ε

)

or ε ∼ 2 e−T .

The expression supports the tendency of T to infinity as ε → 0.
When the index α changes from 1 to 2, the number of zeros of the

function ėα(t) increases up to infinity since ė2(t) = − sin(t) has infinitely
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many zeros. Here we also estimate the value T (and the total number N of
zeros) when α = 2−δ in the limit δ → 0. In the framework of the first-order
approximation we find

Γ (−α) = −Γ (−1 + δ)

2 − δ
∼ 1

2δ
, cos(π/α) ∼ −πδ

4
.

From Eq. (8) it follows that

e−πδT/4 ∼ δ (2 − δ)T−3+ δ

from which
πδT

4
∼ ln

(

1

2δ

)

+ 3 ln(T ) . (9)

Since both terms in the right-hand side of Eq. (9) diverge, the production δT
tends to infinity too. However, T and 1/δ are of the same order. Therefore,
we put either T ∼ −(A/δ) ln(2δ) or δ ∼ B ln(T )/T . Next, it is easy to define
A = B = 16/π. The asymptotic expression (9) takes the equivalent form

T ∼ 16

πδ
ln

(

1

2δ

)

, or δ ∼ 16

π

ln(T )

T
.

For δ → 0 the length of the positive intervals of ġα(t) becomes equal to π.
Thus, the total number of zeros tends to N ∼ T/π in the limit δ → 0.

Next we use the recurrent formula [21]

dEα, β(z)

dz
=

Eα, β−1(z) − (β − 1)Eα, β(z)

αz
,

where Eα, β(z) =
∑

∞

n=0 (zn/Γ (αn + β)) is the two-parameter Mittag–Leffler
function so that Eα, 1(z) = Eα(z). Then the calculation of the first-order
derivative of the Mittag–Leffler function is reduced to the calculation of the
Mittag–Leffler functions with various indices. The accurate numerical algo-
rithm for calculating the two-parameter Mittag–Leffler function is described
in [22]. This approach helps to simulate the function ėα(t) numerically.
An example of this numerical treatment is presented in Fig. 1. The results
support our analytical estimations.

The main conclusion of our analysis is that the derivative ẋ(t) contains
a finite number of damped oscillations with an algebraic decay. In this
connection it should be pointed out that each solution of two linear differ-
ential equations of the Adronov–Vitt–Khaikin model has an infinite number
of damped oscillations. This permits the nonlinear term to excite a self-
oscillation, and the phase portrait shows a limit cycle. The system described
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Fig. 1. Fractional oscillation eα(t) and its derivative for α = 1.7 .

by Eqs. (3), (4) behaves in another way. The cause just consists in the num-
ber of zeros. A finite number of zeros cannot lead to an ordinary limit cycle.
The threshold level (equal to zero in Eqs. (3), (4)) of ẋ(t), switching the
linear equations, is not of a vital importance. This dynamical system may
generate only a short-living limit cycle. The numerical simulation of the
self-oscillations is presented in Fig. 2. The system is qualitatively stable to
small changes of its parameters like a threshold level, an index α and initial
conditions.

The analysis of Eqs. (3), (4) will not be complete, unless one considers
the condition (relating the sign of the derivative ẋ(t) to a prescribed form
of the Eqs. (3), (4)). It is easy to see that the condition is similar to the one
in Eqs. (1), (2). In this particular case, the use of the dependence is fully
legitimate [17, 18]. The derivative ẋ(t) has a clear physical sense, namely
velocity or momentum. It would be natural to use also a similar argument of
the velocity (momentum) dependence of the dynamic equation in cases (3)
and (4). The generalized momentum of the fractional oscillator is proposed
in [9]. In this case such a momentum p is defined so that the expression
p2/(2m) has the dimension of energy. Thus, the condition for the sign of
ẋ(t) may be replaced by the sign dependence of Dα/2x(t). Substituting the
expression of x(t) under the fractional derivative, we obtain

Dα/2eα(t) = −tα/2Eα, 1+α/2(−tα) .
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Fig. 2. Finite number of self-oscillations in the dynamical system following

Eqs. (3), (4) with α = 1.7 .

Following the arguments of [4], the number of the zeros in ẋ(t) turns out to be
finite. Thus, the main conclusion of our paper remains true. The fractional
oscillator under the piecewise-linear approximation generates a short-living
limit cycle.

