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A decay of a heavy hybrid is expected to produce light mesons flying out
with speeds comparable to the speed of light and phenomenological mod-
els of the decay must respect symmetries of special relativity. We study
consequences of this requirement in a class of simple constituent models
with spin. Our models respect boost symmetry because they conform to
the rules of a boost-invariant renormalization group procedure for effec-
tive particles in light-front QCD. But rotational symmetry of the decay
amplitude is not guaranteed and the parameters in the model wave func-
tions must take special values in order to obtain the symmetry. When the
effective interaction Hamiltonian responsible for a hybrid decay has the
same structure as the gluon–quark–antiquark interaction term obtained by
solving the renormalization group equations for Hamiltonians in first order
perturbation theory, the non-relativistic image of a hybrid as built from a
quark and an antiquark and a heavy gluon that typically resides between
the quarks, cannot produce rotationally symmetric amplitude. However,
there exists an alternative generic picture in the model that does satisfy
the requirements of special relativity. Namely, the distance between the
quark and antiquark must be much smaller than the distance between the
gluon and the pair of quarks, as if a hybrid were similar to a gluonium in
which one gluon is replaced by a quark–antiquark pair.

PACS numbers: 13.25.Jx, 11.80.–m, 13.90.+i

1. Introduction

Special relativity symmetry imposes severe constraints on the constituent
picture of decays of hybrids. When one attempts to construct a constituent
model of hybrids based on the weak-coupling expansion in QCD [1], treated
as a potential candidate to complement the strong-coupling lattice pic-
ture [2,3], the parameters of the model cannot be treated as independent. In
principle, QCD contains a small number of free parameters: quark masses, a
coupling constant, and a scale parameter at which the masses and coupling
are specified. In perturbation theory, the coupling depends on the scale
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through the ratio of that scale to ΛQCD, the latter being adjusted in the
scheme in which the constituent picture is being considered. However, not
every scheme can clearly define the concept of constituents. It is particu-
larly hard to describe constituent particles in the region of small virtualities
where binding mechanism is at work. In fact, the constituent dynamics is so
difficult to derive in QCD and solve precisely, especially for light quarks and
gluons, that no clear quantum-mechanical picture in Minkowski space has
been derived yet despite extensive studies. Thus, phenomenological images
are based on models and such models contain additional parameters due to
arbitrary simplifying assumptions that are not under control by a precise
theory.

Nevertheless, a phenomenological model constructed within a well-
-defined theoretical framework may help to finesse the leading approxima-
tion through agreement with data. Namely, if QCD is correct and does not
require changes to precisely describe data, a model may hint at the structure
that one should look for when attempting to solve the theory in a sequence of
successive approximations. More importantly, data can provide constraints
on models not only through discrete sets of numbers that correspond to the
magnitudes of the considered quantities, but also through continuous sym-
metries. The chief example is the Lorentz symmetry that includes boosts
and rotations. The symmetry dictates the shape of functional dependence of
a decay amplitude on the coordinates used to describe the outgoing particles.
We show how this dictum works in a simple model.

In the standard dynamical approach, rotational symmetry is kinematic
(independent of interactions) and boost symmetry is dynamical (a change of
frame of reference involves effects caused by interactions, such as a change
in the number of constituents). Thus, in the standard approach, a model of
a decay of a hybrid (or any other hadron) constructed in the center-of-mass
frame of reference (CMF) of the hadron can easily respect the kinematical
rotational symmetry in that frame of reference. However, it is not clear in the
models that are based on the standard approach how well they respect the
dynamical boost symmetry [4]. The boost symmetry would be very useful for
checking the validity of all kinds of constituent models since QCD is supposed
to yield only fully relativistic answers [5, 6]. Also, when one models a light
meson in its own CMF as built from a fixed number of constituents and then
uses the same constituent picture when the meson is moving with a speed
close to the speed of light, which happens when a light meson is a product
in a decay of a hybrid, one has to verify if the model satisfies constraints
that the boost symmetry imposes. But the constraints imposed by boost
symmetry are hard to satisfy in constituent models in the standard dynamics
because boost generators in the standard dynamics depend on interactions
and change the number of constituents.
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In the light-front (LF) approach discussed here [7,8], boost symmetry is
kinematical and it does not involve a change in the number of constituents
no matter how fast a meson or a hybrid are moving. Instead, the rotational
symmetry is dynamical. Therefore, if one wants to keep a fixed number of
constituents, or when one seeks a physical picture in which the contributions
from basis states with different than the leading number of constituents are
small, it is the rotational symmetry of decay amplitudes (instead of boost
symmetry in the standard approach) that begins to impose stringent con-
straints on the LF wave functions that stand a chance to approximate so-
lutions to QCD, if some constituent picture is actually valid in the theory.
Since the group of rotations is compact (the group of boosts is not) and it is
already well-understood in non-relativistic quantum mechanics, the LF ap-
proach provides an opportunity for studying dynamical constraints of special
relativity in an intuitively familiar way. The rotational symmetry is a much
more familiar concept of quantum theory than the boost symmetry. This
is reflected in the fact that the latter symmetry is rarely discussed in terms
of constituents in the context of QCD. But using the LF approach, one can
gain some insight concerning structures that may emerge from a relativistic
dynamical quantum theory by checking if a set of wave functions chosen in
a model can provide a rotationally symmetric decay amplitude of a hybrid.
We interpret our findings concerning hybrids in the LF approach from the
point of view of models of non-hybrid mesons.

Section 2 discusses theoretical background for the present study. Our
model assumptions are described in Section 3. Numerical results obtained
from the symmetry constraints on the decay amplitude of a hybrid are de-
scribed in Section 4 and discussed in Section 5. Section 6 contains our
conclusions regarding the constituent structure of hybrids.

2. Theoretical background

A constituent model of a hybrid qualifies as a theoretically reasonable one
when it is clear, at least in principle, how the constituents used in the model
can be related to quarks and gluons in QCD within a single formulation of
the theory. Of course, it is possible that QCD will be eventually solved and
precise comparison with data will demonstrate that the theory requires some
changes of currently unknown nature and implications [3]. Before this hap-
pens, however, models of hybrid decays can be regarded as reasonable from
the theoretical point of view if they are designed in agreement with some
framework for solving QCD. But since exact solutions are missing and the
constituent picture for hadrons continues to pose major conceptual problems
(there is no dynamical explanation in QCD of the phenomenological success
of the constituent quark model, examples of studies can be found in [9,10]),
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there exists today a considerable room for varying parameters and adjust-
ing them to data even in reasonable models. This status of theoretically
reasonable models of hadrons will continue until QCD is solved precisely
enough to derive the model pictures and remove the freedom in choosing
their parameters. One should also keep in mind that a model may be suit-
able for representing a theory for one type of data and not so reasonable
for another type. There is an exception to this ambiguity: all theoretically
reasonable models of hadrons must respect symmetries of special relativity.
The alternative is to explain why the constraints of that symmetry can be
ignored.

The requirement of Lorentz symmetry imposes constraints on the wave
function of the hybrid as soon as one has a candidate for the dynamical
mechanism of the decay. This mechanism should also be derived from QCD.
Unfortunately, constituent dynamics is not understood yet in terms of the
theory. In the LF QCD, one can apply the renormalization group procedure
for effective particles (RGPEP, see e.g. [11] which shows the method in a
considerably simpler case of heavy quarkonia, rather than the very difficult
case of hybrids) and derive interactions of constituent quarks and gluons
order by order in perturbation theory assuming an extremely small coupling
constant, as if ΛQCD were much smaller than it actually is. Certainly, when
ΛQCD is set to a realistic value, and when the appropriate renormalization
group parameter is lowered down to the scale of the binding mechanism,
the asymptotically free coupling constant increases to values for which the
formal perturbative expansion in powers of the coupling constant is not
expected to work well. But numerical tests in asymptotically free models
with bound states [12] suggest that perturbation theory in RGPEP may be
able to identify parts of the structure of the interaction terms in effective
Hamiltonians that dominate in the bound-state dynamics, using as small a
coupling constant as one wishes in the process. When a structure is already
found, the main effect is the increase of the coupling constant in front of the
identified structure [12]. This is true provided that one does not lower the
renormalization group parameter in RGPEP too much and the calculation
of the effective interaction is not cutting into the mechanism of formation of
the bound states of interest.

