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Due to anisotropic momentum distributions the parton system pro-
duced at the early stage of relativistic heavy-ion collisions is unstable with
respect to the magnetic plasma modes. The instabilities isotropize the sys-
tem and thus speed up the process of its equilibration. The whole scenario
of the instabilities driven isotropization is reviewed.

PACS numbers: 12.38.Mh, 25.75.—q

1. Introduction

The matter created in relativistic heavy-ion collisions manifests a strong-
ly collective hydrodynamic behaviour [1] which is particularly evident in
studies of the so-called elliptic flow [2]. A hydrodynamic description requires,
strictly speaking, a local thermal equilibrium and experimental data on the
particle spectra and elliptic flow suggest, when analysed within the hydro-
dynamic model, that an equilibration time of the parton' system produced
at the collision early stage is as short as 0.6 fm/c [3]. Such a fast equili-
bration can be explained assuming that the quark—gluon plasma is strongly
coupled [4]. However, it is not excluded that due to the high-energy density
at the early stage of the collision, when the elliptic flow is generated [5],

* Extended version of the review presented at 18-th International Conference on
Nucleus—Nucleus Collisions Quark Matter 2005, Budapest, Hungary, August 4-9,
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! The term ‘parton’ is used to denote a quasiparticle fermionic (quark) or bosonic
(gluon) excitation of the quark—gluon plasma.
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the plasma is weakly coupled because of asymptotic freedom. Thus, the
question arises whether the weakly interacting plasma can be equilibrated
within 1 fm/ec.

Models that assume that parton—parton collisions are responsible for
the thermalization of weakly coupled plasma provide a significantly longer
equilibration time. The calculations performed within the ‘bottom-up’ ther-
malization scenario [6], where the binary and 2 < 3 processes are taken into
account, give an equilibration time of at least 2.6 fm/c |7]. To thermalize
the system one needs either a few hard collisions of momentum transfer of
order of the characteristic parton momentum?, which is denoted here as T
(as the temperature of equilibrium system), or many collisions of smaller
transfer. As discussed in e.g. [8], the inverse equilibration time is of or-
der ¢*In(1/g) T (with g being the QCD coupling constant) when the binary
collisions are responsible for the system’s thermalization. However, the equi-
libration is speeded up by instabilities generated in an anisotropic quark—
gluon plasma [9,10], as growth of the unstable modes is associated with
the system’s isotropization. The characteristic inverse time of instability
development is roughly of order g7 for a sufficiently anisotropic momentum
distribution [9-14]. Thus, the instabilities are much ‘faster’ than the colli-
sions in the weak coupling regime. Recent numerical simulation [15] shows
that the instabilities driven isotropization is indeed very efficient.

The isotropization should be clearly distinguished from the equilibration.
The instabilities driven isotropization is a mean-field reversible phenomenon
which is not accompanied with entropy production [9,15]. Therefore, the
collisions, which are responsible for the dissipation, are needed to reach
the equilibrium state of maximal entropy. The instabilities contribute to
the equilibration indirectly, shaping the parton momenta distribution. And
recently it has been argued [10] that the hydrodynamic collective behaviour
does not actually require local thermodynamic equilibrium but a merely
isotropic momentum distribution of liquid components. Thus, the above
mentioned estimate of 0.6 fm/c [3] rather applies to the isotropization than
to the equilibration.

My aim here is to review the whole scenario of instabilities driven iso-
tropization and the article is organized as follows. I start with a brief pre-
sentation of numerous efforts to understand the equilibration process of the
quark—gluon plasma which have been undertaken over last two decades. In
Sec. 3 various plasma instabilities are considered and the magnetic Weibel
modes are argued to be relevant for the quark—gluon plasma produced in
relativistic heavy-ion collisions. In Sec. 4 I discuss how the unstable modes
are initiated while in Sec. 5 the mechanism of unstable mode growth is ex-

2 Although anisotropic systems are considered, the characteristic momentum in all
directions is assumed to be of the same order.
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plained in terms of elementary physics. Sec. 6 is devoted to solutions of
the dispersion equation which provide dispersion relations of the unstable
modes. In Sec. 7 it is explained why the instabilities isotropize the system.
A phenomenon of spontaneous abelianization of the system’s configuration
is considered in the same section. The two next sections contain more formal
material. The Hard Loop effective action of anisotropic plasma is presented
in Sec. 8 while Sec. 9 deals with the equations of motion which are used to
study temporal evolution of anisotropic plasma. Results of recent numerical
simulations of the plasma evolution are presented in Sec. 10. The review is
closed with a brief discussion on possible signals of the instabilities and on
desired improvements of theoretical approaches to the unstable quark—gluon
plasma.

Throughout the article there are used the natural units with A = ¢ =
kg = 1; the metric convention is (1,—1,—1,—1); the coupling constant
as = g2 /47 is assumed to be small; quarks and gluons are massless.

2. Equilibration of the quark—gluon plasma

To present the scenario of instabilities driven isotropization in a broader
context, I start with a brief review of numerous attempts to understand
the equilibration processes of the quark—gluon. The problem was posed
over twenty years ago when the real prospects to create the quark—gluon
plasma in terrestrial experiments appeared. Already in the early papers
published in the eighties [16-22], main directions of further studies were
drawn. The space-time structure of ultrarelativistic heavy-ion collisions was
found [19] to provide an estimate of the system’s temperature and the lower
bound of the thermalization time. The Boltzmann equation in the relaxation
time approximation [16] and the Fokker—Planck equation [17] were used
to follow the equilibration process. The Schwinger mechanism of particle
production was included in kinetic theory treatment of the thermalization
[18,22] and the pure perturbative mechanism was analysed as well [21].
The equilibration was also studied within the Monte Carlo parton cascade
model [20] which, however, took into account only binary parton—parton
collisions.