3. Electronic scheme of fractional generator

Now we consider an electric circuit represented in Fig. 3. It contains an
active component (for example, either triod vacuum tube or field electronic
transistor) and an oscillatory circuit. The oscillatory circuit consists of a coil
of inductance L, a resistance R, and a condenser of capacitance C all in
parallel. By means of the coupling coil L′ it governs by the active component.
The control potential is provided by a mutual inductance M , as indicated.
Sometimes such a circuit is called feedback.

j 

i 

Fig. 3. Oscillator circuit with a piecewise-linear characteristic of the active compo-

nent.
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Assume that the current through the mutual inductance may be ne-
glected, and the values R, L, C are constant. If vL, vC , vR are the drop
potentials through L, C, R, respectively, the Kirchhoff law of voltages gives
vL = vC + vR. The resistance voltage vR is iR, the current j = CdvC/dt,
and the drop potential vL through the inductance coil equal to Ldi/dt. The
currents i, j obey the equation i + j = f(v), where the function f(v) is
sometimes called the characteristic (of tube, for example). This function de-
termines the current which flows through the active component depending
on the control potential value v = Mdi/dt. If f takes the form of a step
function, then we obtain

d2i

dt2
+

R

L

d i

dt
+

i

LC
=







i0/(LC) , if di/dt > 0 ,

0 , if di/dt ≤ 0 .

This differential equation of second order exactly corresponds to the Adro-
nov–Vitt–Khaikin model [17, 18], briefly described in the previous section.

From the analysis of the electric circuit (Fig. 3) it follows that the char-
acteristic f(v) depends on features of the active component, whereas the
differential form of the equation is determined merely by the oscillatory cir-
cuit. In particular, the resistance R characterizes dissipative processes in the
model, and the frequency of oscillations is calculated by the relation 1/

√
LC.

This case expects idealized properties of electrical elements (capacitor and
coil) so that their voltage (or current) evolution is expressed in terms of the
temporal derivative of the first order. However, this is not necessarily so.
As is shown, for example, in [23], no ideal capacitor exists in nature. The
condenser C is discharged exponentially because of the exponential relax-
ation of charges (Debay law) in the dielectric between capacitor plates. If
the relaxation adheres to another response, then the temporal evolution of
the capacitor discharge takes a nonexponential form. In particular, for the
Cole–Cole response the polarization, induced in such a dielectric medium,
satisfies the fractional-order differential equation [24, 25]. It is relevant to
remark here that the fractional capacitor theory started with Curie’s empiri-
cal law (1889), describing the power relaxation of current in a capacitor [26].
Later the fractional-order capacitor models were developed in [27, 28]. Now
the term fractance has been generally recognized. It denotes an electric
element with a non-integer impedance [29].

Let an appropriate dielectric material be located between capacitor pla-
tes so that the discharge rate jα(t) from the electric element and the potential
difference vα(t) between the plates are written as

C Dαvα(t) = jα(t) ,
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where C is the generalized capacity (constant). Assume that the ferromag-
netic core of the inductance coil consists of magnetic domains having a sim-
ilar response of magnetic susceptibility. This leads to the following relation
for the current and the drop of potential through the inductance coil, namely

LDµiµ(t) = uµ(t) ,

where L is the generalized inductance (constant). For the sake of mathe-
matical simplicity, the resistance R will be ignored. Notice that the frac-
tional derivative itself already accounts for dissipative effects. Next set
α = µ > 1/2. Since vα(t) = uα(t), the current jα is expressed in terms
of CDαvα(t) = CDαuα(t) = LCD2αiα(t). The sum of currents jα(t) + iα(t)
equals to the characteristic of the active component f(v). Using the inter-
relation, we arrive at the equation describing the electronic generator:

D2αiα(t) +
iα(t)

LC =







g , if Dαiα(t) > 0 ,

0 , if Dαiα(t) ≤ 0 ,

where g = iα(0)/(LC) is the constant determined by the characteristic of

the active component. The value 1/
√
LC describes the frequency of free

fractional oscillations. Recall that the fractional oscillations have a finite
number of zeros. Note that the sign condition in the latter equation may
take another form, namely diα/dt > 0 and diα/dt ≤ 0. This depends on
a coupling coil and its mutual inductance.

A different model of the fractional oscillator was studied by Heaviside
(1922) and Bush (1929) [30–32] who analyzed a semi-infinite lossy transmi-
tion line terminated by an inductor. However, this circuit gives only one
fixed index 3/2 for the fractional order of derivative.

4. Summary

We have established that the fractional oscillatory circuit may generate
nonlinear oscillations in the form of pulses. Their number directly depends
on the order of derivative. The closer this order is to two, the more number
of pulses is observed. This fact patently indicates that by means of such
a generator one can estimate the order index of the fractional system. As for
the piecewise-linear approximation for the active component characteristic,
much of the engineering literature on this subject is based on the assumption
that the characteristic can be taken as such a function without too much
error. The influence of the characteristic non-linearity on the fractional
generator work will be examined in future.

The author thanks the referee for his useful remarks.
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