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FINAL STATE OF HAWKING RADIATION
IN QUANTUM GENERAL RELATIVITY∗
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We use a new approach to the UV behavior of quantum general relativ-
ity, together with some recent results from the phenomenological asymp-
totic safety analysis of the theory, to discuss the final state of the Hawking
radiation for an originally very massive black hole solution of Einstein’s
theory. We find that, after the black hole evaporates to the Planck mass
size, its horizon is obviated by quantum loop effects, rendering the entire
mass of the originally massive black hole accessible to our Universe.

PACS numbers: 04.70.Dy

Given the many successes of Einstein’s classical theory of general rela-
tivity [1–3], the fact that the only accepted complete treatment of quantum
general relativity, superstring theory [4, 5], involves1 many hitherto unseen
degrees of freedom, some at masses well-beyond the Planck mass, is even
more of an acute issue, as we have to wonder if such degrees of freedom are
anything more than a mathematical artifact? The situation is reminiscent
of the old string theory [7] of hadrons, which was ultimately superseded by
the fundamental point particle field theory of QCD [8].

Accordingly, in the recent literature, several authors have attempted to
apply well-tested methods from the Standard Model [8,9] (SM) physics arena
to quantum gravitational physics: in Refs. [10], the famous low energy ex-
pansion technique from chiral perturbation theory for QCD has been used
to address quantum gravitational effects in the large distance regime, in
Refs. [11] renormalization group methods in curved space-time have been

∗ Work partly supported by US DOE Grant DE-FG02-05ER41399 and by NATO Grant
PST.CLG.980342.

1 Recently, the loop quantum gravity approach [6] has been advocated by several au-
thors, but it has still unresolved theoretical issues of principle, unlike the superstring
theory. Like the superstring theory, loop quantum gravity introduces a fundamental
length, the Planck length, as the smallest distance in the theory. This is a basic
modification of Einstein’s theory.
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used to address astrophysical and cosmological (low energy) effects and in
Refs. [12–14] the asymptotic safety fixed-point approach of Weinberg [15]
has been used to address the bad UV behavior of quantum general relativ-
ity whereas in Refs. [16–19] the new resummed quantum gravity approach
(RQG) has also been used to address the bad UV behavior of quantum gen-
eral relativity (QGR). The ultimate check on these developments, which are
not mutually exclusive, will be the confrontation with experimental data.
In this vein, we focus in the following on an important issue that arises
when semi-classical arguments are applied to massive black hole solutions of
Einstein’s theory.

More precisely, Hawking [20] has pointed-out that a massive black hole
emits thermal radiation with a temperature known as the Bekenstein–
Hawking temperature [20, 21]. This result is well accepted by now. This
raises the question as to what is the final state of the Hawking evaporation
process? In Ref. [13], it was shown that an originally massive black hole
emits Hawking radiation until its mass reaches a critical mass Mcr ∼ MPl,
at which the Bekenstein–Hawking temperature vanishes and the evaporation
process stops. Here, MPl is the Planck mass, 1.22 × 1019 GeV. This would
in principle leave a Planck scale remnant as the final state of the Hawking
process.

Specifically, in Ref. [13], the running Newton constant was found to be

G(r) =
GNr3

r3 + ω̃GN [r + γGNM ]
(1)

for a central body of mass M where γ is a phenomenological parameter [13]
satisfying 0 ≤ γ ≤ 9

2 , ω̃ = 118
15π

and GN is the Newton constant at zero
momentum transfer. The respective lapse function in the metric class

ds2 = f(r)dt2 − f(r)−1dr2 − r2dΩ2 (2)

is then taken to be

f(r) = 1 − 2G(r)M

r
=

B(x)

B(x) + 2x2
|x= r

GNM
, (3)

where
B(x) = x3 − 2x2 + Ωx + γΩ (4)

for

Ω =
ω̃

GNM2
=

ω̃M2
Pl

M2
. (5)