These lines of research were continued in the next decade. The parton
cascade approach was greatly improved [23] by, in particular, including the
gluon radiation in the initial and final states of parton—parton interactions.
The radiation proved to be very important for the equilibration process
[24,25]. These detailed numerical studies are summarized in the review [26].
Another perturbative parton cascade approach combined with the string
phenomenology for non-perturbative interactions is presented in [27]. The
analytical studies of the thermalization were continued in [28-32], see also
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[27], where, in particular, the gluons were convincingly shown to equilibrate
much faster than the quarks, the free streaming and the role of infrared cut-
offs in the parton—parton cross sections were elucidated. Much efforts were
invested in the studies of multi-particle processes [33-36] which were already
implemented in the parton cascade type models [26,27]. The inelastic process
2 < 3 attracted a lot of attention. Although it is of higher order in ag, it is
responsible for the parton number equilibration and it dominates the entropy
production [34-36].

There are two very recent transport theory approaches to the equili-
bration problem based on big numerical codes where the role of the multi-
particle processes is emphasized [37,38]. The authors of [37] include particle
production and absorption via the process 2 «» 3 while the three-particle
collisions 3 < 3 are studied in [38]. Within both approaches the equi-
libration is claimed to be significantly speeded-up when compared to the
equilibration driven by the binary collisions. However, the interaction rates
of multi-particle processes are known to suffer from severe divergences, and
thus, the actual role of the multi-particle interactions crucially depends on
how the rates are defined, computed and regularized.

The observation that the multi-particle interaction rates are sometimes
divergent was actually used to explain the very fast equilibration of the
quark—gluon system. The so-called collinear divergences of the gluon multi-
plication process 2 < 3 cancel in the equilibrium. If the cancellation does
not occur in the non-equilibrium systems, as argued in [39], the equilibra-
tion, which is driven by very large — formally divergent — interaction rates,
is extremely fast even in the weakly coupled plasma [39].

The thermalization of the quark—gluon plasma was also discussed from
a very different point of view where the equilibration is not due to the inter-
parton collisions but due to the chaotic dynamics of the non-Abelian classical
fields (coupled or not to the classical coloured particles) [40,41], see also a
very recent paper [42|. Then, the equilibration time is controlled by the
maximal Lyapunov exponent.

At the turn of the millennium, when a large volume of experimental
data from the RHIC started to flow, understanding of the equilibration pro-
cess became a burning issue as the data favoured a very short equilibra-
tion mentioned in the Introduction. Within the concept of strongly coupled
quark—gluon plasma, the problem is trivially solved as the strongly interact-
ing system is indeed equilibrated very fast. However, it is still an open issue
whether the plasma at the collision early stage is indeed strongly coupled.

A novel development concerned a treatment of the initial state of the
parton system which evolves towards equilibrium. In the papers mentioned
above, one usually assumed that the initial partons are produced due to
the (semi-)hard interactions of partons of the incident nuclei. Thus, jets
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and minijets form such an initial state which can be parametrized in several
ways [43]. Recent studies of the equilibration problem which adopt the
minijet initial conditions are presented in [44-46].

In the already mentioned ‘bottom—up’ thermalization scenario [6], the
initial state was assumed to be shaped by the QCD saturation mechanism.
Then, the initial state is dominated by the small x gluons of transverse
momentum of order ()5 which is the saturation scale. These gluons are freed
from the incoming nuclei after a time Q;'. Weak coupling techniques are
applicable as ()5 is expected to be much smaller than Aqgcp at sufficiently
high collision energies. The saturation mechanism is incorporated in the
effective field approach known as the Colour Glass Condensate [47] where the
small = partons of large occupation numbers are treated as classical Yang—
Mills fields. Hard modes of the classical fields play the role of particles here.
The equilibration processes with the minijet and saturation initial states
were compared to each other in [48].

The ‘bottom—up’ thermalization scenario [6], where not only binary col-
lisions but the processes 2 < 3 are included, takes into account the system’s
expansion. The equilibration processes splits into several stages paramet-
rically characterized by a”Q;! where n is a fractional power. The ther-
malization time is of order ag 18/ E’QS_ 1 However, as stressed in the Intro-
duction, the collisional isotropization is apparently too slow to comply with
the experimental data. The calculations performed within the ‘bottom—up’
scenario [6] were criticized [13] for treating the parton momentum distribu-
tion as isotropic, and thus, ignoring the instabilities which actually speed
up the equilibration process. Recently, an influence of the instabilities on
the ‘bottom—up’ time scales has been discussed in [49]. It has been also ar-
gued [50] that a somewhat modified scenario remains valid for a sufficiently
late stage of the equilibration process when the instabilities are no longer
operative.

At the end I mention rather unconventional approaches to the fast equi-
libration problem. It was argued in [51-53] that the momentum distribution
of partons is of the equilibrium form just after the production process. Thus,
the very process of particle production leads to the equilibrium state without
any secondary interactions. The authors of [51,52] refer to the Schwinger
mechanism of particle’s production due to the strong chromoelectric field.
The transverse momentum but not longitudinal one is claimed to be ‘equili-
brated’ in this way [51,52]. The key ingredient of the approach [53], where
the longitudinal momentum is also thermal, is the Hawking—Unruh effect: an
observer moving with an acceleration a experiences the influence of a ther-
mal bath with an effective temperature a/2m, similar to the one present in
the vicinity of a black hole horizon. The idea behind the approaches [51-53|
is elegant and universal — it can be applied not only to nucleus—nucleus but
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to hadron—hadron or even to e™ —e™ collisions — but it cannot explain how
the equilibrium state is maintained when the parton’s free streaming drives
the system out of equilibrium. Secondary interactions are then certainly
needed.

Finally, I note a very interesting ‘no-go’ theorem [54, 55|, which states
that the perturbative thermalization is impossible, as any Feynman diagram
of any order leads in the long time limit to the time scaling of the energy
density corresponding to the free streaming not to the Bjorken hydrody-
namics. However, it is not quite clear whether the theorem applies to the
relativistic heavy-ion collisions as the equilibrium state of matter produced
in the collisions is presumably only a transient state which changes into free
streaming at the late times of the system’s evolution.