The first term relevant to hybrid decay that one derives in perturbation
theory is the term in which an effective gluon turns into a pair of an effec-
tive quark and an effective antiquark. Therefore, we assume here that the
interaction that leads to the decay of a hybrid is that of a constituent gluon
decaying into a pair of a constituent quark and antiquark. The constituents
are identified with effective particles in RGPEP. According to RGPEP, the
relevant structure of the interaction is exactly like in the canonical Hamil-
tonian for LF QCD except for two features. One feature is that the annihi-
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lation operator for the effective gluon, the creation operator for the effective
quark, and the creation operator for the effective antiquark, all correspond to
a small renormalization group scale λ just above the scale where the binding
mechanism is active. Another feature is that the interaction vertex contains
a form factor fλ, instead of being local as in the canonical theory that one
starts with. The effective interaction term is denoted by HIλ.

Once the interaction term HIλ responsible for the decay of a hybrid state,
denoted by |h〉, into two mesons, denoted by |p〉 and |b〉 (the letter p is cho-
sen for a light meson, like meson π, and letter b is chosen for a much heavier
meson, like meson b1 of mass 1235 MeV), is specified, the decay amplitude,
denoted by A, is evaluated using the formula A = 〈p b |HIλ|h〉. The symme-
tries of the decay amplitude A depend on the shapes of the wave functions of
the hybrid, meson p, and meson b. Our question is: For what wave functions
of the hybrid and two mesons one can obtain a spherically symmetric decay
amplitude A for a 0++ hybrid using the interaction term HIλ?

We choose the wave functions to correspond to the phenomenological
images that underlie constituent models of hadrons. For example, we choose
a Gaussian wave function of the relative momentum of quarks to model a
meson. We demand that the width of that function is on the order of masses
of the involved particles. Similar Gaussian wave functions are introduced for
the hybrid state. There are also spin dependent factors for quarks and gluons
in the states we consider that were not studied before [5]. Our study includes
several choices of these factors. The factors are built from the spinors and
Dirac matrices which appear in the current operators that formally can
produce meson or hybrid states with the quantum numbers we consider. We
check the decay amplitudes of 0++ hybrids into two types of mesons: two
scalar or two pseudoscalar ones. The interaction term we use here differs
from the scalar–gluon term used in the previous study [5] by inclusion of the
gluon spin as dictated by QCD. Typically, the resulting decay amplitudes are
not spherically symmetric. However, the degree of violation of the spherical
symmetry depends on the values of the parameters we introduce in the wave
functions and the RGPEP parameter λ. But one can vary the parameters
and check if there exist any choices for which an amplitude is spherically
symmetric. It turns out that such choices do exist and we find them here
by minimizing the deviation of A from spherical symmetry.

The main assumption that is tested in our study is that the number of
constituents can be minimal. We know that the effective particle dynamics
derived using RGPEP in LF QCD includes Hamiltonian terms that change
the number of effective quarks and gluons. In the standard formulation
of particle dynamics that evolves in time t = x0 instead of the LF x+ =
x0 +x3, special relativity requires that states of hadrons are built from Fock
sectors with different numbers of virtual quanta. Even the vacuum state,
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with no hadrons at all, appears to be a very complex state whose structure
eludes efforts of physicists to explain it. But the situation is different in
the LF dynamics. When QCD is regulated in transverse (perpendicular to
the z-axis) and longitudinal (along the front) direction, there is no creation
of quanta from the bare vacuum and hadrons can be considered using an
expansion into their Fock components. Moreover, the effective interactions
that are obtained from RGPEP contain the vertex form factors fλ that may
have a small width λ in momentum space. These form factors prevent the
interaction terms from easily producing additional constituents, even if the
coupling constant is not small in comparison to 1. But since we do not
know if one can approximate the solution for hadronic states in LF QCD by
keeping only the smallest possible number of constituents with some λ, the
critical question is if there exists any reasonable choice of the parameters in
a model with only a minimal number of constituents for which the model
renders a spherically symmetric A. If such choices exist, what do we learn
about the allowed model parameters from the symmetry requirement?

It will be shown that all the sets of parameters that we obtain share some
features. Some of these features turn out to be independent of all details in
our treatment of spin of the effective quarks and the gluon. The conclusion
obtained earlier in Ref. [5], using a model with a spinless “gluon”, is shown
to be also valid when one includes spin. We study several options to do
so and we find that the tendency observed in [5] for a spinless gluon is a
generic phenomenon, even though some changes do occur. But the general
conclusion is that the probability distribution for the constituent quarks and
a gluon in a scalar hybrid must resemble a state built from the gluon and
an octet diquark. The diquark has a smaller size than the typical distance
between the gluon and the diquark. The structure can be imagined as a
gluonium with one gluon replaced by a small quark–antiquark pair. This is
a result of pure fitting of the model parameters. Our study does not answer
the question if or how this picture may arise from the effective LF dynamics
in QCD.

Although it is known how the effective dynamics can be derived order by
order from QCD, the resulting eigenvalue equations for mesons or hybrids
are too complex and the number of basis states too large for solving the
equations completely without some guiding rules for simplifying the math-
ematics. What we observe here is that the constraints of special relativity
strongly limit the acceptable wave functions if one assumes that physical
states are dominated by the Fock sectors with the smallest possible numbers
of effective constituents. The constraints of relativity force the wave func-
tion parameters to take values that suggest a dominant role of gluons in the
distribution of matter inside hybrids. Gluons seem to dictate to quarks what
the latter must do, rather than vice versa, i.e., not as constituent models
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based on the picture for glueless hadrons suggest. Our main point is not
that our model must be correct, but that the constraints of relativity on LF
models with a minimal number of constituents are quite restrictive, can be
implemented in practice, and point in new directions.

Let us add that the problems with Lorentz symmetry in constituent
models of bound states of quarks and gluons occur not only when an out-
going meson is light and has to move fast in the rest frame of a decaying
hybrid. They also occur when one considers a decay of a hybrid in fast mo-
tion, which happens whenever the decay is a part of a bigger process that
includes production and propagation with a high speed of the hybrid itself.
Such circumstances may be of interest, for example, in a photoproduction
of hybrids in motion.

3. Assumptions

The model we discuss is an extension of the scalar model from Ref. [5]
and we adopt notation used there without changes. The new element here
is the spin of a constituent gluon. In Ref. [5], gluons were treated as scalar
particles. Here, the interaction Hamiltonian HIλ that is responsible for the
decay of the constituent gluon is taken directly from LF QCD with the
RGPEP width parameter λ near the scale of hadronic masses:

HIλ = gfλψ̄λγ
µAa

µ,λt
aψλ . (1)

We display below details of the term that creates a pair of an effective quark
and an effective antiquark from an effective gluon. This is the only term
that counts in our calculation of the decay amplitude A. The interaction
term contains the vertex form factor fλ. If we denote the invariant mass of
the quark–antiquark pair by Mqq̄ and the gluon mass by Mg, then [11]

fλ = e−(M2
qq̄
−M2

g)2/λ4

. (2)

3.1. qq̄ mesons

The qq̄ meson wave functions are of the same type as in Ref. [5].

|p〉 =
∑

12

∫

[12] p+δ̃(1 + 2 − p)Ψp
JPC(1, 2) b†λ1d

†
λ2|0〉 , (3)

where Ψ
p
JPC(1, 2) is a product of color, flavor (isospin), spin, and momentum

dependent factors:

Ψ
p
JPC(1, 2) = χ†

c1Cpχc2 χ
†
i1
Ipχi2

χ†
s1
Sp(1, 2)χs2

ψp(1, 2) , (4)
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with Cp = 1/
√

3 (color singlet), Ip = 1/
√

2 (isospin singlet), and Sp(1, 2) is

a 2× 2 spin matrix, sandwiched between two-component spinors. δ̃ denotes
16π3 times a three-dimensional δ-function of plus and transverse momenta
of the particles indicated in the argument, δ̃(k) = 16π3δ(k+)δ(2)(k⊥), see [5].
The wave function ψp(1, 2) is chosen to be Gaussian function,

ψp(1, 2) = NpNpm(~k12)Nps(~k12) exp

[

−~k 2
12

2β2
p

]

, (5)

where ~k12 is the relative three-momentum of the quarks in their center of
mass system, see Appendix A. The additional functions Npm and Nps [5] are
introduced entirely ad hoc. One option we investigate is that these functions
are kept equal 1. In this case, the momentum integrals involve the relativistic
momentum-space measure and full complexity of factors resulting from the
relativistic spin structure. In particular, the normalization of a meson state
is given by an integral of a function that is a product of the square of
the Gaussian function, a factor resulting from the relativistic momentum-
space measure, and a complex momentum-dependent spin factor. The other
options we investigate are that the functions Npm or Nps are chosen to
cancel the relativistic momentum-space measure or the spin factor in the
normalization integral, respectively. The normalization condition is 〈p|p′〉 =

p+δ̃(p− p′). When both the measure and spin factors are canceled by Npm

(measure) and Nps (spin), the normalization integral is a plain Gaussian
integral as in a non-relativistic quantum mechanics. We investigate these
options to find out how strongly the relativity constraints on the amplitude
A depend on different factors. The same type of factors as Npm or Nps in
the meson p are introduced in the meson b and denoted by Nbm or Nbs.
All factors N are listed in the Appendix A. The cases we discuss here are
described as N = 1 (full relativistic complexity of the model wave functions)
or N 6= 1 (non-relativistic appearance of the normalization integrals of the
model wave functions).

