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The “square root” of the Dirac operator derived on the superspace is
used to construct supersymmetric field equations. In addition to the re-
cently found solution — a vector supermultiplet — it is demonstrated how
another supermultiplet follows as solution: a set of spin 3/2 and spin 1 com-
ponent fields obeying the appropriate equations of motion together with an
auxiliary, spin 2 tensor field.

PACS numbers: 11.30.Pb, 03.65.–w

1. Introduction

The idea to take the “square root” of the Dirac operator follows directly
from the analogous procedure performed by Dirac on the Klein–Gordon op-
erator [1]. Whereas in the first case the motivation was to linearize the op-
erator in space-time derivatives, the form of the supersymmetry algebra [2]
suggested that repeating this procedure would lead to the operator linear
in supersymmetry generators or equivalently, spinorial derivatives. Such
construction was presented some time ago [3] together with a set of super-
symmetric field equations which result when acting with the “square root”
operator on superfields.

To recall this construction in short let me write the Dirac equation in
two-component notation and chiral representation:

−
(

iσ̄µ α̇α∂µ m

m iσµ
αα̇∂µ

)

(

ϕα

χ̄α̇

)

≡ D
(

ϕα

χ̄α̇

)

= 0 . (1)
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The Lorenz indices are denoted here by µ, ν, λ and ρ, the spinor indices by
α and β.

We are looking for the operator S satisfying:

S†S = D . (2)

The solution proposed in Ref. [3] is

S =
1√
2

(

Dα −D̄α̇

D̄α̇ Dα

)

, (3)

where the spinorial derivatives are defined on the superspace as

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ ,

D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ . (4)

Indeed, using the anticomutation relations

{Dα,Dβ} =
{

D̄α̇, D̄β̇

}

= 0 ,
{

Dα, D̄β̇

}

= −2iσµ
αβ̇
∂µ , (5)

we get

S†S = −
(

iσ̄µα̇α∂µ M

M iσµ
αα̇∂µ

)

, (6)

where a scalar, hermitian operator

M = −1

4

(

DD + D̄D̄
)

(7)

appears instead of the mass m. The operator S is thus the solution to our
problem on the space of superfields Λ which satisfy

M Λ = mΛ . (8)

Acting with the operator S on a superfield we are able to construct a free
field equation — the “square root” of the Dirac equation. The simplest two
choices of superfields are [3]

F =

(

Wα

H̄α̇

)

(9)
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and

B =

(

Φ
V αα̇

)

(10)

leading to the equations

SF = 0 , SB = 0 . (11)

It is also obvious that due to Eq. (2) both superfields F and B satisfy the
Dirac equation

DF = 0 , DB = 0 . (12)

Recently the equations
SF = 0 (13)

(together with the condition MF = mF ) were studied and solved in Ref. [4].
In the simplest case when Wα = Hα, the solution was found to be the
Maxwell supermultiplet

Wα = − iλα(y) +

[

δα
βd(y) − i

2
(σµσ̄ν)α

β(∂µwν(y) − ∂νwµ(y))

]

θβ

+ θθσµ
αα̇∂µλ̄

α̇(y) , (14)

with yµ = xµ + iθσµθ̄. The massless component fields wµ(x) and λα(x)
satisfy the Maxwell and Dirac equations, respectively, and d = const.

2. The equations and their solutions

In this paper we study the other set of Eqs. (11)

SB = 0 , (15)

the superfield B satisfying in addition the condition (8). In terms of
(in general complex) component superfields the equations read:

DαΦ− D̄α̇V
αα̇ = 0 ,

D̄α̇Φ+DαV
αα̇ = 0 , (16)

and

MΦ = mΦ , (17)

MV αα̇ = mV αα̇ .

Multiplying the first Eq. (16) by Dα and making use of the second Eq. (16)
we obtain

MΦ = mΦ = 0 . (18)
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Out of two possibilities suppose first Φ = 0 and the mass m arbitrary. The
Eqs. (16) simplify and it is easy to show in this case that

D2V αα̇ = D̄2V αα̇ = 0 , (19)

which implies
MV αα̇ = mV αα̇ = 0 . (20)

If we are interested in non-zero superfields, the mass m has to vanish, m = 0.
The other possibility, m = 0 and Φ arbitrary, leads to similar conclusion.
Indeed, a new constraint on Φ can be obtained by acting with the antico-

mutator
{

Dα, D̄β̇

}

on the superfield Φ and using Eqs. (16),

{

Dα, D̄β̇

}

Φ = −2iσµ
αβ̇
∂µΦ = 2MV

αβ̇
= 0 . (21)

The above equality means that Φ is constant in space-time and depends only
on θ and θ̄. Taking into account the condition (18), the most general form
of Φ is

Φc = c1 + cα2 θα + c̄3α̇θ̄
α̇ + c4µθσ

µθ̄ + c5(θθ − θ̄θ̄) , (22)

with constant c1, c2, . . . , c5. One further notices that the Eqs. (16) are in-
variant under the simultaneous shift

Φ → Φ′ = Φ+ Φc ,

V αα̇ → V
′αα̇ = V αα̇ + V αα̇

c , (23)

where
V αα̇

c = cα2 θ̄
α̇ − θαc̄α̇3 + c4µσ̄

µα̇α(θθ − θ̄θ̄) + c5θ
αθ̄α̇ . (24)

We can perform this shift so that

Φ = 0 . (25)

Eqs. (16) reduce then to

D̄α̇V
αα̇ = DαV

αα̇ = 0 . (26)

We first express the bi-spinor superfield V αα̇ through the vector superfield Vµ

V αα̇ = σµα̇αVµ . (27)