3. Relevant plasma instabilities

The electron—ion plasma is known to experience a large variety of insta-
bilities [56]. Those caused by coordinate space inhomogeneities, in partic-
ular by the system’s boundaries, are usually called hydrodynamic instabili-
ties, while those due to non-equilibrium momentum distribution of plasma
particles are called kinetic instabilities. Hardly anything is known about hy-
drodynamic instabilities of the quark—gluon plasma, and I will not speculate
about their possible role in the system’s dynamics. The kinetic instabilities
are initiated either by the charge or current fluctuations. In the first case, the
electric field (E) is longitudinal (E || k, where k is the wave vector), while in
the second case the field is transverse (E L k). For this reason, the kinetic
instabilities caused by the charge fluctuations are usually called longitudinal
while those caused by the current fluctuations are called transverse. Since
the electric field plays a crucial role in the longitudinal mode generation, the
longitudinal instabilities are also called electric while the transverse ones are
called magnetic. In the non-relativistic plasma the electric instabilities are
usually much more important than the magnetic ones, as the magnetic ef-
fects are suppressed by the factor v?/c? where v is the particle’s velocity.
In the relativistic plasma both types of instabilities are of similar strength.
The electric instabilities occur when the momentum distribution of plasma
particles has more than one maximum, as in the two-stream system. A
sufficient condition for the magnetic instabilities is, as discussed in Sec. 6,
anisotropy of the momentum distribution.

Soon after the concept of quark—gluon plasma had been established, the
existence of the colour kinetic instabilities, fully analogous to those known
in the electrodynamic plasma, was suggested [57-63]. In these early papers,
however, there was considered a two-stream system, or more generally, a
momentum distribution with more than one maximum. While such a distri-
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bution is common in the electron-ion plasma, it is rather irrelevant for the
quark—gluon plasma produced in relativistic heavy-ion collisions where the
global as well as local momentum distribution is expected to monotonously
decrease in every direction from the maximum. The electric instabilities are
absent in such a system but, as demonstrated in [9,64], a magnetic unstable
mode known as the filamentation or Weibel instability [65] is possible. The
filamentaion instability was shown [9,64] to be relevant for the quark—gluon
plasma produced in relativistic heavy-ion collisions as the characteristic time
of instability growth is shorter or at least comparable to other time scales
of the parton system evolution. And the instabilities — usually not one
but several modes are generated — drive the system towards isotropy, thus
speeding up its equilibration. In the following sections a whole scenario of
the instabilities driven equilibration is reviewed.

4. Seeds of filamentation

Let me start with a few remarks on degrees of freedom of the quark—gluon
plasma. Various problems will be repeatedly discussed in terms of classical
fields and particles which are only approximate notions in the quark—gluon
plasma being a system of relativistic quantum fields. However, collective ex-
citations, which are bosonic and highly populated, can be treated as classical
fields while bosonic or fermionic excitations, with the energy determined by
the excitation momentum (due to the dispersion relation), can be treated as
(quasi-)particles. In the weakly coupled quark—gluon plasma in equilibrium,
an excitation is called hard when its momentum is of order 7', which is the
system’s temperature, and it is called soft when its momentum is of order
gT'. Within the Hard Loop dynamics, the hard excitations can be treated
as particles while the gluonic soft excitations as classical fields [66]. It is
expected that a similar treatment is possible in the non-equilibrium plasma
as well. Thus, the terms partons, quarks, gluons, particles will be used to
denote quasiparticle hard excitations. The classical chromodynamic field
will represent gluonic soft collective excitations.

After the introductory remarks, let me discuss how the unstable trans-
verse modes are initiated. For this purpose I consider a parton system which
is homogeneous but the parton momentum distribution is not of the equi-
librium form, it is not isotropic. The system is on average locally colourless
but colour fluctuations are possible. Therefore, (j4(z)) = 0 where j4(x)
is a local colour four-current in the adjoint representation of SU(V.) gauge
group with = 0,1,2,3 and @ = 1,2,...,(N2? — 1) being the Lorentz and
colour index, respectively; = = (¢, ) denotes a four-position in coordinate
space.
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Since I assume that the quark—gluon plasma is weakly coupled, the non-
interacting gas of quarks, antiquarks and gluons can be treated as a first
approximation. As discussed in detail in [67], the current correlator for a
classical system of non-interacting massless partons is

def

My (tx) = (it )5 (L2, z2))
Loy [ dp p'p” 3)
0 [ S Tt iV @, ()

where v = p/|p|, (t,x) = (t2 —t1, 2 — x1) and the effective parton distribu-
tion function f(p) equals n(p)+n(p)+2Nc.ny(p); n(p), n(p) and ny(p) give
the average colourless distribution function of quarks Q¥ (p,z) = §“n(p),
antiquarks Q% (p,z) = 677(p), and gluons G (p,z) = §%ny(p). The dis-
tribution function of (anti-)quarks and gluons are matrices belonging to the
fundamental and ajoint representation, respectively, of the SU(N,) gauge
group. Therefore, 4,57 =1,2,...,N. and a,b = 1,2,..., (N2 —1).

Due to the average space-time homogeneity, the correlation tensor (1)
depends only on the difference (to — t1,x2 — ®1). The space-time points
(t1,x1) and (t2,x2) are correlated in the system of non-interacting parti-
cles if a particle travels from (t1,a1) to (t2,x2). For this reason the delta
6®)(x — vt) is present in the formula (1). The momentum integral of the
distribution function simply represents the summation over particles. The
fluctuation spectrum is found as a Fourier transform of the tensor (1) i.e.

1 d*p php”
My (w.k) = < g* 5 / (273’3 ppé’ f(p) 2m6(w — kv) . (2)

To compute the fluctuation spectrum, the parton momentum distri-
bution has to be specified. Such calculations with two forms of the mo-
mentum distribution are presented in [67]. Here I only qualitatively dis-
cuss Egs. (1), (2), assuming that the parton momentum distribution is
anisotropic.

