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It is a common knowledge that the quasielastic neutrino–neutron and
antineutrino–proton cross sections tend to the same constant as (anti)neu-
trino energy becomes high. In this paper we calculate the exact expres-
sion of the limit in terms of the parameters describing quasielastic scatter-
ing. We check that even at very high energies only small absolute values
of the four-momentum transfer contribute to the cross section, hence the
Fermi theory can be applied. The dipole approximation of the form factors
allows to perform analytic calculations. Obtained results are neutrino-
flavour independent.

PACS numbers: 13.15.+g

1. Introduction

Quasielastic neutrino scattering plays a dominant role in neutrino–nucle-
on reactions at energies below 1GeV. When neutrino energy increases an-
other channels open and quasielastic processes become less important. At
high energy the total cross section for neutrino scattering is approximately
proportional to the value of the energy while the quasielastic cross section is
roughly constant. The latter behaviour is known on the basis of numerical
computations but as far as we know, it has not been shown analytically yet.

The quasielastic cross section is usually calculated within the Fermi the-
ory. At low energies four-momentum transfer is understood to fulfil the
condition |q2| ≪ M2

W , where MW = 80.4GeV is W boson mass. It will be
shown in Sec. 3 that in fact even for very-high-energy neutrinos overwhelm-
ing contribution to the cross section satisfies such constraint, therefore the
use of the Fermi theory is well justified.

Radiative corrections are not taken into account, but in Sec. 3 we esti-
mate that they can be neglected.
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In the theoretical description of the neutrino–nucleon interaction the ha-
dronic current is expressed in terms of the four form factors due to Lorentz
invariance and assumption that there are no second-class currents. The form
factors can be expressed in various ways, see [1]. We consider dipole form
factors because of their simplicity in analytic calculations.

The quasielastic cross section for neutrino–neutron scattering can be
written as [2]

σ =
M2G2

F
cos2 θC

8πEν
2

∫

dq2

[
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In above formulae ml is charged-lepton mass, Eν neutrino energy and ξ =
µp − µn − 1, where µp and µn are the proton and neutron magnetic mo-
ments, respectively. In the case of antineutrino–proton scattering −B(q2)
in Eq. (1) should be replaced by +B(q2). We also need to know the interval
of integration

[

(q2)A, (q2)B
]

:

(q2)A =
m2

l (Eν + M) − 2ME2
ν −

√
∆

2Eν + M
,

(q2)B =
m4

l M

m2
l (Eν + M) − 2ME2

ν −
√

∆
, (2)

with ∆ = (2ME2
ν − m2

l Eν)
2 − 4m2

l M
2E2

ν .
As it was mentioned before, in this paper we will consider dipole form

factors. Using the Sachs form factors

GV
E (q2) =

1

(1 − q2/M2
V
)2

, GV
M(q2) =

1 + ξ

(1 − q2/M2
V
)2

,
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the vector form factors can be expressed in the following way:

F 1
V(q2) =

(

1 − q2

4M2

)

−1[

GV
E (q2) − q2

4M2
GV

M(q2)
]

,

ξF 2
V(q2) =

(

1 − q2

4M2

)

−1[

−GV
E (q2) + GV

M(q2)
]

,

whereas the pseudoscalar form factor FP is related to the axial one due to
PCAC hypothesis:

FA(q2) =
gA

(1 − q2/M2
A
)2

, FP(q2) =
2M2FA(q2)

m2
π − q2

.

By mπ we denoted the pion mass.

2. High-energy limit

If neutrino energy Eν is high enough to fulfil the condition Mmax/Eν ≪ 1,
where Mmax = max{ml,M,MV,MA}, one can write

∆ = 4M2E2
ν

[

E2
ν − m2

l

M
Eν +

m4
l

4M2
− m2

l

]

→ 4M2E4
ν ,

what results in

(q2)A → −2MEν ,

(q2)B → 0 . (3)

The cross section Eq. (1) is the sum of terms

α
.
=

G
4E2

ν

∫

dq2M2A(q2) ,

−β
.
=

G
4E2

ν

∫

dq2B(q2) (s − u) ,

κ
.
=

G
4E2

ν

∫
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(s − u)2

M2
, (4)

where we have introduced the compact notation for the constant factor

G =
G2

F
cos2 θC

2π
.