For JPC = 0++ mesons, we have the following spin factor

χ†
s1
Sp(1, 2)χs2

= ū1v2 , (6)

(the notation is the same as in Ref. [5]), where u1 and v2 are Dirac spinors
for quarks. For JPC = 0−+ mesons (pseudoscalar mesons) we use

χ†
s1
Sp(1, 2)χs2

= ū1γ
5v2 . (7)

The LF spinors we use here are described in the Appendix A.
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The above model meson states require comments concerning their pa-
rameters, spins, and quark content. First of all, we use the name b-meson
here to indicate generically that the meson is relatively heavy, like mesons
b1 or η(1295) or others in the same range of masses. The spin of the meson
b is assumed to be zero, and we consider only scalars and pseudoscalars to
find out the consequences of the special relativity constraints in simplest
and most transparent cases. Thus, we do not describe the spin of real b1
mesons. The parameters of the wave function of a b-meson in our model are
not constrained to explain properties of any real meson and they are left free
within a considerable range in order to check what, if any, combination of
all parameters can produce rotationally symmetric decay amplitudes. The
issue here is not if we can fit a model to data when we ignore gluons in a
model of ordinary mesons, but if ignoring gluons in a potentially valid ef-
fective constituent picture in QCD is allowed by special relativity symmetry
even in principle, before a dynamical analysis is attempted.

The same applies in the case of a light meson, called here p-meson, which
can have a mass as small as a π-meson. However, in the case of a pion, the
assumption that such light meson is dominated by a quark–antiquark com-
ponent may be considered merely a mock up when one attempts to under-
stand the structure of light mesons in terms of canonical (almost massless)
quark degrees of freedom in QCD, where the problem of breakdown of chiral
symmetry requires a careful statement, or when one tries to create a strong
binding effect in a naive potential model. We are facing a problem that on
the one hand hadrons can be classified in terms of constituent quarks and
lightest mesons belong to the same scheme as the heavier ones, and on the
other the phenomenon of chiral symmetry breaking in canonical QCD is not
explained quantitatively. Our model study of symmetry constraints in the
effective constituent picture based on RGPEP in QCD is not solving this
problem. What matters is that the effective particle picture is not necessar-
ily wrong. Namely, the effective quarks may have large masses and chiral
symmetry may be already explicitly broken in the effective Hamiltonian that
has the width λ comparable with hadronic masses. At the same time, the
binding potentials in Hλ in QCD may differ in the case of π-mesons and in
the case of heavier ones. The key question here is not what dynamical mech-
anism might be responsible for the success of the constituent classification of
hadrons, whether it is vacuum condensates in standard dynamics or corre-
sponding special terms in a LF Hamiltonian, but if such minimal constituent
picture can satisfy constraints of special relativity, assuming a most plausible
Hamiltonian term that can lead to the decay of a hybrid. Therefore, we take
the stance at this stage of the development that anything goes that produces
relativity with constituents and we ask if this condition can be satisfied in
any, even remotely plausible way from the point of view of currently popular
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models. Our major issue is if the LF QCD constituent picture has a chance
to obey rotational symmetry. We do not solve the dynamics of formation of
pions here and we will call the light meson p, not π.

3.2. Hybrid meson

Our model for 0++ hybrid state is of the form (cf. [5])

|h〉 =
∑

123

∫

[123]h+ δ̃(1 + 2 + 3 − h)Ψh
JPC(1, 2, 3) b†λ1d

†
λ2a

†
λ3|0〉 . (8)

The creation operator for an effective gluon of width λ, a†λ3, carries spin, and

the wave function Ψ
h
JPC(1, 2, 3) depends on this spin. The wave function is a

product of color, flavor (isospin), spin, and Gaussian functions of the relative
momenta of the three particles:

ΨJPC(1, 2, 3) = χ†
c1C

c3
h χc2 χ

†
i1
Ihχi2

χ†
s1
Sh(1, 2, 3)χs2

ψh(1, 2, 3) , (9)

with Cc3
h = tc3/2 and Ih = 1/

√
2. The momentum dependent factor (hybrid

wave function) is assumed to have the qq̄-cluster form [5,13]

ψh(1, 2, 3) = Nh Nhm(~kq, ~kg) Nhs(~kq, ~kg) exp

[

−~k 2
q

2β2
hq

]

exp

[

−~k 2
g

2β2
hg

]

, (10)

with typical Gaussian functions of the relative momenta. Namely, ~kq is
the three-momentum of the quark in the CMF of the quark–antiquark pair,

and ~kg is the three-momentum of the gluon in the CMF of the quark, an-
tiquark, and gluon (see Appendix A for details). Since we use the LF form
of dynamics, the CMFs are well defined and separation of the relative and
CMF motion for any state is purely kinematical. The optional additional
factors Nhm and Nhs can be again kept equal 1 or chosen so that the wave
function normalization condition has a non-relativistic appearance for three
constituents similarly to the wave functions of mesons, see Appendix A. For
consistency, we will always either introduce all factors N for both mesons
and hybrid equal 1 (the cases labeled N = 1 ), or insert all factors N such
that all our states are normalized through the same integrals as in a non-
relativistic theory (the cases labeled N 6= 1).

The simplest scalar-hybrid spin factor that may be considered in a rela-
tivistic theory is

χ†
1Sh(1, 2, 3)χ2 = ū1γµε

µ
3v2 , (11)
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where ε3 is the gluon polarization four vector. This case will be referred to
as the case ū/εv. For the effective gluon in the light-front gauge A+ ≡ 0, the
polarization vector has the following components:

εµkσ =

(

ε+kσ = 0, ε−kσ =
2k⊥ε⊥σ
k+

, ε⊥kσ = ε⊥σ

)

. (12)

The sum over gluon polarizations is

∑

σ

εµk3σε
∗ ν
k3σ = −gµν +

kµ
3 g

+ν + g+µkν
3

k+
3

. (13)

In the above formula, the component k−3 of the gluon momentum is the same
as for massless gluons, k−3 = k⊥ 2

3 /k+
3 . But in evaluating kinetic energy of

the effective gluons, we introduce the gluon effective mass parameter mg

that can depend on the RGPEP parameter λ. We do not know the value of
mg and we leave it as a free parameter in our Gaussian wave function.

An alternative structure for the spin factor, pertaining to non-Abelian
gauge symmetry but not necessarily better than Eq. (11) from the dynamical
point of view in the effective theory, is

χ†
s1
Sh(1, 2, 3)χs2

= ū1γµv2G
µνPν , (14)

where Gµν = kµ
3 ε

ν
kσ −kν

3ε
µ
kσ and P = k1 +k2 +k3. The four-vector ενkσ is the

polarization vector for massless gauge bosons. But k−3 can be calculated as
if the gluon mass were 0, or using the parameter mg, and we do not know
which way is more realistic in a dynamical theory. Therefore, we insert the
unknown mass mg in the formula k−3 = (k⊥ 2

3 +m2
g)/k

+
3 and check for what

values of mg the resulting decay amplitude A is spherically symmetric in
the hybrid CMF. This case is referred to as ūGPv.

We also consider alternative versions of the spin factor, where we calcu-
late k−3 as if the gluon mass should be kept 0 in Gµν and/or in P ν . These

cases are referred to as ūG̃P̃ v, ūGP̃ v, and ūG̃Pv, respectively. The tilde
means that we put mg = 0 in evaluating k−3 in the factor that is labeled
with the tilde.

The alternative spin factors resemble the one that occurs in the operator
structures used in lattice calculations [14,15]. In the hybrid CMF, where ~P =
0, this factor reduces to ūγivGi0, which is a combination of the components
of the quark current and the chromoelectric gluon field.