In heavy-ion collisions, the anisotropy is a generic feature of the parton
momentum distribution in a local rest frame. After the first collisions, when
the partons are released from the incoming nucleons, the momentum distri-
bution is strongly elongated along the beam — it is of the prolate shape with
the average transverse momentum being much smaller than the average lon-
gitudinal one. Due to the free streaming, it evolves in the local rest frame to
the distribution which is squeezed along the beam — it is of the oblate shape
with the average transverse momentum being much larger than the average
longitudinal one. In most cases, I assume that the distribution is elongated
along the z axis but my considerations remain valid for the distribution,
which is squeezed along the z axis, but the axes should be relabelled.
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With the momentum distribution elongated in the z direction, Egs. (1),
(2) clearly show that the correlator M?* is larger than M** or M¥Y. It
is also clear that M#? is the largest when the wave vector k is along the
direction of the momentum deficit. Then, the delta function é(w — kv) does
not much constrain the integral in Eq. (2). Since the momentum distribution
is elongated in the z direction, the current fluctuations are the largest when
the wave vector k is the z—y plane. Thus, I conclude that some fluctuations
in the anisotropic system are large, much larger than in the isotropic one. An
anisotropic system has a natural tendency to split into the current filaments
parallel to the direction of the momentum surplus. These currents are seeds
of the filamentation instability.

5. Mechanism of filamentation

Let me now explain in terms of elementary physics why the fluctuating
currents, which flow in the direction of the momentum surplus, can grow in
time. To simplify the discussion, which follows [67], I consider an electro-
magnetic anisotropic system. The form of the fluctuating current is chosen
to be

_](:L‘) =je, COS(k‘mZL‘) ) (3)
where €, is the unit vector in the z direction. As seen in Eq. (3), there
are current filaments of the thickness 7/|k,| with the current flowing in the
opposite directions in the neighbouring filaments.

The magnetic field generated by the current (3) is given as

B(z) = J éy sin(k,x) ,
kg
and the Lorentz force acting on the partons, which fly along the z direction,
equals

F(z)=qv x B(z)=—quv, ki é; sin(kyx) ,
€T

where ¢ is the electric charge. One observes, see Fig. 1, that the force dis-
tributes the partons in such a way that those, which positively contribute to
the current in a given filament, are focused in the filament centre while those,
which negatively contribute, are moved to the neighbouring one. Thus, the
initial current is growing and the magnetic field generated by this current
is growing as well. The instability is driven by the energy transferred from
the particles to fields. More specifically, the kinetic energy related to a mo-
tion along the direction of the momentum surplus is used to generate the
magnetic field. The mechanism of Weibel instability is explained somewhat
differently in [13].
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Fig. 1. The mechanism of filamentation instability, see text for a description.

6. Dispersion equation

The Fourier transformed chromodynamic field A¥(k) satisfies the equa-
tion of motion as

kg — kPR — ITM (k)| Ay (k) =0, (4)

where k = (w, k) and 1" (k) is the polarization tensor or gluon self-energy
which is discussed later on. Since the tensor is proportional to a unit matrix
in the colour space, the colour indices are dropped here. A general plasmon
dispersion equation is of the form

det [k:2g‘“’ — KR — T (E)] = 0. (5)

Equivalently, the dispersion relations are given by the positions of poles
of the effective gluon propagator. Due to the transversality of IT*(k)
(ky IIM (k) = k,II" (k) = 0) not all components of II*”(k) are indepen-
dent from each other, and consequently the dispersion equation (5), which
involves a determinant of a 4 x 4 matrix, can be simplified to the determi-
nant of a 3 x 3 matrix. For this purpose I introduce the colour permittivity
tensor elm(kz) where the indices [, m,n = 1,2, 3 label three-vector and tensor
components. Because of the relation

e (k) E' (k) E™ (k) = IT" (k) Ay (k) Ay (K)

where FE is the chromoelectric vector, the permittivity can be expressed
through the polarization tensor as

1
Im _ <lm Im
(k) = 6™ 4+ ST (k).
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Then, the dispersion equation gets the form
det |k?6"™ — K™ — w2™ (k)| = 0. (6)

The relationship between Eq. (5) and Eq. (6) is most easily seen in the
Coulomb gauge when A° = 0 and k- A(k) = 0. Then, E = iwA and Eq. (4)
is immediately transformed into an equation of motion of E(k) which further
provides the dispersion equation (6).

The dynamical information is contained in the polarization tensor
IT* (k) given by Eq. (11) or, equivalently, in the permittivity tensor €/ (k)
which can be derived either within the transport theory or diagrammati-
cally [68]. The result is

2 3 n l,ym
" (w, k) :5nm+g_ d°p v of (p) [(1_ @) 5[77;_,_&]

2w | (27)3 w — kv +i0t Ip! w w
(7)
As already mentioned, the colour indices are suppressed here.

Substituting the permittivity (7) into Eq. (6), one fully specifies the
dispersion equation (6) which provides a spectrum of quasi-particle bosonic
excitations. A solution w(k) of Eq. (6) is called stable when Imw < 0
and unstable when Imw > 0. In the first case the amplitude is constant
or it exponentially decreases in time while in the second one there is an
exponential growth of the amplitude. In practice, it appears difficult to
find solutions of Eq. (6) because of the rather complicated structure of the
tensor (7). However, the problem simplifies as we are interested in specific
modes which are expected to be unstable. Namely, we look for solutions
corresponding to the fluctuating current in the direction of the momentum
surplus and the wave vector perpendicular to it.