The first term, that is α, tends to zero as neutrino energy becomes
infinite. We will show it in Appendix A.
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Next, in Appendix B it is calculated directly that in the discussed limit β
also approaches zero.

Thus only κ gives a nonzero contribution to the high-energy (anti)neu-
trino quasielastic cross section:

σ∞

.
= lim

Eν→∞

σ = lim
Eν→∞

κ .

Our main result can be written in the form
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6π

[
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(
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.

Detailed calculations are presented in Appendix C. Introducing notation
ρ = 4M2/M2

V
and µ = ξ + 1 we can write it in the more compact way:
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G2

F
cos2 θC

6π

[

M2
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AM2
A + 2M2 µ2 − 1

(ρ − 1)2

(
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. (5)
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Fig. 1. The cross sections’ dependence on neutrino energy. σ∞ stands for the high-

energy limit of σ calculated in this paper. Experimental data for quasielastic νµ

scattering from D2 target are taken from ANL 1973 [3], ANL 1977 [4], BNL 1981 [5],

FNAL 1983 [6] and CERN–WA25 1990 [7].
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The above expression does not depend on the charged-lepton mass, therefore,
the Eν → ∞ limit of the cross section is equal for all the neutrinos and
antineutrinos, see also Fig. 1.

3. Discussion

To obtain numerical value of the limit we assume values of the constants
for dipole form factors as in [1], see Table I. Note the corrected value of the
axial mass: MA = 1.001 ± 0.020GeV. Then

σ∞ = 0.956 × 10−38cm2 .

We observe next that none of the four terms in Eq. (5) can be neglected.
Contribution of the term with the axial form factor is equal to about 46%.
The dependence of σ∞ on the value of the axial mass is shown in Fig. 2.

TABLE I

The values of the constants used in numerical calculations.

GF 1.1803 10−5/GeV2

cos θC 0.9740

gA −1.267

ξ 3.7059 µN

MA 1.001 GeV

M2
V

0.71 GeV2

MA (GeV)

σ
∞

(1
0−

3
8
cm

2
)

1.201.151.101.051.000.950.90

1.15

1.10

1.05

1.00

0.95

0.90

0.85

Fig. 2. The dependence of the high-energy limit of the cross section σ∞ on the

axial mass. Marked point represents the value of MA as in [1].
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It is necessary to check if our approach based on the Fermi theory is
consistent. We do it numerically by computing the cross section with the
W boson propagator σW and comparing the result with the cross section
within the Fermi theory σ. Fig. 3 presents the dependence of the ratio

R =
σW − σ

σW
,

on neutrino energy. When Eν ≥ 50 GeV the ratio R is roughly constant and
less than 0.01% (for each flavour). It means that only small four-momentum
transfers |q2| contribute to the quasielastic cross section, thus calculations
within the Fermi theory are reasonable even for very high neutrino energies.
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R
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Fig. 3. The ratio of the difference between the cross section σW with the W boson

propagator and the Fermi theory cross section normalised with respect to σW itself.

In calculations of the limit of the cross section no radiative corrections
were taken into account. We guess that corrections to quasielastic scattering
are of the same order of magnitude as to deep inelastic scattering, i.e. they
are roughly constant and of the order of half a percent [8] (the value refers
to the corrections which come from bremsstrahlung of the charged lepton,
W boson and quarks). If the hypothesis is true, it makes them of low
importance unless experiments reach very high precision.

More important improvements could come from the non-dipole form fac-
tors as in [1]. Presented there figures suggest that they would yield the value
of the limit 3% smaller with respect to our result, but unfortunately “BBA-
2003 Form Factors” are practically unapplicable to analytic calculations.

The author would like to thank to J.T. Sobczyk for his inestimable help
in preparing this article.
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Appendix A

Why α tends to zero

The α term defined in Eq. (4) is an integral of rational function of q2 divided
by neutrino energy squared. As Eν → ∞, α would not tend to zero only
if the integral rose at least as E2

ν . The form of the limits Eq. (3) implies
that the lower one always gives zero and only the upper one could produce
nonzero terms, if the integrand is of the order of at least one in q2. Let us
write explicitly the term of the highest order for each form factor, keeping
in memory that FP can be expressed by FA:

1
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)2
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(
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(
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)4
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V
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1
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(q2)3

(M2
V
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.