Note that the gluon momentum component k−3 = (k⊥ 2
3 +m2

g)/k
+
3 does

not contribute to the Lorentz product k3εkσ in the chosen gauge and the en-
tire small group of the Poincare transformations that preserve the light-front
hyperplane also does not change the gauge condition A+ ≡ 0. Thus, we can
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safely boost the hybrid state using kinematical relations and our assignment
of mass to the effective gluon does not interfere with our choice of gauge.
This is important because our model would not be reasonable otherwise.
Namely, if the small group and gauge choice would not commute, we would
not be able to construct the states of mesons and hybrids in motion without
changing the gauge. The latter change would be associated with altering
interaction terms in the effective Hamiltonian of width λ. Fortunately, our
choice of the LF dynamics, instead of the standard one, offers a possibility
of keeping boost invariance using one and the same choice of gauge in all
frames of reference that can be reached by the boosts. Note also that our
RGPEP procedure respects this commutativity because it is invariant under
the small group and our model is reasonable in this respect.

As explained earlier, in contrast to the standard approaches where ro-
tational symmetry is kinematical and boosts are dynamical, in the LF ap-
proach the rotational symmetry is dynamical. Therefore, we now have to
check to what extent our models can guarantee that the resulting decay am-
plitude is spherically symmetric in the rest frame of the hybrid. We do this
in the next section using both Eqs. (11) and (14) in a number of cases that
we have introduced above.

4. Symmetry constraints

The decay amplitude of a scalar hybrid (JPC = 0++) into two mesons,
either two JPC = 0++ mesons or two 0−+ mesons, should be spherically
symmetric. But a constituent model built in the LF scheme introduces
dependence on the angle θ between the z-axis and the direction of flight of
the light meson. This effect is the price we pay for boost invariance. The
effect was discovered and initially studied in a scalar model in Ref. [5].

Fig. 1 illustrates how badly the rotational symmetry is violated in a
decay into two scalar mesons (spin factors ūv) when the light meson mass
varies from 664 MeV toward the value of 138 MeV. In this figure the factors
Nhm, Nhs, Nbm, Nbs, Npm, and Nps, in the wave functions, are kept different
from 1 to secure non-relativistic normalization. In the case of 664 MeV, the
hybrid mass mh is just above the threshold of mb + mp and the product
mesons can barely move. The LF constituent model renders an amplitude
that does not depend on the angle θ. In the 138 MeV case, corresponding
to the π-mesons, the hybrid mass is far above the threshold and the light
meson has a highly relativistic velocity. In this case, the amplitude depends
on the angle θ to an unacceptable degree. The effect is caused by the fact
that when the outgoing light meson flies against the z-axis with nearly speed
of light, it must be built from quarks that have very small momentum k+

and such quarks are suppressed in the case of wave functions used in the
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Fig. 1. The angular dependence of the decay amplitude for various masses of the

light meson, mp. The plot (a) is for the hybrid spin factor equal ūγµvεµ, and (b)

is for spin factor ūγµvGµνP
ν
123. In both cases the hybrid meson decays into two

JPC = 0++ scalar mesons (spin factors ūv). The model wave functions contain

factors Nps, Npm, Nbs, Nbm and Nhs, Nhm that secure that the normalization

integrals have a non-relativistic appearance of integrals of plain Gaussian functions

(case N 6= 1). All parameters of the wave functions are given in the first column

of Table I.
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Fig. 2. The same as in Fig. 1, but with the factors N = 1.

calculation. The parameters that we use are given in the first column of
Table I on page 402 (cf. [5]). Figs. 2 to 4 show the same effect, but with
all factors Nhm, Nhs, Nbm, Nbs, Npm, and Nps equal 1, or in the case of
two pseudoscalar (JPC = 0−+) mesons instead of the scalar ones, or in the
case where the two changes are combined. In order to satisfy constraints of
special relativity, the decay amplitude should not depend on the angle θ.
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TABLE I

Table 1. The parameters of wave functions (in GeV) that we use in Figs. 1–5 (in

the same notation as in Ref. [5]). s means that the parameter is the same as in the

left neighboring column. Columns 5a–d display results of local minimization using

Powell’s procedure [16], starting from the values given in the last column (labeled

“hs”), which is the same as the corresponding column in Table I in Ref. [5].

Fig. # 1–4(a), (b) 5a 5b 5c 5d hs

mh 1.9 s s s s s
mb 1.235 s s s s s
mp varies 0.1375 s s s s
mq 0.3 0.68 0.75 0.67 0.87 0.365
mg 0.8 2.6 1.4 3.7 1.3 1.63
βp 0.4 0.19 0.34 0.14 0.21 0.375
βb 0.4 0.77 1.2 1.0 0.96 0.719
βhg 1.0 0.28 0.31 0.31 0.52 0.60
βhq 1.0 3.8 4.4 3.8 7.5 4.61
λ 10000 4.8 4.4 4.4 4.4 4.49
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Fig. 3. The same as in Fig. 1, but for hybrid decay into two JPC = 0−+ pseudo-

scalar mesons (spin factors ūγ5v).

Broadly speaking, the violation of rotational symmetry results from the
fact that the model wave functions are not constrained dynamically by any
underlying relativistic theory. Given that the model is reasonable, in the
sense that (1) the meson states are formed using well-defined degrees of free-
dom that appear in the LF Hamiltonian Hλ in QCD with a small RGPEP
parameter λ, (2) the boost symmetry is preserved exactly, and (3) the decay
is driven by an interaction term in the same Hamiltonian, the most ques-
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Fig. 4. The same as in Fig. 1, but with the combined effect due to the changes

from Fig. 2 and 3: N = 1 and the hybrid decays into two pseudo-scalar mesons.

tionable element of the model is the assumption that a small number of con-
stituents is sufficient to build a solution of a relativistic theory. The model
assumes that the number of constituents is the smallest possible. It may fail
to produce rotational symmetry because the symmetry is dynamical in the
LF scheme and the interactions can change the number of constituents [7,8].
We see in Figs. 1 to 4 that all models we test respect rotational symmetry
very well in non-relativistic decays. But in the relativistic decays, all the
models fail more or less equally badly (on average, decays into pseudoscalars
are a bit less wrong than decays into scalars because pseudoscalars are domi-
nated by non-relativistic, momentum-independent components in their wave
functions). Does this mean that all models based on the assumption of the
smallest number of constituents must be entirely wrong?

We find that the answer to this question is no: a minimal constituent
model does not have to be wrong. Since the rotational symmetry is dy-
namical in the approach we study, it is not known if the parameters listed in
Table I in the first column do correspond to a solution of a relativistic theory.
Suppose that a different set of parameters should be used in a reasonable
model that approximates a solution of a relativistic theory. Can one find a
set of parameters in the constituent wave functions for which the required
rotational symmetry of the decay amplitude is obtained? This question is
found to have a positive answer but the sets of parameters that we find
point to a new picture for the hybrids. The picture seems to be generic in
the sense that its dominant features are independent of how the spin of the
gluon and the spins of quarks are treated. Our numerical studies produce
examples of models with a smallest number of constituents in which the ro-
tational symmetry is respected well when one allows the parameters in the
wave functions and the RGPEP scale λ in the Hamiltonian to vary. The
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reader should remember that the number of variable parameters in the class
of models we consider is 7 and there exists a great number of possibilities
to check, each demanding a multidimensional integration for every value of
the angle θ.
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Fig. 5. The hybrid decay amplitude as function of θ in four cases: a ū/εv, N 6= 1

and second column of Table I, b ū/εv, N = 1 and third column of Table I, c ūGPv,

N 6= 1 and fourth column of Table I, d ūGPv, N = 1 and fifth column of Table I.

Decays into two JPC = 0++ mesons.

Fig. 5 shows how well the rotational symmetry can be restored by select-
ing a different set of parameters in the wave functions (the sets corresponding
to Fig. 5 are given in columns 5a–d in Table I). Curves “a” and “b” repre-
sent the decay amplitudes for a hybrid meson with the spin factor given in
Eq. (11) (case ū/εv) and the wave-function parameters given in the second
column of Table I. Curves “c” and “d” on the same figure show the decay
amplitudes for a hybrid with the spin factor given by Eq. (14) (case ūGPv)
and with the parameters given in the third column of Table I. Curves “a”
and “c” are obtained with N 6= 1, and curves “b” and “d” are obtained with
N = 1.