As previously, the momentum distribution is assumed to be elongated
in the z direction, and consequently the fluctuating current also flows in
this direction. The magnetic field has a non-vanishing component along
the y direction and the electric field in the z direction. Finally, the wave
vector is parallel to the axis z, see Fig. 1. It is also assumed that the
momentum distribution obeys the mirror symmetry f(—p) = f(p), and then
the permittivity tensor has only non-vanishing diagonal components. Taking
into account all these conditions, one simplifies the dispersion equation (6)
to the form

H(w) = k2 — w0’ (w, k) =0, (8)

where only one diagonal component of the dielectric tensor enters.
It appears that the existence of unstable solutions of Eq. (8) can be
proved without solving it. The so-called Penrose criterion |56], which follows
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from analytic properties of the permittivity as a function of w, states that
the dispersion equation H(w) = 0 has unstable solutions if H(w = 0) < 0.
The Penrose criterion was applied to the equation (8) in [9] but a much more
general discussion of the instability condition is presented in [13]. Not en-
tering into details, there exist unstable modes if the momentum distribution
averaged (with a proper weight) over momentum length is anisotropic.

To solve the dispersion equation (8), the parton momentum distribution
has to be specified. Several analytic (usually approximate) solutions of the
dispersion equation with various momentum distributions can be found in
[9,12,13,69]. A typical example of the numerical solution, which gives the
unstable mode frequency in the full range of wave vectors is shown in Fig. 2
taken from [11|. The momentum distribution is of the form

/() ! P
P)~ 3 &P | — :
(Pt +0?7)3 207

where p, = ,/p2 + pz. The mode is pure imaginary and vy, = Imw(k, ).

The value of the coupling is as = ¢%/47 = 0.3, 0, = 0.3 GeV and the
effective parton density is chosen to be 6 fm™3. As seen, there is a finite
interval of wave vectors for which the unstable modes exist.
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Fig.2. The growth rate of the unstable mode as a function of the wave vector
k = (k1,0,0) for o1 = 0.3 GeV and 4 values of the parameter o which controls
system’s anisotropy. The figure is taken from [11].

The dispersion equation (8) corresponds to a simple configuration where
the wave vector is parallel to the axis x and it points to the direction of
the momentum deficit while the chromoelectric field is parallel to the axis
z and it points to the momentum surplus. However, there are more general
unstable modes which are not aligned along the symmetry axes of the mo-
mentum distribution of particles. The wave vectors k and chromoelectric



Instabilities Driven Equilibration of the Quark—Gluon Plasma 439

fields E of these modes have non-vanishing components in the directions
of the momentum deficit and momentum surplus, respectively, and FE is no
longer perpendicular to k. Such unstable modes are discussed in [11]. A
quite general analysis of the dispersion equation of anisotropic systems is
given in [12,69]. There is considered a class of momentum distributions
which can be expressed as

1) = fioo (VPP + EmP)?) ©)

where fiso(|p|) is an arbitrary (isotropic) distribution, the unit vector n
defines a preferred direction and the parameter £ € (—1,00) controls the
magnitude of anisotropy.

As explained above, the existence of the unstable gluonic modes is a
generic feature of the anisotropic plasma — even a weak anisotropy gener-
ates the instability. In contrary, the quark modes seem to be always stable.
Although, a general proof of the quark mode stability is lacking, the modes
appear to be stable even in the case of extremely anisotropic parton momen-
tum distribution as in the two-stream system [70]. Presumably, the quark
modes are always stable because their population is constrained by Pauli
blocking [71].

7. Isotropization and abelianization

When the instabilities grow the system becomes more isotropic because
the Lorentz force changes the particle’s momenta and the growing fields
carry an extra momentum. To explain the mechanism I assume, as previ-
ously, that initially there is a momentum surplus in the z direction. The
fluctuating current flows in the z direction with the wave vector pointing in
the x direction. Since the magnetic field has a y component, the Lorentz
force, which acts on partons flying along the z axis, pushes the partons in the
x direction where there is a momentum deficit. Numerical simulations dis-
cussed in Sec. 10 show that growth of the instabilities is indeed accompanied
with the system’s fast isotropization.

The system isotropizes not only due to the effect of the Lorentz force but
also due to the momentum carried by the growing field. When the magnetic
and electric fields are oriented along the y and z axes, respectively, the
Poynting vector points in the direction x that is along the wave vector.
Thus, the momentum carried by the fields is oriented in the direction of the
momentum deficit of particles.

Unstable modes cannot grow to infinity and even in the electron-ion
plasma there are several possible mechanisms which stop the instability
growth [72]. The actual mechanism depends on the plasma state as well
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as on the external conditions. In the case of the quark—gluon plasma one
suspects that non-Abelian non-linearities can play an important role here.
An elegant argument [73] suggests that the non-linearities do not stabilize
the unstable modes because the system spontaneously chooses an Abelian
configuration in the course of instability development. Let me explain the
idea.

In the Coulomb gauge the effective potential of the unstable configuration
has the form

1
%H[Aa] — _N2Aa CAY 4+ Zg2falJCfacle(‘4b14d)(14cl4e) 7

which is shown in Fig. 3 taken from [73]. The first term (with u? > 0) is
responsible for the very existence of the instability. The second term, which
comes from the Yang—Mills Lagrangian, is of pure non-Abelian nature. The
term appears to be positive and thus it counteracts the instability growth.
However, the non-Abelian term vanishes when the potential A® is effectively
Abelian, and consequently, such a configuration corresponds to the steepest
decrease of the effective potential. Thus, the system spontaneously abelian-
izes in the course of instability growth. In Sec. 10, where the results of
numerical simulations are presented, the abelianization is further discussed.

4

N

-2 -1 0 1

Fig.3. The effective potential of the unstable magnetic mode as a function of
magnitude of two colour components of A® belonging to the SU(2) gauge group.
The figure is taken from [73].