This leads to the conclusions that [13] for M < Mcr there is no horizon in
the metric in the system and that for M ↓ Mcr the Bekenstein–Hawking
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temperature vanishes, leaving a Planck scale remnant, where

Mcr =

[

ω̃

ΩcrGN

]
1

2

(6)

for

Ωcr =
1

8
(9γ + 2)

√

γ + 2
√

9γ + 2 − 27

8
γ2 − 9

2
γ +

1

2
. (7)

For reference, we see that for the range 0 < γ < 9
2 from Ref. [13] we have

1 > Ωcr & .2.
The source of these results can be seen to be the fixed-point behavior for

the running Newton constant in momentum space found in Ref. [13],

G(k) =
GN

1 + ωGNk2
, (8)

where ω ∼ 1 depends on the precise details of the IR momentum cut-off in
the blocking procedure used in Ref. [13]. As we have shown in Refs. [16–18],
our RQG theory gives the same fixed-point behavior for G(k) so that we
would naively conclude that we should have the same black hole physics
phenomenology as that described above for Ref. [13]. Indeed, we have
shown [17, 18] that for massive elementary particles, the classical conclu-
sion that they should be black holes is obviated by our rigorous quantum
loop effects, which do not contain any unknown phenomenological parame-
ters. We note as well that the results in Ref. [22], obtained in a simple toy
model using loop quantum gravity methods [6], also support the conclusion
that, for masses below a critical value, black holes do not form; the authors
in Ref. [22] are unable to specify the precise value of this critical mass.

However, as we have shown in Ref. [16–18], for elementary massive par-
ticles, and this Bonnano–Reuter Planck scale remnant would indeed be such
a massive object with a mass smaller than many of the fundamental excita-
tions in the superstring theory for example, quantum loop effects, resummed
to all orders in κ =

√
8πGN, lead to the Newton potential

ΦN(r) = −GNMcr

r
(1 − e−ar) , (9)

where the constant a depends on the masses of the fundamental particles in
the Universe. We take here the latter particles to be those in the SM and its
extension as suggested by the theory of electroweak symmetry breaking [23]
and the theory of grand unification [24]. For the upper bound on a we use,
we will not need to speculate about what particles may exist beyond those
in the SM; and for the SM particles we use the known rest masses [25,26]2 as

2 For the neutrinos, we use the estimate mν ∼ 3eV [27].



350 B.F.L. Ward

well as the value mH
∼= 120 GeV for the mass of the physical Higgs particle

— the latter is known to be greater than 114.4 GeV with 95% CL [28].

More precisely, when the graphs Figs. 1 and 2 are computed in our re-
summed quantum gravity theory as presented in Refs. [16–18], the coefficient
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Fig. 1. The graviton ((a), (b)) and its ghost ((c)) one-loop contributions to the

graviton propagator. q is the 4-momentum of the graviton.
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Fig. 2. The scalar one-loop contribution to the graviton propagator. q is the

4-momentum of the graviton.

c2,eff in Eq. (12) of Ref. [18] becomes here, summing over the SM particles
in the presence of the recently measured small cosmological constant [29],
which implies the gravitational infrared cut-off of mg

∼= 3.1 × 10−33eV,

c2,eff =
∑

j

njI(λc(j)) , (10)

where we define [18] nj as the effective number of degrees of freedom for
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particle j and the integral I is given by

I(λc) ∼=
∞
∫

0

dxx3(1 + x)−4−λcx (11)

with the further definition λc(j) =
2m2

j

πM2

Pl

where the value of mj is the rest

mass of particle j when that is nonzero. When the rest mass of particle
j is zero, the value of mj turns-out to be [30]

√
2 times the gravitational

infrared cut-off mass [29]. We further note that, from the exact one-loop
analysis of Ref. [31], it also follows that the value of nj for the graviton
and its attendant ghost is 42. For λc → 0, we have found the approximate
representation