The optimal choice of the parameters that one obtains from the condition
of rotational symmetry includes βp about twice smaller than the typical value
of 0.4 GeV in the first column of Table I, which corresponds to the size of a
real meson π (we will return to this issue below). We could also find other
sets of parameters with even smaller βp and considerably smaller quark
masses, a feature observed already in Ref. [5]. The cases shown here are
obtained by starting a Powell local minimization procedure [16,17], starting
from the hs (for “heavy-scalar”) set of parameters that was found in a scalar
model in Ref. [5]. The nomenclature refers to the relatively heavy scalar
particles that played the role of quarks in Ref. [5].
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The cases we display here are characterized by quite good spherical sym-
metry in comparison to other locally optimal choices which we were also
able to identify but which displayed more variation with θ. In choosing
the minimization we also adopted a criterion that the resulting spherically
symmetric amplitude should not be many orders of magnitude smaller than
in the case of the parameters in the first column of Table I. Note, however,
that the amplitudes in Fig. 5 are, in fact, a whole order of magnitude smaller
than in Figs. 1–4. This indicates how important the constraints of relativity
can be for analysis of data. We should also add that the size of the coupling
constant in the interaction Hamiltonian that drives the decay was fixed as
in Ref. [5] and never changed in the fit.

It is clear that one should not consider an unbiased minimization of sym-
metry violation as a most reasonable approach. The minimization should
include additional constraints, including restrictions such as the radius of
a meson p, and as much of the dynamical constraints as possible. But in
order to impose correlations such as the ones coming from the radius, one
has to be very careful about how one calculates the radius and if that cal-
culation does obey requirements of special relativity, which is a problem in
itself. Concerning the dynamical constraints, we were not able and not even
interested in imposing any such constraints at this stage, because we were
only searching for the answer to the question if any choice of the parameters
could produce spherical symmetry, and it is interesting that even a minimal
model can produce the symmetry of the quality as good as shown in Fig. 5.
We remind the reader that the gluon spin introduces functions of momenta
that vary rapidly with angles and it was not clear at all that any choice of
parameters could lead to a constant amplitude. But once it is established
that such result is possible, one can make further observations based on a
systematic search through the space of the parameters.

The simplest and least restrictive way of setting bounds on the parame-
ters of the models we test is to limit all of the parameters to fixed intervals
around values that are considered reasonable. Such least restrictive pa-
rameter bounds adopted in the minimizations described below are given in
Table II.

TABLE II

The limits on parameters of the wave functions (in GeV) that we imposed using
the Adaptive Simulated Annealing algorithm [18].

param mq mg βp βb βhg βhq λ

min 0.1 0.5 0.1 0.1 0.1 0.1 0.1
max 0.6 2.0 0.8 1.6 2.0 8.0 8.0
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We performed a global minimization of departures from rotational sym-
metry using different measures of how much a decay amplitude differs from a
constant as a function of the angle θ: a standard deviation from the average
value (sum of squares of deviations from the average value, labeled “stddev”
in Appendix C), or maximum of the modulus of the deviations from the av-
erage value (labeled “maxdev” in the Appendix C), both measured relative
to the average. Our global minimization within the assumed bounds is done
using Adaptive Simulated Annealing (ASA) [18].

Fig. 6 shows results obtained using Eq. (11) for the spin factor of a
hybrid meson: curve “a” in case N 6= 1 and “b” in case N = 1, and using
Eq. (14): curve “c” in case N 6= 1 and “d” in case N = 1, all cases for a
decay into two scalar (ūv) mesons. The factors N have considerable impact
on the magnitude of the amplitudes and can compensate or dramatically
enhance the effect of changing the spin factors. This means that one should
probably not trust models of hybrids that are based solely on non-relativistic
intuitions.
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Fig. 6. The hybrid decay amplitude as function of θ for the decay into two JPC =

0++ mesons in different cases: a ū/εv, N 6= 1, first column of Table III, b ū/εv,

N = 1, second column of Table III, c ūGPv, N 6= 1, third column of Table III, d

ūGPv, N = 1, fourth column of Table III.

Results for decays into two JPC = 0−+ mesons (ūγ5v spin factor) are
shown in Fig. 8. The corresponding values of the wave function parameters
are given in Table V. Similarly, Figs. 7 and 9 show results for alternate
choices of hybrid spin factor: cases referred as ūGPv, ūG̃Pv and ūG̃P̃ v.

In Ref. [5], there were found two locally best sets of values of parameters
in each of the two cases: one case with all constituents being scalars, and
another one with fermionic quarks and a scalar gluon. These good sets were
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TABLE III

The optimal parameters of the wave functions (in GeV) for a decay into two JPC =
0++ mesons. These are results of a global minimization using ASA [18], minimizing
standard deviation from the average value of the amplitude, for parameters within
limits in Table II. The resulting amplitudes are shown in Fig. 6. The bold face
numbers are on the limit of the allowed range.

Fig. # 6a 6b 6c 6d

spin ū/εv ū/εv ūGPv ūGPv
term N 6= 1 N = 1 N 6= 1 N = 1

mh 1.9 s s s
mb 1.235 s s s
mp 0.1375 s s s
mq 0.152 0.21 0.17 0.155
mg 1.28 1.07 1.70 1.90
βp 0.132 0.219 0.1 0.1
βb 0.320 0.536 0.321 0.371
βhg 0.766 1.05 0.267 0.263
βhq 8.0 7.83 4.59 5.73
λ 7.68 6.13 2.86 7.98
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Fig. 7. The hybrid decay amplitude as function of θ for the decay into two JPC =

0++ mesons in different cases: a ūGPv with N 6= 1, ūGPv with N = 1, c ūG̃Pv

with N 6= 1, d ūG̃Pv with N = 1, e ūG̃P̃ v with N 6= 1, f ūG̃P̃ v with N = 1.

Parameters are given in Table IV.

characterized by either light or heavy mass of the quarks (Table I and Fig. 5
in Ref. [5]). In our studies, including the spin of the gluon, the complete ASA
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TABLE IV

The optimal parameters of the wave functions (in GeV) for a decay into two JPC =
0++ mesons. These are results of global minimization using ASA [18], minimizing
standard deviation from the average value of the amplitude, for parameters within
limits in Table II. The resulting amplitudes are shown in Fig. 7. The bold face
numbers are on the limit of the allowed range.

Fig. # 7a 7b 7c 7d 7e 7f

spin ūGPv ūGPv ūG̃Pv ūG̃Pv ūG̃P̃ v ūG̃P̃ v
term N 6= 1 N = 1 N 6= 1 N = 1 N 6= 1 N = 1
mh 1.9 s s s s s
mb 1.235 s s s s s
mp 0.1375 s s s s s
mq 0.17 0.155 0.373 0.1 0.214 0.268
mg 1.70 1.90 1.82 2.0 1.82 1.46
βp 0.1 0.1 0.286 0.1 0.211 0.411
βb 0.321 0.371 0.209 1.23 0.365 0.470
βhg 0.267 0.263 0.565 1.02 0.244 0.434
βhq 4.59 5.73 4.44 8.0 7.60 3.22
λ 2.86 7.98 3.57 8.0 4.11 3.86
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Fig. 8. The hybrid decay amplitude as a function of θ, the same as in Fig. 6, but

for a decay into two JPC = 0−+ mesons (spin factor ūγ5v). The optimal wave

function parameters are given in the correspondingly marked columns of Table V.

algorithm finds only one best set of the parameters that minimizes deviation
from rotational symmetry in every case we consider. These best sets appear
with small quark masses and small βp. Such small βp implies a too large size
of the meson p, apparently corresponding to a too weak binding of too light
quarks, as if the number of such light effective constituents could not be only
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TABLE V

The optimal parameters of the wave functions (in GeV) for a decay into two JPC =
0−+ mesons. These are results of global minimization using ASA [18], minimizing
standard deviation from the average value of the amplitude, for parameters within
limits in Table IV. The resulting amplitudes are shown in Fig. 8.

Fig. # 8a 8b 8c 8d

spin ū/εv ū/εv ūGPv ūGPv
term N 6= 1 N = 1 N 6= 1 N = 1

mh 1.9 s s s
mb 1.235 s s s
mp 0.1375 s s s
mq 0.15 0.16 0.18 0.19
mg 1.08 0.88 1.69 1.79
βp 0.21 0.25 0.16 0.22
βb 0.59 0.59 0.42 0.30
βhg 0.59 0.72 0.68 0.47
βhq 2.40 2.62 6.96 6.80
λ 3.97 3.71 2.29 2.39
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Fig. 9. The hybrid decay amplitude as function of θ for the decay into two pseu-

doscalar JPC = 0−+ mesons in different cases: a ūGPv with N 6= 1, b ūGPv with

N = 1, c ūG̃Pv with N 6= 1, d ūG̃Pv with N = 1, e ūG̃P̃ v with N 6= 1, f ūG̃P̃ v

with N = 1. Parameters are given in Table VI.

minimal. But we can find different minima when we impose an additional
restriction that the quark mass, mq, is “heavy”, i.e. greater than 300 MeV.
Other parameters are still limited to the intervals given in Table II.
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TABLE VI

The optimal parameters of the wave functions (in GeV) for a decay into two
JPC = 0−+ mesons. These are results of global minimization using ASA [18],
minimizing standard deviation from the mean amplitude for parameters within
limits in Table II. The resulting amplitudes are shown in Fig. 9.