We can see that each one of them is a proper fraction, so as neutrino energy
becomes infinite α tends to zero. To illustrate this, let us perform the
calculation for the second of above expressions. We can obtain easy-to-
integrate form by decomposing it into partial fractions:

1

4

( q2

M2

)2

|F 1
V|2 =

M8
V

4M4

[ c

(4M2 − q2)
− c

(M2
V
− q2)

+ O(q−4)
]

,

where c is a constant and O(q−4) denotes terms of lower order in q2. As
neutrino energy becomes high the limits of integration are given by Eq. (3)
hence

1

4

∫

dq2

( q2

M2

)2

|F 1
V|2 → M8

V

4M4

[

2c ln
MV

2M
+ other constants

]

.

The above integral tends to a constant as Eν → ∞. Only higher order term
in q2 could give result increasing with Eν but there is no such term in α.
Since that for the whole expression holds true that

α → const

E2
ν

→ 0 .
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Appendix B

Why β tends to zero

In the frame in which target nucleon is at rest (s−u) = (4MEν −m2
l + q2),

so the quantity defined in Eq. (4) can be explicitly written as

β =
µgAG(MAMV)4

4M2E2
ν

∫

dq2
(

B(4MEν − m2
l ) + Bq2

)

,

where

B =
q2

(M2
A
− q2)2(M2

V
− q2)2

.

To perform the integration one needs to decompose the integrand into partial
fractions:

B =
1

R2
A
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A

(M2
A
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+
M2

V
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V
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+
M2

A
+M2

V

RA

( 1

M2
A
−q2

− 1
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V
−q2

)

]

,

Bq2 =
1

R2
A

[

M4
A

(M2
A
− q2)2

+
M4

V

(M2
V
− q2)2

+
2M2

A
M2

V

RA

( 1

M2
A
− q2

− 1

M2
V
−q2

)

]

,

where RA = M2
A
− M2

V
. As Mmax/Eν ≪ 1, after integrating in the lim-

its Eq. (3) we obtain

β → 2µgAG(MAMV)4

MEνR2
A

(

1 +
M2

A
+ M2

V

RA

ln
MV

MA

)

→ 0 .

Appendix C

Why κ tends to constant

The last term in Eq. (4) expressed by the form factors is

κ =
G

(4MEν)2

∫

dq2

[

|F 1
V|2 −

q2

4M2
|ξF 2

V|2 + |FA|2
]

(s − u)2 .

For convenience we separate the axial part from the vector one:

κA

.
=

G
(4MEν)2

∫

dq2 |FA|2(s − u)2 ,

κV

.
=

G
(4MEν)2

∫

dq2

[

|F 1
V|2 −

q2

4M2
|ξF 2

V|2
]

(s − u)2 .
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To evaluate the integral

κA =
g2
A
GM8

A

(4MEν)2

∫

dq2 (s − u)2

(M2
A
− q2)4

one needs to know decomposition of the integrand. If we add MA and −MA

to (s − u) and square it in the following way

(s−u)2 = (4MEν −m2
l +M2

A)2−2(4MEν −m2
l +M2

A)(M2
A−q2)+(M2

A−q2)2,

we will get

(s − u)2

(M2
A
− q2)4

=
(4MEν − m2
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A
)2

(M2
A
− q2)4

− 2(4MEν − m2
l + M2

A
)

(M2
A
− q2)3

+
1

(M2
A
−q2)2

.

It means that as neutrino energy fulfils condition Mmax/Eν ≪ 1, integration
in the limits Eq. (3) leads to

κA → g2
A
GM2

A

3

(

1 − 2m2
l + M2

A

4MEν

)

and

lim
Eν→∞

κA = G g2
A
M2

A

3
.

The integrand in definition of κV, i.e.

|F 1
V|2 −

q2

4M2
|ξF 2

V|2 =

(

1− q2

4M2

)

−1(

1− q2

M2
V

)

−4[

µ2

(

1− q2

4M2

)

+1−µ2

]

,

with µ = ξ + 1, can be written as

|F 1
V|2 −

q2

4M2
|ξF 2

V|2 =
µ2M8

V

(M2
V
− q2)4

− 4M2M8
V
(µ2 − 1)

(4M2 − q2)(M2
V
− q2)4

.