8. Hard-loop effective action

Knowledge of the gluon polarization tensor or, equivalently, the chro-
moelectric permittivity tensor is sufficient to discuss the system’s stability
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and the dispersion relations of unstable modes. For more detailed dynami-
cal studies the effective action of anisotropic quark—gluon plasma is needed.
Such an action for a system, which is on average locally colour neutral, sta-
tionary and homogeneous, was derived in [74]. The starting point was the
effective action which describes an interaction of classical fields with currents
induced by these fields in the plasma. The Lagrangian density is quadratic
in the gluon and quark fields and it equals

£a(o) = = [ a9 GAL I @ = AL + P -0 P)) 5 (10)

the Fourier transformed gluon polarization tensor II')”(k) and the quark
self-energy Y (k) read

1y, (k) = o v / Pp f(p) (pk)(k*p’ +p"EY) — k> p"p” — (pk)?g"
ab = Ogb—+" 3 :
2NZ=1 [ d®p f(p)py

) = TN ) @ el ok (12)

» (11)

where f(p) and f(p) are the effective parton distribution functions defined
as f(p) = n(p) + n(p) + 2Ncng(p) and f(p) = n(p) + 7(p) + 2n,y(p); n(p),
n(p) and ny(p) are, as already mentioned below Eq. (1), the distribution
functions of quarks, antiquarks and gluons of single colour component in
a homogeneous and stationary plasma which is locally and globally colour-
less; the spin and flavour are treated as parton internal degrees of freedom.
The quarks and gluons are assumed to be massless. The polarization tensor
(11) can be derived within the semiclassical transport theory [12,68] or di-
agrammatically [68], following the formal rules of the Hard Thermal Loop
approach. The quark self-energy (12) has been derived so far only diagram-
matically [68,75] but the derivation is also possible within the transport
theory, as it has been done in [76] for the case of equilibrium plasma. The
action (10) holds under the assumption that the field amplitude is much
smaller than T'/g where T denotes the characteristic momentum of (hard)
partons.

Following Braaten and Pisarski [77], the Lagrangian (10) was modified
to comply with the requirement of gauge invariance. The final result, which
is non-local but manifestly gauge invariant, is |74]

2 3 v

2_ 1. _
e i) P L) (13)
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where F.” is the strength tensor and D denotes the covariant derivative.
The effective action (13) generates n-point functions which obey the Ward-
Takahashi identities. For the equilibrium plasma the action (13) is equivalent
to that one derived in [78] and in the explicitly gauge invariant form in [77].
The equilibrium Hard Loop action was also found within the semiclassical
kinetic theory [76,79].

9. Equations of motion

Transport theory provides a natural framework to study temporal evolu-
tion of non-equilibrium systems and it has been applied to the quark—gluon
plasma for a long time. The distribution functions of quarks (@), antiquarks
(Q), and gluons (G), which are the N. x N. and (N2 —1) x (N2 —1) matrices,
respectively, satisfy the transport equations of the form [80,81]:

9Q(p, x
D, Qp.2) + L p{ @), ZLBD L g, (14)
2 opy
. g 9Q(p, x)
P D, Q(p,x) — Ep“{F,uu(x)v o, | T 0,
g IG(p, )
p"D,G(p,x) + B p“{fw(az), “op, =0,
where {...,...} denotes the anticommutator; the transport equation of

(anti-)quarks is written down in the fundamental representation while that
of gluons in the adjoint one. Since the instabilities of interest are very fast,
much faster than the inter-parton collisions, the collision terms are neglected
in Egs. (14). The gauge field, which enters the transport equations (14), is
generated self-consistently by the quarks and gluons. Thus, the transport
equations (14) should be supplemented by the Yang—Mills equation

Dy F*(x) = j"(x) (15)
where the colour current is given as

3
() = —g / (371;3 % 7 [T [ra(Q(p, ) — Qp. )] + Tx [TLG (p, 2)]] (16)

with 7, and T}, being the SU(N,) group generators in the fundamental and
adjoint representation, respectively. There is a version of the equations
(14), (15) where colour charges of partons are treated as a classical variable
[82]. Then, the distribution functions depend not only on x and p but on
the colour variable as well.
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When the equations (14), (15) are linearized around the state, which is
stationary, homogeneous and locally colourless, the equations provide the
Hard Loop dynamics encoded in the effective action (13). The equations
are of particularly simple and elegant form when the quark 6Q(p,x), an-
tiquark §Q(p,x) and gluon dG(p,z) deviations from the stationary state
described by Qg (p) = 6n(p), Qf (p) = 6¥n(p), and G&(p) = §%n,(p)
are parameterised by the field W#(v, z) through the relations

5Q(p.2) = 95 P o,2),
5QMp.) = 9P w0,
0G(p,x) = gagjj(f)TaTr[TaW“(v,x)], (17)

where v = p/|p|. Then, instead of the three transport equations (14) one
has one equation
v, DFWY (v, 2) = —v,FP (x) (18)

while the Yang—Mills equation (15) reads

&*p p" Of(p)
2m)3 |p| Opr

D) = () =~ [ ¢ Wow,z),  (19)

where v* = (1,v) and, as previously, f(p) = n(p) + n(p) + 2Ncngy(p).
In contrast to the effective action (13), the equations (18, 19) are local in
coordinate space. Therefore, the transport equation (18) combined with
Eq. (19) is often called local representation of the Hard Loop dynamics.
The equations (18), (19), which for the isotropic equilibrium plasma were
first given in [66], are used in the numerical simulations [14,83,84] discussed
in the next section.

10. Numerical simulations

Temporal evolution of the anisotropic quark—gluon plasma has been re-
cently studied by means of numerical simulations [14,15,83,84]. The simu-
lations, which have been performed in two very different dynamical schemes
by three groups of authors, are of crucial importance as they convincingly
demonstrate a key role of the instabilities in the evolution of anisotropic
quark—gluon plasma.

The dynamics governed by the Hard Loop action (13) and described by
the equations (18), (19) has been simulated in [14,83,84|. These simulations
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provide fully a reliable information on the field dynamics provided the po-
tential’s amplitude is not too large: A4 < T'/g where T is the characteristic
momentum of (hard) partons. Since the equations (18), (19) describe small
deviations from the stationary homogeneous state, only a small fraction of
the particles is influenced by the growing chromodynamic fields. Therefore,
the (hard) particles effectively play a role of the stationary (anisotropic)
background. In the simulation [15] the classical version of the equations
(14), (15) is used. The quark—gluon plasma is treated as a completely clas-
sical system: partons, which carry classical colour charges, interact with the
self-consistently generated classical chromodynamic field.