Fig. # 9a 9b 9c 9d 9e 9f

spin ūGPv ūGPv ūG̃Pv ūG̃Pv ūG̃P̃ v ūG̃P̃ v
term N 6= 1 N = 1 N 6= 1 N = 1 N 6= 1 N = 1

mh 1.9 s s s s s
mb 1.235 s s s s s
mp 0.1375 s s s s s
mq 0.26 0.42 0.29 0.18 0.31 0.31
mg 1.34 1.85 1.21 1.62 1.22 0.61
βp 0.21 0.21 0.25 0.19 0.28 0.54
βb 0.48 0.21 0.59 0.40 0.58 0.56
βhg 0.57 1.40 0.47 0.57 0.43 0.96
βhq 7.53 6.88 7.80 4.75 7.99 4.58
λ 2.26 7.66 2.41 2.71 2.37 2.61
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Fig. 10. The hybrid decay amplitude, like in Fig. 6, for the decay into two scalar

mesons, as function of θ. Parameters are given in the corresponding columns of

Table VII: the lower limit on the quark mass is mq ≥ 300 MeV.

An example of such restricted minimization for “heavy” effective con-
stituent quarks is shown in Fig. 10. The corresponding optimal parameters
are given in Table VII. In all cases except the case “d”, the size of the light
meson p is now much closer to the size of the real mesons π. This shows
that the size (radius) of the light meson may not be as big an issue as one
might think on the basis of a search for the best parameters allowing quarks
to be much lighter than 300 MeV (this case was discussed earlier).
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TABLE VII

The optimal parameters of the wave functions (in GeV) from a global minimization
using ASA [18], minimizing standard deviation relative to the mean amplitude with
all parameters within limits like in Table II except for the lower limit on the quark
mass, mq ≥ 300 MeV. The resulting amplitudes are shown in Fig. 10.

Fig. # 10a 10b 10c 10d

spin ū/εv ū/εv ūGPv ūGPv
term N 6= 1 N = 1 N 6= 1 N = 1
mh 1.9 s s s
mb 1.235 s s s
mp 0.1375 s s s
mq 0.3 0.459 0.31 0.31

mg 1.95 1.37 1.90 1.89
βp 0.211 0.353 0.344 0.1
βb 0.295 0.722 0.263 0.169
βhg 0.894 0.754 0.450 1.21
βhq 5.83 7.75 7.69 8.0
λ 4.67 7.75 4.44 7.96

Note that the assumption of case “d”, that the spin factor in the hybrid
wave function contains a four-momentum of a massive gluon, leads to a small
optimal quark mass and a very small decay amplitude. The constraints of
rotational symmetry promise to be very useful in future studies of reasonable
models because when they are combined with inspection of observables such
as radii one immediately obtains large differences between predictions based
on different models.

5. Discussion

First of all, let us note that the inclusion of spin of a constituent gluon
does not change the previously obtained result for scalar “gluons” [5] that
rotational symmetry is restored when the quark–antiquark pair momentum-
space width in the hybrid, βhq, is about the same in size as the width λ
in the vertex form factor in the renormalized interaction Hamiltonian Hλ

in LF QCD, and both are on the order of 4–6 GeV, much larger than all
other parameters. On the basis of our study of many cases with different
ways of including the gluon spin and different cases of meson spin factors,
we can state that the required relative momentum-space structure of the
wave functions appears to be qualitatively independent of the spin of the
effective constituents. Quite generally, the parameters βhq and λ appear to
have to be about 5 times larger than the other parameters, see Tables I and
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III–VII. This result suggests that the quark pair should be thought about as
spatially small in comparison to the size of the hybrid. It also suggests that
the pair could originate from a gluon that belonged to a gluonium before
the interaction changed one gluon into the pair.

One may worry that this result is obtained by minimizing just one ob-
servable in a space of seven parameters. Here comes the strength of the
continuous symmetry condition on a reasonable model: special relativity
provides infinitely many conditions instead of just one — the just one decay
amplitude must not be a function of the angle. It was highly questionable
that it was possible to even come close to a constant function of the angle
before we carried our study including the singular spin factors for gluons.
The remarkable fact is that the symmetry cannot be satisfied with a mini-
mal constituent picture unless the hybrid built from a pair and a constituent
gluon looks differently than expected assuming that the gluons follow quarks
and this picture does not seem to depend on any particular detail but only
on the major assumption that a minimal constituent model can approximate
the effective LF dynamics.

Another worry concerns the small spatial size of the qq̄-pair, about 4 to
5 times smaller than the distance between the gluon and the octet diquark,
correlated with λ on the order of 3 or even 5 GeV. The real question is for
what values of λ a constituent picture of hybrids may work. In principle, if
RGPEP equations were solved exactly, no physical result should depend on
λ and no matter what λ is used one should obtain rotationally symmetric
decay amplitude provided that the decay is calculated exactly using exact
solutions for the participating hadrons. But we know [12] that in order to
approximate the full dynamics of an asymptotically free theory by a simple
picture one has to lower λ to values that are about twice above the scale of
eigenvalues one is seeking to describe. One cannot lower λ to smaller values
using perturbation theory in RGPEP because the resulting Hλ would begin
to contain too large errors due to cutting into the mechanism of binding.
Thus, the scale we obtain from the heuristic fit is quite reasonable. On the
other hand, one may worry that no tight diquark clusters are seen in the
proton deep inelastic structure. One possible explanation of such special
feature of hybrids could be that they contain octet diquarks interacting
with constituent gluons, while in the proton we have primarily triplets and
diquark antitriplet and no counterpart of the constituent gluon structure.
Our symmetry study in hybrids should be seen as groping into the sectors
of effective color dynamics that are squeezed out of and cannot be seen in
nucleons.
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There exist small differences between the case of decays into two scalar
and two pseudoscalar mesons, and between various choices for handling the
spin of an effective gluon in the hybrid. But the outstanding feature that
βhq is about the same as λ and both are larger than the rest of parameters
is common to all the cases we studied. Also, the mass of the gluon, mg,
appears to have to be much greater than the masses of the quarks, mq.

The hybrid spin wave function from Eq. (14), inspired by the lattice
operators but with a massive four-momentum for the gluon, gives minima
with a much smaller decay amplitude A than the simplest hybrid spin wave
function of Eq. (11). This result shows that one has to be very careful about
treatment of spin of gluons in model building.

Let us stress that the absolute size of the amplitude is not under control
in our calculation because we did not include the dynamical constraints
between the coupling constant g, the RGPEP parameter λ, and the wave
function parameters. But there exists a systematic trend in all our results,
which requires further study and is not understood here. Namely, when
the parameters of the wave functions are varied from the values in the first
column of Table I, to the values required by rotational symmetry, like in
columns 2–5 of Table I, or the values in Tables III–IV, and VII, the size
of the amplitude changes from about 0.9 to 0.1 in Figs. 1–4 to the much
smaller values of 10−2 or 10−3 in Fig. 5, or 10−2 or 10−4 in Figs. 6 to 10.

These are considerable changes in the order of magnitude. It seems un-
likely that the coupling constant can vary by that much and compensate this
change. The change is so large only because of the relativistic motion of the
light outgoing meson. If the outgoing mesons are slow, rotational symmetry
in our model is respected very accurately for typical values of parameters
in non-relativistic constituent models, exemplified in the first column of
Table I. We are forced to conclude that a relativistic hybrid decay (includ-
ing fast mesons p) may involve relativistic effects that are not accounted for
in the non-relativistic phenomenology, cf. [19].

Another feature worth mentioning is that the minima for the wave func-
tions motivated by lattice operator structures, Eq. (14), are narrower than
in the case of Eq. (11). If the range of parameters, for which a violation of
rotational invariance is small, is very narrow, the symmetry itself becomes a
source of detailed information about the necessary values of the parameters
even if the corresponding dynamical equations are too difficult to solve with
comparable precision. By the same token, one obtains a very strict crite-
rion for judgment of dynamical models that attempt to produce the relevant
wave functions.