I(λc) ∼= ln
1

λc

− ln ln
1

λc

−
ln ln 1

λc

ln 1
λc

− ln ln 1
λc

− 11

6
. (12)

We wish to combine our result in (9) with the result for G(r) in (1) from
Ref. [13]. We do this by omitting from the c2,eff the contributions from the
graviton and its ghost, as these are presumably already taken into account
in G(r) in (1), and by replacing GN in (9) with the running result G(r)
from (1). Thus our improved Newton potential reads

ΦN(r) = −G(r)Mcr

r
(1 − e−ar) , (13)

where now, with
c2,eff

∼= 1.41 × 104 (14)

and, from Eq. (8) in Ref. [18],

a ∼=
(

360πM2
Pl

c2,eff

)

1

2

(15)

we have that
a ∼= 0.283MPl . (16)

Since the result from Ref. [13] for G(r) is based on analyzing the pure Ein-
stein theory with no matter, it only contains the effects of pure gravity loops
whereas, if we omit the graviton and its ghost loops from our result for c2,eff ,
our result for a in (13) only contains matter loops. Hence, there really is no
double counting of effects in (13).

As we have explained elsewhere [18], if we use the connection between k
and r that is employed in Ref. [13] and restrict our result for c2,eff to pure
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graviton and its ghost loops, we recover the results of Ref. [13] for G(k) and
G(r) with the similar value of the coefficient of k2 in the denominator of
G(k), for example. Thus, we can arrive at our result in (13) independent of
the exact renormalization group equation (ERGE) arguments in Ref. [13].
A more detailed version of such an analysis will appear elsewhere [30].

We also stress here that, when one uses the ERGE for a theory, one
obtains the flow of the coupling parameters in the theory. To get to the exact
S-matrix, and derive a formula for the Newton potential for example, one
then has to employ the corresponding improved Feynman rules for example.
Thus, in the analysis in Ref. [13] and in Ref. [32], which extends the ERGE
analysis of Ref. [13] to include matter fields, one finds the results for the
behavior of the couplings at the analyzed asymptotically safe fixed point.
The corresponding computation of the S-matrix near the fixed point with
the attendant improved running couplings is fully consistent with our results
in (9), (13) [30].

At the critical value Mcr, the function B(x)+2x2 = x3+Ωcrx+γΩcr just
equals 2x2 at x = xcr, producing there a double zero of B(x) and of the lapse
function f(r) = 1+2ΦN. When we introduce our improvement into the lapse
function via G(r) → G(r)(1 − e−ar), the effect is to reduce the size of the
coefficient of −2x2 in B(x) to −2ξx2 where ξ = ξ(x) = 1 − e−aGNMcrx < 1
and thereby to remove the double zero at xcr. The respective monotone
behaviors of the polynomials x3 + Ωcrx + γΩcr and 2ξ(xcr)x

2 then allow us
to conclude that the lapse function remains positive and does not vanish
as x ↓ 0, i.e., our quantum loop effects have obviated the horizon of the
would-be Planck scale remnant so that the entire mass of the would-be
Planck scale remnant is made accessible to our Universe by our quantum
loop effects. This result holds for all choices of the parameter γ in the range
specified by Ref. [13].

We note the nature of the way the results in Ref. [13] and our result
in (13) are to be combined: first one carries out the analysis in Ref. [13]
and shows that the originally massive black hole evaporates by Hawking
radiation down to the critical mass Mcr; then, in this regime of masses, the
Schwarzschild radius is in the Planck scale regime, wherein the calculation
in (13) is applicable to show that the horizon at Mcr is in fact absent. One
cannot simply use the result in (13) for all values of M because it is only
valid in the deep UV. Above, we have used a step function at x = xcr to
turn-on our improvement for x ≤ xcr.