The simulations [14, 15] have been effectively performed in 141 dimen-
sions as the chromodynamic potentials depend on time and one space vari-
able. The calculations [83,84] represent full 143 dimensional dynamics. In
most cases the SU(2) gauge group was studied but some SU(3) results, which
are qualitatively very similar to SU(2) ones, are given in [84].

The techniques of discretization used in the simulations [14, 15, 83, 84|
are rather different while the initial conditions are quite similar. The ini-
tial field amplitudes are distributed according to the Gaussian white noise
and the momentum distribution of (hard) partons is strongly anisotropic.
For example, in the classical simulation [15]| the initial parton momentum

distribution is chosen as
Py 12
— |, (20)

f(P) ~ 0(pz)exp | — -~

with ppara = 10 GeV. The results are actually insensitive to the specific
form of the momentum distribution. If the parton distribution function is
written in the form (9), the results are shown [12,14] to depend only on
two parameters: £ and the Debye mass mp of the corresponding isotropic
system 1i.e.

9 o0
g 2 afiso(p)
——— [ d —_
472 PP Op
0

mp =

In Fig. 4, taken from [14], the results of the Hard-Loop simulation per-
formed in 1+1 dimensions are shown. One observes exponential growth of
the energy density stored in fields and the energy density is dominated, as
expected, by the magnetic field which is transverse to the direction of the
momentum deficit. The growth rate of the energy density appears to be
equal to the growth rate +* of the fastest unstable mode. Fig. 5, which
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Fig. 4. Time evolution of the (scaled) energy density (split into various electric and
magnetic components) which is carried by the chromodynamic field. The simu-
lation is 141 dimensional and the gauge group is SU(2). The parton momentum
distribution is squeezed along the z axis. The solid line corresponds to the total
energy transferred from the particles. The figure is taken from [14].
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Fig.5. Time evolution of the kinetic energy of particles (upper panel) and of the
energy of electric and magnetic fields (lower panel) in GeV/fm® for the U(1) and
SU(2) gauge groups. The figure is taken from [15].
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is taken from [15], shows results of the classical simulation on the 1+1 di-
mensional lattice of physical size L = 40 fm. As in Fig. 4, the amount of
field energy, which is initially much smaller than the kinetic energy of all
particles, grows exponentially and the magnetic contribution dominates.

The Abelian (U(1)) and non-Abelian (SU(2)) results of the 1+1 dimen-
sional simulation presented in Fig. 5 are remarkably similar to each other.
The abelianization, explained in Sec. 7, appears to be very efficient in 1+1
dimensions, as shown in Figs. 6, 7, taken from [15] and [14], respectively.
The authors of [15] analysed the functionals

L
dzx Tr[(i[Aya Az])Q]

L
dx -~
= - 2 2 = -
Grms = 2/ LTr[Ay+AZ], C_/ L DA+ A (21)
0 0

which were introduced in [73]. The quantities jms and C, studied in [14] and
shown in Fig. 7, are fully analogous to ¢.ys and C' defined by Eq. (21) but
the components of chromodynamic potential are replaced by the respective
components of colour current. As seen in Figs. 6, 7, the field (current)
commutator decreases in time although the magnitude of field (current), as
quantified by ¢rms (Jrms), grows.

10

UL
Q
)
3
]

10"

10?2

-3 o e by
10% 01 0.2 03 0.4 05

time t/L/N,
Fig. 6. Temporal evolution of the functionals C' and ¢.n,s measured in GeV. The
figure is taken from [15].

It is worth mentioning that the functionals (21) defined through the
gauge potentials are gauge invariant provided the potentials depend only of
one time and one space variables and the gauge transformations preserve
this property. Thus, the functionals (21) are well suited for 1 + 1 dimen-
sional simulations. However, the functionals (21) are not gauge invariant
under general 1+ 3 dimensional gauge transformations. When the potential
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Fig.7. Temporal evolution of the (scaled) functionals C' and j,s. The figure is
taken from [14].

components are replaced by the respective current components, as proposed
in [14], the functionals are gauge invariant not only under 1 + 1 but also
under 1 4 3 dimensional transformations.

The results of the 143 dimensional simulations [83, 84| appear to be
qualitatively different from those of 1+1 dimensions. As seen in Figs. 8, 9,
taken from [83] and [84], respectively, the growth of the field energy density is
exponential only for some time, and then the growth becomes approximately
linear. It appears that the regime changes when the field’s amplitude is of

I9°]

4
00

T R

—— 3+1dim. non-Abelian
--- 3+1dim. Abelian
------ 1+1 dim. non-Abelian

Ll

magnetic energy density [in unitsof m
=
o,

! ! ! | ! | !
107720 40 60 , 80 100 120
Fig.8. Time evolution of the (scaled) chromomagnetic energy density in the 1+3
dimensional simulation. The Abelian result and that of 1+1 dimensions are also
shown. The figure is taken from [83].
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Fig. 9. Time evolution of the (scaled) energy density (split into various electric and
magnetic components) of the chromodynamic field in the 1+1 and 143 simulations.
‘HL’ denotes the total energy contributed by hard particles. The figure is taken
from [84].

order k/g where k is the characteristic field wave vector. Then, the non-
Abelian effects start to be important. Indeed, Fig. 10, which is taken from
[83], demonstrates that the abelianization is efficient in the 143 dimensional
simulations [83, 84| only for a finite interval of time. The commutator C
shown in Fig. 10, which is a natural generalization of the 1+1 dimensional
commutator defined by Eq. (21) with the current components instead of
the potential ones, first decreases but after some time it starts to grow and
returns to its initial value.

As discussed in two very recent papers [85,86], the physics of the late
stage of instability development when the energy stored in the fields grows
linearly with time is very interesting. Similarly to the turbulence, the un-
stable modes do not grow any more but due to non-Abelian interactions
the energy provided by the particles is cascaded towards harder and harder
modes.