Acting with the anticomutator
{

Dα, D̄β̇

}

on the superfield V αα̇ one notices

that the superfield Vµ is divergenceless

∂µVµ = 0 (28)
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and due to Eq. (19)
D2Vµ = D̄2Vµ = 0 . (29)

It is interesting to note that the Eqs. (29), (19) are not independent and
follow from Eqs. (26). To find the general solution to Eqs. (26) let me
expand Vµ in terms of component fields:

Vµ = aµ(x) +
√

2θψµ(x) +
√

2θ̄χ̄µ(x) + θσν θ̄vνµ(x) + θθfµ(x) + θ̄θ̄h̄µ(x)

+ θ̄θ̄θβ
(

ηµβ(x) − 1√
2
εµνλρσ

ν

ββ̇
∂λχ̄ρβ̇(x)

)

+ θθθ̄β̇

(

ρ̄β̇
µ(x) +

1√
2
εµνλρσ̄

νβ̇β∂λψρ
β(x)

)

+ θθθ̄θ̄
(

cµ(x) +
1

4
� aµ(x)

)

. (30)

The conditions (26), (28), (29) lead to the following relations among the
component fields (x dependence suppressed):

— bosons

∂µaµ = 0 , (31)

fµ = hµ = cµ = 0 , (32)

σ̄µα̇ασλ
αβ̇

(i∂λaµ + vλµ) = 0 , (33)

� aµ − εµνλρ∂νvλρ = 0 , (34)

∂νvνµ = ∂µvνµ = 0 , (35)

— fermions

∂µψµα = ∂µχ̄µα̇ = 0 , (36)

σ̄µα̇αψµα = σµ
αα̇χ̄

α̇
µ = 0 , (37)

εµνλρσ̄α̇α
ν ∂λψρα + iσ̄να̇α∂νψ

µ
α = 0 , (38)

εµνλρσναα̇∂λχ̄
α̇
ρ − iσν

αα̇∂ν χ̄
µα̇ = 0 , (39)

ηα
µ = ρ̄α̇

µ = 0 . (40)

As can be seen from the above equations we can eliminate the fields fµ,
hµ, cµ, ηµα and ρ̄µα̇ from the supermultiplet, so that we are left with the
component fields aµ, ψµα, χ̄µα̇ and vλµ only.
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Let us look first at the bosonic content of the supermultiplet. Decom-
posing the tensor field vµν into symmetric and antisymmetric part

vµν = vA
µν + vS

µν , (41)

one notices that the symmetric part obeys the spin-2 field constraints

∂µvS
µν = 0 ,

vSµ
µ v = 0 . (42)

It decouples as well from Eqs. (33)–(35), [7].
The antisymmetric part vAµν can be expressed through a vector field vµ

vAµν = ∂µvν − ∂νvµ , (43)

and related to the tensor field

aµν = ∂µaν − ∂νaµ , (44)

through (imaginary) duality relation

vA
µν =

i

4
εµνλρa

λρ . (45)

The relations (31)–(35) can be expressed by one of these fields (e.g. aµν)
and lead to the Maxwell field equations:

∂νaνµ = 0 ,

ενµλρ∂
µaλρ = 0 . (46)

with the Lorenz condition ∂µaµ = 0.
Let us look now at the fermionic sector. The component fields ηα

µ and ρ̄α̇
µ

vanish. The vector-spin fields obey Eqs. (36)–(38) which means that only
the spin 3/2 is present. To summarize, the solution to Eqs. (16) is built of
two spin 3/2 vector-spinor component fields ψα

µ(x) and χ̄α̇
µ(x) obeying the

(massless) Rarita–Schwinger equations (38)–(39), a spin 1 vector field aµ(x)
obeying the Maxwell equations (46) and a symmetric spin 2 tensor field vS

µν

with no eqution of motion.

3. Specific solution — chiral supermultiplet

The chiral and antichiral supermultiplets can be obtained as solutions to
Eqs. (16) by assuming

Vµ = ∂µV , (47)
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with

D̄α̇V = 0 , or DαV = 0 . (48)

Eqs. (31)–(40) simplify significantly and the solution to the Eqs. (16)
consists of one scalar field a satisfying the (massless) Klein–Gordon equation
one spinor field ψ satisfying the (massless) Dirac equation and one auxiliary
(constant) scalar field F .

4. Remarks

It is easy to show that the above equations of motion (38), (39), (46)
follow also from the supersymmetric Lagrangian

L =

∫

d2θd2θ̄V µ†Vµ =

∫

d2θd2θ̄V †
αα̇V

α̇α . (49)

In addition, this Lagrangian forces the tensor field vS
νµ, otherwise constrained

only by Eq. (42), to vanish. The Lagrangian (49) has the “supergauge”
symmetry

Vµ → Vµ + ∂µ(V + V †) , (50)

which transforms the component fields in the following way:

aµ → aµ + ∂µ(a+ a⋆) ,

ψµ → ψµ + ∂µψ ,

χ̄µ → χ̄µ + ∂µψ̄ ,

vA
νµ → vA

νµ ,

vS
νµ → vS

νµ + ∂ν∂µ(a− a⋆) . (51)

5. Summary

Together with earlier results [3, 4, 6] the “square root” of the Dirac op-
erator supplies us with two different gauge supermultiplets. The first one
coincides with the known vector gauge supermultiplet used to construct
gauge theories together with chiral matter superfields. The supermultiplet
Vµ studied in the present paper is less known. It was constructed and used
in connection with the supergravity vector current [10], but in that case the
“active” component fields were rather spin 2 (graviton) and spin 3/2 (grav-
itino). In our case the dynamical fields are rather the spin 1 and 3/2 ones.
Their coupling to other supermultiplets is now under study.
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