This is still only a rather approximate way of combining our result in
(13) and the result (3) of Ref. [13] and it leaves open the question as to
the sensitivity of our conclusions to the nature of the approximation. In
principle each result is a representation of the quantum loop effects on the
lapse function if we interpret these effects in terms their manifestations on
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the effective value of Newton’s constant as it has been done in Ref. [13]:

f(r) = 1 − 2Geff (r)M

r
, (17)

where we take either Geff (r) from (1) or we use (13) to get Geff = GN(1 −
e−ar) where now we must set a = 0.210MPl to reflect the effects of pure
gravity loops. The former choice is valid for very large r, so it applies to
very massive black holes outside of their horizons whereas the latter choice
should be applicable to the deep UV at or below the Planck scale. A better
approximation is then, after the originally very massive black hole has, via
the analysis of Ref. [13], Hawking radiated down to a size approaching the
Planck size, to join the two continuously at some intermediate value of r by
determining the outermost solution, r>, of the equation

1 − 2G(r)M

r
= 1 − 2GN(1 − e−ar)M

r
, (18)

where G(r) is given above by (1), and to use the RHS of the latter equation
for f(r) for r < r>. For example, for Ω = 0.2, we find r>

∼= 27.1/MPl,
so that, whereas the result (3) would give an outer horizon at x+

∼= 1.89
for γ = 0 3, we get x+

∼= 1.15 when we do this continuous combination;
moreover, the inner horizon implied by (3) at x−

∼= 0.106 moves to negative
values of x so that it ceases to exist. The Bekenstein–Hawking temperature
in this continuous combination remains positive for all x > 0 because the
two equations

0 = x − 2 + 2e−
yx
2 ,

0 = 1 − ye−
yx

2 , (19)

where y = 2σ/Ω
1

2 for σ = (a/MPl)
√

ω̃, require as well

1 = ye−(y−1). (20)

The expression on the RHS of this latter equation has a maximum for y ≥ 0
at y = 1 and this maximum is just 1, the constant on the LHS of the same
equation. The only positive solution to (20) is then y = 1, or Ω = 4σ2. This
corresponds to x = 0 in the (19), which contradicts the assumption therein
that x > 0. Hence, we see that the outer horizon just approaches x = 0 for
Ω → 4σ2 ≡ Ω′

cr and that, at this point, the derivative of the lapse function
is positive. The mass M ′

cr implied by Ω′

cr is 2.38 MPl. In other words,

3 We follow Ref. [13] and ask for self-consistency in the determination of γ and this
leads us to the choice γ = 0 here.
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originally massive black holes emit Hawking radiation until they reach the
point M ′

cr ∼ MPl at which their horizon vanishes, in complete agreement
with our more approximate treatment above.

The intriguing question is that, after reaching the final mass M ′

cr, which
is now made accessible by quantum loops, how will that mass manifest itself?
Depending on the value of its baryon number, we can expect that there is
non-zero probability for its decay into just two body final states, such as two
nucleons, resulting in cosmic rays with energy E = 1

2M ′

cr
∼= 1.2MPl. More

complicated decays would populate the cosmic ray spectrum with energy
E < 1

2M ′

cr
∼= 1.2MPl. Such cosmic rays may help to explain the current

data [33, 34] on cosmic rays with energies exceeding 1019eV.

In sum, all of the mass of the originally very massive black hole is ul-
timately made accessible to our Universe by quantum loop effects. This
conclusion agrees with some recent results by Hawking [35].

Note added

We point out that the map given in Ref. [13] for the phenomenological
distance correlation for the respective infrared cut-off k is based on standard
arguments from quantum mechanics and the parameter γ encodes a large
part of the phenomenological aspects of that correlation. In Refs. [16–18],
the variable k is the Fourier conjugate of the position 4-vector x so that

the connection from function space of ~k space to that of ~r space is given by
standard Fourier transformation with no phenomenological parameters,i.e.,
the result in (9) does not have any sensitivity to parameters such as γ. This
underscores the correctness of (13) and the main conclusion we draw from
it: for all choices of γ, the Planck scale remnant has its horizon obviated by
quantum loop effects.

I would like to thank Prof. S. Jadach for useful discussions.
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