414 S.D. Głazek, J. Narębski

6. Conclusion

The example of a simple model described here shows that the wave func-
tion parameters for hadrons involved in a relativistic decay of a hybrid must
be strongly correlated in order that the decay amplitude satisfies require-
ments of special relativity. Thanks to the use of the LF scheme, boost
symmetry is respected exactly and the parameters are constrained by the
condition of rotational symmetry. In the example, they have to take values
that do not correspond to the picture based on the non-relativistic intuition
that the gluons are mainly between two quarks. Instead, the relativistic
effective constituent picture almost universally points toward the structure
in which a heavy gluon is accompanied by a quark–antiquark pair that re-
sembles a relatively small octet diquark. This is a stunning result because
it suggests that the picture with gluons playing a role of a relatively light
chain, or a vibrating flux, or string between relatively heavy quarks may be
not as realistic as one hopes for on the basis of non-relativistic intuition.

The alternative hybrid structure occurs in a variety of cases that differ
in details of the spin factors for gluons and quarks. But the requirement
of relativistic symmetry turns out to be very restrictive when one demands
that only sectors with the smallest possible number of constituents are im-
portant. Therefore, we conclude that the effective constituent dynamics in
QCD should be always considered including constraints of special relativity.
These constraints appear capable of forcing us to consider hadrons with sig-
nificant gluon content not as if the gluons were just added to quarks and
antiquarks, but as if gluons could actually dominate the dynamics of hybrids
and force the quarks to adjust.

Since the hybrid structure we are forced to seriously consider by the re-
sults of this analysis contains a spatially tight octet diquark pair, as if the
pair emerged from a constituent gluon through a single interaction in an
effective LF QCD, one may ask if it is possible that such effective quark–
antiquark–gluon states with a tight pair can mediate decays of usual mesons.
A decay of a usual meson may proceed by an emission of a gluon from one
quark and subsequent decay of the gluon into a new pair of quarks. The
emerging two quarks and two antiquarks can form the mesons that are pro-
duced in the decay of the usual meson. But if the pair accompanied by the
intermediate gluon has to be small in size, as if the three effective particles
had to form a structure similar to our finding for a hybrid, the intermedi-
ate quark configuration would have to have a small overlap with the initial
usual meson configuration. The decay mechanism through an intermediate
hybrid meson would have small contribution to the total strong decay width.
Would not this width be too small if the hybrid structure were as we obtain?
Not necessarily, since in the effective theory there must exist other interac-
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tions that are capable of producing four effective quarks from two effective
quarks. These interactions do not correspond to the intermediate excitation
of a massive effective gluon and they are not characterized by the coupling
of such gluons to quark–antiquark pairs. Examples of such interactions are
present already in the canonical Hamiltonian in LF QCD. The canonical
interactions are not mediated by emission or absorption of gluons, and they
must contribute to the mechanism of strong decay of usual mesons in the
effective theory characterized by width λ on the order of hadronic masses. In
addition, the RGPEP procedure generates more interactions that can turn a
quark–antiquark pair into two such pairs without explicit creation and decay
of a massive effective gluon corresponding to small λ. Unfortunately, our
study is not telling us anything about the dynamical structure of ordinary
mesons and interactions that mediate their decays. It is limited to a pre-
liminary study of symmetry constraints in simplest models with a dominant
hybrid component.

The wave function parameters that we find to be preferred by the condi-
tion of rotational symmetry of the decay amplitude of a model hybrid, may
turn out to be invalid when the actual dynamics is included in the analysis.
For example, it may turn out that the approximation by the Fock sectors
with only the smallest possible number of constituents does not apply. But
it is clear that the relativistic constraints cannot be ignored in the search
for a leading constituent picture.

Our discussion was limited to 0++ hybrids for simplicity, while the most
interesting from practical point of view is the structure of exotics [14, 15,
20, 21, 22]. One can change factors in the wave functions and change the
quantum numbers of the hybrid states to the exotic values. For example,
one can replace the color electric field by a color magnetic field, or introduce
p-wave wave functions. Simple introduction of p-wave for gluon (introducing

a factor of ~kg in the hybrid wave function) changes the hybrid states we
consider to the JPC = 1−+ exotic hybrid mesons, those of most interest
experimentally. In such cases, the decay amplitudes calculated in a LF
scheme should exhibit the required angular dependence in the CMF of an
exotic hybrid. In calculations using the standard form of dynamics, one
should make sure that the boost symmetry is respected. However, already
on the basis of our analysis of the non-exotic 0++ hybrid decays, we suggest
that no matter what scheme one uses, a complete set of constraints of special
relativity should be seriously taken into account in searches for a suitable
constituent picture.

The authors acknowledge several helpful discussions with Adam Szczepa-
niak and Nikodem Popławski. This work was supported in part by Polish
Ministry of Education and Science BST-975/BW-1640.
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Appendix A

Basic definitions

Spinors we use are defined as

umpλ = B(p,m)u0λ, vmpλ = B(p,m) v0λ, (A.1)

where the operator B(p,m)

B(p,m) =
1

√

mp+

[

Λ+p
+ + Λ−(m+ α⊥p⊥)

]

(A.2)

represents a boost that changes the massm at rest into the four-momentum p.
Spinors of fermions at rest u0λ are

u0↑ =
√

2m

(

χ+

0

)

, u0↓ =
√

2m

(

χ−

0

)

, (A.3)

and for anti-fermions at rest v0λ are

v0↑ =
√

2m

(

0
χ−

)

, v0↓ =
√

2m

(

0
−χ+

)

, (A.4)

where χ± are two-component spinors, χ+ = (1, 0) and χ− = (0, 1). We use
the convention Λ± = 1

2γ0γ
±, where γ± = γ0 ± γ3.

The integration measure over momenta in a meson, denoted by [k1k2] or
just [12], is

dk+
1 d

2k⊥1
2(2π)3k+

1

dk+
2 d

2k⊥2
2(2π)3k+

2

=
dx12d

2k⊥12
2(2π)3x12(1 − x12)

dP+
12d

2P⊥
12

2(2π)3P+
12

. (A.5)

In terms of the three-vector ~k12, the integration measure for two constituents
with the same mass mq, is given by

dx12d
2k⊥12

2(2π)3x12(1 − x12)
=

4d3~k12

2(2π)3M12
. (A.6)

Therefore,

Npm(~k12) =

√

M12

2mq
. (A.7)

Similarly,

Nps(~k12) =

√

√

√

√

1

Tr
[

S†
p(1, 2)Sp(1, 2)

] . (A.8)
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In the normalization equation for a hybrid meson, we have a three-
particle integration measure

3
∏

i=1

dk+
i d

2k⊥i
16π3k+

i

=
4d3kq

2(2π)3Mq

d3kgMqg

2(2π)3
√

m2
g + k2

g

√

M2
q + k2

g

. (A.9)

Therefore,

Nhs(~kq, ~kg) =

√

Mq

2mq

√

2mq +mg

Mqg

√

√

√

√

√

m2
g + ~k 2

g

mg

√

√

√

√

√

M2
q + ~k 2

g

2mq
, (A.10)

and

Nhs(~kq, ~kg) =

√

√

√

√

√

1
∑

pol

Tr
[

S†
h(1, 2, 3)Sh(1, 2, 3)

] , (A.11)

where
∑

pol means a sum over two transverse polarizations of a gluon.
The decay amplitude of a hybrid into two mesons is

A(p, b, h) = (−1)
2

3

1√
2

gλ

(16π3)2

∫

dx14d
2κ⊥14

x14(1 − x14)

∫

dx52d
2κ⊥52

x52(1 − x52)

×NpNbNhψ
∗
p(1, 4)ψ

∗
b (5, 2) [A(1, 2, 3, 4, 5) + B(1, 2, 3, 4, 5)]

= −16

3

gλ

(16π3)2

∫

d3k52

Mb

∫

d3k14

Mp
NpNbNhψ

∗
p(
~k14)ψ

∗
b (
~k52)

× [A(1, 2, 4, 5) + B(1, 2, 4, 5)] ,

where

A(1, 2, 4, 5) =
1

x3
TA(1, 2, 3, 4, 5)A(1, 2, 3, 4, 5)

∣

∣

∣

∣

k3=k4+k5

, (A.12)

B(1, 2, 4, 5) =
1

x3
TB(1, 2, 3, 4, 5)B(1, 2, 3, 4, 5)

∣

∣

∣

∣

k3=k1+k2

, (A.13)

A(1, 2, 3, 4, 5) = ψh(1, 2, 3)fλ(M2
45) , (A.14)

B(1, 2, 3, 4, 5) = ψh(5, 4, 3)fλ(M2
12) , (A.15)

and the spin factors in the decay amplitude are

TA(1, 2, 3, 4, 5) = Tr
[

S†
p(1, 4)Sh(1, 2, 3)S†

b (5, 2)SQCD(5, 4, 3)
]

, (A.16)

TB(1, 2, 3, 4, 5) = Tr
[

S†
p(1, 4)SQCD(1, 2, 3)S†

b (5, 2)Sh(5, 4, 3)
]

. (A.17)
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Parts A and B refer to the two arrangements of quarks shown in Fig. 11.
SQCD is the spin factor coming from the interaction Hamiltonian of QCD:

χ†
s1
SQCD(1, 2, 3)χs2

= ū1ε
µ
3γµv2 . (A.18)

3

p

h

b

4

1

2

5

BA

2

5

3
4

1

b

h

p

Fig. 11. Hybrid meson decay amplitude into two non-exotic mesons p (the light

one) and b (the heavy one).