The effect of isotropization due to the action of the Lorentz force is
nicely seen in the 1+1 dimensional classical simulation [15]. In Fig. 11,
which is taken from [15], there are shown diagonal components of the energy-

momentum tensor
T _ / ’p p'p”
(2m)3 Ep

The initial momentum distribution is given by Eq. (20), and consequently
T =0 att =0. As seen in Fig. 11, T"* exponentially grows. However, a
full isotropy, which requires T%* = (TY + T*%) /2, is not achieved.

f(p) .
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Fig. 10. Temporal evolution of the field commutator quantified by C. The figure is
taken from [83].
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Fig. 11. Temporal evolution of the energy-momentum tensor components T** and
(T¥¥+T1%%)/2. The Abelian and non-Abelian results are shown. The figure is taken
from [15].

11. Outlook and final remarks

One wonders whether the presence of the instabilities at the early stage of
relativistic heavy-ion collisions is experimentally observable. The accelerated
equilibration is obviously very important though it is only an indirect signal.
It has been suggested [87,88] that strong chromomagnetic fields generated
by the instabilities can lead to a specific pattern of jet’s deflections. This
promising proposal, however, requires further studies.
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Another idea has been formulated in [89]. The quark—gluon plasma,
which is initially anisotropic, is isotropized fast due to the magnetic insta-
bilities. Such a non-equilibrium plasma manifests, as recently observed [10],
an approximate hydrodynamic behaviour even before the equilibrium is
reached. The point is that the structure of the ideal fluid energy-momentum
tensor i.e. TH = (e 4+ p) utu” — p g"”, where €, p and u* is the energy den-
sity, pressure and hydrodynamic velocity, respectively, holds for an arbitrary
but isotropic momentum distribution. € and p are then not the energy den-
sity and pressure but the moments of the distribution function which are
equal the energy density and pressure in the equilibrium limit. Since the
tensor T"” always obeys the continuity equation 9,T"” = 0, one gets an
analogue of the Euler equation. However, due to the lack of thermodynamic
equilibrium there is no entropy conservation and the equation of state is
missing.

The azimuthal fluctuations have been argued [89] to distinguish the
approximate hydrodynamics — characteristic for the instabilities driven
isotropization — from the real hydrodynamics describing a system which
is in a local thermodynamic equilibrium, as advocated by proponents of
the strongly coupled plasma [4]. Non-equilibrium fluctuations are usually
significantly larger than the equilibrium fluctuations of the same quantity.
A specific example of such a situation is given in Sec. 4 where the cur-
rent fluctuations in the anisotropic system are discussed. Thus, one expects
that the (computable) fluctuations of vy produced in the course of real hy-
drodynamic evolution are significantly smaller than those generated in the
non-equilibrium quark—gluon plasma which is merely isotropic. It should
be stressed here that the elliptic flow is generated in the collision relatively
early stage when there is a large configuration-space asymmetry of the col-
liding system. Since a measurement of vo fluctuations is rather difficult, it
was also argued [89] that an integral measurement of the azimuthal fluctu-
ations can help as well to distinguish the equilibrium from non-equilibrium
fluctuations.

Further suggestions of detectable signals of the instabilities are very much
needed. However, an experimental verification will certainly require much
better theoretical understanding of the equilibration process. Although an
impressive progress has been recently achieved, the numerical simulations
[14,15,83,84] are still quite far from the situation which occurs in relativistic
heavy-ion collisions. A realistic simulation should properly take into account
an initial state of colliding nuclei; the system’s expansion, which slows down
or even cuts off the instabilities growth [11,13], needs to be included; the
simulation should be 1+ 3 dimensional as the dimensionality really matters
[83,84]; the effect of back reaction of fields on the particles has to be taken
into account to observe the system’s isotropization.
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Some of the above requirements are met by a very recent numerical study
[90,91] where the initial state corresponds to the Colour Glass Condensate
[47] where small z partons of large occupation numbers, which dominate
the wave functions of incoming nuclei, are treated as classical Yang—Mills
fields. As already mentioned, hard modes of the classical fields play the
role of particles here. The study shows that the instabilities, identified as
the Weibel modes, are indeed generated when the system of Yang-Mills
fields representing colliding nuclei expands into the vacuum. However, the
unstable mode growth is, as argued in [11,13], slowed down.

Understanding of the late stage of the instability growth, when fields
are of large magnitude, is a real theoretical challenge. The mechanism of
instability saturation is not well known even in the electron—ion plasma, see
e.g. a recent paper |[72]. Non-linear effects, in particular those of non-
Abelian nature, are then essential. Except for the classical simulations
[15,90,91], the evolution of anisotropic quark—gluon plasma has been studied
within the Hard Loop approximation. An attempt to go beyond has been
undertaken in [92] where the higher order terms of the effective potential
of the anisotropic system have been computed. Since these terms can be
negative, the instability is then driven not only by the negative quadratic
term but by the higher order terms as well. However, before a real progress
in the strong field domain can be achieved, one still needs a better insight
into the Hard Loop dynamics which has appeared to be very rich [83-85].

In summary, the magnetic instabilities provide a plausible explanation
of the surprisingly short equilibration time observed in relativistic heavy-ion
collisions. The explanation does not require a strong coupling of the quark—
gluon plasma. Fast isotropization of the system is a distinctive feature of the
instabilities driven equilibration. Two signals of the instabilities have been
suggested but quantitative predictions are lacking. New ideas are certainly
needed. In spite of the impressive progress, which has been achieved recently,
a theoretical description of the unstable quark—gluon plasma requires further
improvements.

I am indebted to Adrian Dumitru, Cristina Manuel, Toni Rebhan, Paul
Romatschke, Mike Strickland, Raju Venugopalan, Stephen Wong and Larry
Yaffe for comments on the manuscript. A support by the Virtual Institute
VI1-146 of Helmholtz Gemeinschaft is also gratefully acknowledged.
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