Let us denote the last-fraction’s numerator as K = 4M2M8
V
(µ2 − 1). Above

expression decomposed into partial fractions is

|F 1
V|2 −

q2

4M2
|ξF 2

V|2 =
K
R4

V

(

1

M2
V
− q2

− 1

4M2 − q2

)

+
K

R3
V
(M2

V
− q2)2

+
K

R2
V
(M2

V
− q2)3

+
Kµ

RV(M2
V
− q2)4

,
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where RV = 4M2 − M2
V

and Kµ = M8
V
(4M2 − µ2M2

V
). By repeating the

trick made during the computation of κA we obtain

[

|F 1
V|2 −

q2

4M2
|ξF 2

V|2
]

(s − u)2 =
c1

M2
V
− q2

− c1

4M2 − q2
+

c2

(M2
V
− q2)2

+
c3

(M2
V
− q2)3

+
c4

(M2
V
− q2)4

,

where coefficients are:

c1 =
K
R4

V

(

4MEν − m2
l + 4M2

)2
,

c2 =
K
R3

V

[µ2M8
V
R3

V

K − (4MEν − m2
l + 4M2)2

]

,

c3 =
1

R2
V

[

K
(

4MEν − m2
l + M2

V − KµRV

K
)2

− (KµRV)2

K
]

,

c4 =
Kµ

RV

(

4MEν − m2
l + M2

V

)2
.

For neutrino energy Eν ≫ Mmax, we conclude that integration over (dq2)
leads to

G
(4MEν)2

∫

dq2

( c1

M2
V
− q2

− c1

4M2 − q2

)

→ GK
R4

V

ln
4M2

M2
V

(

1 +
4M2 − m2

l

2MEν

)

,

G
(4MEν)2

∫

dq2 c2

(M2
V
− q2)2

→ − GK
M2

V
R3

V

(

1 +
4M2 − m2

l

2MEν

)

,

G
(4MEν)2

∫

dq2 c3

(M2
V
− q2)3

→ G
2M4

V
R2

V

(

K +
K(M2

V
− m2

l ) −KµRV

2MEν

)

,

G
(4MEν)2

∫

dq2 c4

(M2
V
− q2)4

→ GKµ

3M6
V
RV

(

1 +
M2

V
− m2

l

2MEν

)

.

The κ term is the sum of κA and κV, therefore

lim
Eν→∞

κ = G g2
A
M2

A

3
+

G
3RV

[

3K
R3

V

ln
4M2

M2
V

− 3K
M2

V
R2

V

+
3K

2M4
V
RV

+
Kµ

M6
V

]

.

Recall that Kµ = M8
V
(4M2−µ2M2

V
) and RV = 4M2−M2

V
, hence we obtain

Kµ

M6
V

= M2
V

(

4M2 − µ2M2
V

)

= M2
VRV − (µ2 − 1)M4

V .
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Next, constant factor K = 4M2M8
V
(µ2 − 1), so

Kµ

M6
V

+
3K

2M4
V
RV

= M2
VRV + (µ2 − 1)M4

V

2(M2 − M2
V
) + 3M2

V

RV

.

It means that the limit of the cross section is equal to

lim
Eν→∞

σ =
G2

F
cos2 θC

6π

[

M2
V + g2

AM2
A +

2(µ2 − 1)M4
V

(4M2 − M2
V
)2

(M2 − M2
V)

+
3(µ2 − 1)M8

V

(4M2 − M2
V
)3

( 4M2

4M2 − M2
V

ln
4M2

M2
V

− 1
)

]

.

Denoting ρ = 4M2/M2
V

we can write this formula in the following way:

lim
Eν→∞

σ =
G2

F
cos2 θC

6π

[

M2
V + g2

AM2
A + 2M2 µ2 − 1

(ρ − 1)2

(

1 − 4

ρ

)

+ 3M2
V

µ2 − 1

(ρ − 1)3

( ρ

ρ − 1
ln(ρ) − 1

)

]

.
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