In both parts of the amplitude, A and B, one has xp = p+/h+, xb =

b+/h+ = 1 − xp. In meson p, one has ~k14 ≡ ~kp, so that M14 ≡ Mp =

2
√

m2
q + ~k 2

p , and the following relations hold:

x14 = (
√

m2
q + ~k 2

p + k3
p)/Mp, (A.19)

x1 = x14xp, k+
1 = x14p

+, k⊥1 = x14p
⊥ + k⊥p ,

x4 = (1 − x14)xp, k+
4 = (1 − x14)p

+, k⊥4 = (1 − x14)p
⊥ − k⊥p .

(A.20)

In meson b, one has ~k52 ≡ ~kb, so that Mb ≡ M52 = 2
√

m2
q + ~k 2

b , and the

analogous relations are:

x52 = (
√

m2
q + ~k 2

b + k3
b )/Mb, (A.21)

k+
5 = x52b

+, x5 = x52xb, k⊥5 = x52b
⊥ + k⊥b ,

k+
2 = (1 − x52)b

+, x2 = (1 − x52)xb, k⊥2 = (1 − x52)b
⊥ − k⊥b .

(A.22)

Evaluating the quarks invariant masses in the hybrid and in the decay
vertex, one obtains

M2
12 = (x1 + x2)

[

k⊥ 2
1 +m2

q

x1
+
k⊥ 2
2 +m2

q

x2

]

− (k⊥1 + k⊥2 )2 , (A.23)
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and

M2
54 = (x5 + x4)

[

k⊥ 2
5 +m2

q

x5
+
k⊥ 2
4 +m2

q

x4

]

− (k⊥5 + k⊥4 )2 . (A.24)

The three-vectors: ~k12 in mesons, and ~khq and ~khg in the hybrid, are
defined using

(

√

~k2 +m2
1 +

√

~k2 +m2
2

)2

=
κ2 +m2

1

x
+
κ2 +m2

2

1 − x
= M2 , (A.25a)

~k⊥ = κ . (A.25b)

For m1 = m2 = m, one has

4
(

~k2 +m2
)

=
κ2 +m2

x(1 − x)
= M2 , (A.26a)

~k⊥ = κ . (A.26b)

In the part A of the decay amplitude, one has

~k 2
q = M2

12/4 −m2
q , (A.27)

and

~k 2
g =

[

M2
123 − (M12 +mg)

2
] [

M2
123 − (M12 −mg)

2
]

4M2
123

, (A.28)

where

M2
123 =

k⊥ 2
1 +m2

q

x1
+
k⊥ 2
2 +m2

q

x2
+

(k1 + k2)
⊥ 2 +m2

g

1 − x1 − x2
− (k1 + k2 + k3)

⊥ 2 .

(A.29)

Similarly, in the part B, one has

~k 2
q = M2

54/4 −m2
q , (A.30)

and

~k 2
g =

[

M2
543 − (M54 +mg)

2
] [

M2
543 − (M54 −mg)

2
]

4M2
543

, (A.31)

where

M2
543 =

k⊥ 2
5 +m2

q

x5
+
k⊥ 2
4 +m2

q

x4
+

(k5 + k4)
⊥ 2 +m2

g

1 − x5 − x4
− (k5 + k4 + k3)

⊥ 2 .

(A.32)
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Appendix B

Cross-checks
All our calculations of spin factors were done using two independent

methods. One method was to first reduce the spin factors to 2× 2 matrices
sandwiched between two component spinors χσ, using Eq. (12) for the gluon
polarization four-vector εµ in A+ ≡ 0 gauge. The spin factors were obtained
from the trace of the product of 2×2 matrices. The other method made use of
the expressions for

∑

uū,
∑

vv̄ and
∑

ε∗µεν . The spin factors were obtained
using properties of traces of products of γ matrices. In the evaluation of spin
factors, we assume that the gluon is massless and has only two degrees of
freedom. But the gluon acquires an effective mass dynamically. Therefore,
we used k2

g = m2
g in the momentum-dependent factor of the wave function.

In kµ
3 and P ν

123 in the lattice-inspired spin factors, we checked what happens
in both cases, i.e., when one inserts k2

3 = m2
g or k2

3 = 0.
The six-dimensional integrals were carried out using Monte Carlo inte-

gration (using the procedure VEGAS [23]). The accuracy of the results of
integration (standard deviation output from VEGAS) is shown as error bars
in plots, unless the error is smaller than the size of a point on a plot. The
VEGAS calculations using C were checked against iterative Gauss quadra-
ture, also in C, and against a separate FORTRAN program performing the
same calculations in several representative (but not all regular) cases.

Appendix C

Illustrative examples of minimization
This Appendix provides examples of numerical evidence that we have

gathered in all cases (many more than given here) we studied. The figures
show how stddev (standard deviation) or maxdev (maximal deviation), both
in ratio to the amplitude averaged over the angle θ, change around a global
minimum when one changes just one parameter in the wave functions or the
effective Hamiltonian width λ. The varied parameter is on the horizontal
axis, and the deviation on the vertical axis, stddev marked on the right-hand
scale (plotted with black squares) and the maxdev marked on the left-hand
scale (plotted with circles).

The examples demonstrate the dominant feature that the parameters
βhq and λ are strongly correlated with each other and both much larger
than all other parameters. The first example with the hybrid wave function
with the spin factor ū/εv and N 6= 1. The example illustrates our argument
for that the parameters βhq and λ must be both much larger than all other
parameters: the minimum resembles one side of a broad valley open toward
large values. The remaining four examples concern the cases with various
spin factors and always N = 1. The examples illustrate that βhq and λ are
both strongly correlated and much larger than all other parameters.
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Fig. 12. Variation of rotational symmetry violation versus changes of parameters

in the wave functions in the case a in Fig. 6, i.e. Sh = ū/εv, with extra factors

N 6= 1, decay into two JPC = 0++ mesons. The optimal values of the parameters

are given in the first column in Table III. The arrow marked “ASA” points toward

the optimal value of a parameter. The last plot shows the amplitude itself for the

optimal parameters.
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Fig. 13. Variation of rotational symmetry violation versus changes of parameters

in the wave functions in the case b in Fig. 6, i.e. Sh = ū/εv, with N = 1, decay into

two JPC = 0++ mesons. The optimal values of the parameters are given in the

second column in Table IV. The arrow marked “ASA” points toward the optimal

value of a parameter. The last plot shows the amplitude itself for the optimal

parameters.
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Fig. 14. Variation of rotational symmetry violation versus changes of parameters

in the wave functions in the case b in Fig. 8, i.e. Sh = ū/εv, with N = 1, decay

into two JPC = 0−+ mesons. The optimal values of the parameters are given in

the second column in Table V. The arrow marked “ASA” shows value of parameter

found in minimization. The last plot shows the amplitude itself for the optimal

parameters.
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Fig. 15. Variation of rotational symmetry violation versus changes of parameters

in the wave functions in the case f in Fig. 7, i.e., Sh = ūG̃P̃ v, with N = 1, decay

into two JPC = 0++ mesons. The optimal values of the parameters are given in

the sixth column in Table IV. The arrow marked “ASA” points toward the optimal

value of a parameter. The last plot shows the amplitude itself for the optimal

parameters.
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Fig. 16. Variation of rotational symmetry violation versus changes of parameters in

the wave functions in the case f in Fig. 9 Sh = ūG̃P̃ v, with N = 1, decay into two

JPC = 0−+ mesons. The optimal values of the parameters are given in the sixth

column in Table VI. The arrow marked “ASA” points toward the optimal value of

a parameter. The last plot shows the amplitude itself for the optimal parameters.
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