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in a generalized Gaussian model, which includes interparticle correlations.
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1. Introduction

Let us consider an M -particle state and assume that its density matrix is

ρ(K,q) = e−v(K)− 1

2
qL2q+iqX(K) , (1)

where K = (1/2)(p+p′), q = p−p′ and X(K) are 3M -dimensional vectors,
and L2 is a 3M×3M dimensional matrix. Matrix L2 is in general a function
of K. The physical interpretation of formula (1) is naturally obtained when
the density matrix is converted into the corresponding Wigner function:

W (K,X) =

√
2π

3M

DetL
e−v(K)− 1

2
(X−X(K))L−2(X−X(K)) . (2)

Note that DetL is an effective volume of the system.
In this paper we derive, assuming (1), an asymptotic formula, valid when

the eigenvalues of matrix L are large, for the coincidence probabilities

C(l) = Tr ρl =

∫

dlp

l
∏

j=1

ρ(Kj,qj) , (3)
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which are needed to obtain the Renyi entropies

Hl =
1

1 − l
logC(l) . (4)

Here Kj = (1/2)(pj + pj+1), qj = pj − pj+1 and pl+1 ≡ p1.
As seen from formula (1), when the eigenvalues of matrix L are large,

the integral is dominated by the region q ≈ 0. Therefore, we propose to
expand the exponent in the integrand in powers of the components of q and
to keep only the terms up to second order. Thus, the problem reduces to
the evaluation of a Gaussian integral.

Our final result is an elegant formula generalizing the formulae derived
for the one-dimensional Gaussian model by a number of authors [2–9]. For
the convenience of the reader, a short derivation of the formula for the one-
dimensional case is given in Section 3. In Section 2 the integral (3) is worked
out. In Section 4 this integral is significantly simplified using the result
derived in Section 3. Section 5 contains our conclusions. Two Appendices
contain discussions of the matrices R2 and S introduced in the text.

2. Evaluation of C(l)

In order to calculate the coincidence probabilities it is convenient to
introduce the notation

Kj = K + kj , K =
1

l
(p1 + · · · + pl) . (5)

Note that
l
∑

j=1

kj = 0 ,

l
∑

j=1

qj = 0 . (6)

An immediate implication is that the terms with X do not contribute. In-
deed, let us consider the expansions of each term qjX(Kj) in powers of the

components of q. The first terms are qjX(K) and their total contribution
to the exponent is

iX(K)

l
∑

j=1

qj = 0 . (7)

The total contribution from the second order terms of the expansion must
be zero because of the hermiticity of the density matrix and all the further
terms are negligible being cubic or higher order in the components of q.

It is convenient to replace in (3) the variables p1, . . . ,pl by the vari-
ables K,q1, . . . ,ql−1. The Jacobian of this change of variables equals one.
Further, one introduces into the integrand the factor
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δ





l
∑

j=1

qj



 =

∫

dt

(2π)3M
e−it

Pl
j=1

qj , (8)

where t is another 3M -dimensional vector, and compensates it by the inte-
gration over qj. Thus, (3) takes the form

C(l) =

∫

dK

∫

dt

(2π)3M

∫

dl qe
Pl

j=1(−v(Kj)−
1

2
qjL2qj−itqj) . (9)

The sum of the v terms can be rewritten as follows

l
∑

j=1

v(Kj) = lv(K) +
1

2

l
∑

j=1

(kj∇)(kj∇)v(K) , (10)

where the differential operators ∇α act on the components of K. Expressing
the vectors kj as linear combinations of the vectors qj and performing the
summation over j one finds that

l
∑

j=1

v(Kj) = lv(K) +
1

2

l−1
∑

j,k

qjSjkR
2qk , (11)

where R2 is a 3M × 3M matrix with elements

R2
αβ = ∇α∇βv(K) (12)

and S is an l × l matrix. Matrix R2 for a specific model is discussed in
Appendix A. The matrix elements Sjk are not needed for our calculation.
They are, however, useful for cross-checks. Therefore, they are calculated
and discussed in Appendix B. Actually, as seen there, there are potentially
useful ambiguities in the definitions of the matrices S.

The next step is to replace the integration variables qj by their linear

combinations Qj , which are the eigenvectors of matrix S: qj =
∑l

k=1 UjkQk.
This transformation can be chosen orthogonal and then its Jacobian equals
one. Using the notation

UTSU = Λ; Λjk = Λjδjk , (13)

one finds

C(l) =

∫

dK e−lv(K)

∫

dt

(2π)3M

×
l
∏

j=1

∫

dQ exp

[

−1

2
Q(L2 + ΛjR

2)Q + it
l
∑

k=1

UkjQ

]

. (14)
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Further, for each j we introduce an orthogonal transformation Q = V (j)z

which diagonalizes the quadratic form in the exponent

V (j)T(L2 + ΛjR
2)V (j) = λ(j) , λ

(j)
αβ = λ(j)

α δαβ . (15)

This reduces each integral over Q into a product of 3M single Gaussian
integrals. Performing them one gets

C(l) =
√

2π
3M(l−2)

∫

dK
e−lv(K)

√

∏l
j=1 Det(L2 + ΛjR

2)

×
∫

dt exp



− l

2

l
∑

j=1

CjtV
(j) 1

λ(j)
V (j)Tt



 , (16)

where

Cj =
1

l

∑

ik

UijUkj , (17)

and the identities
3M
∏

α=1

λ(j)
α = Det(L2 + ΛjR

2) (18)

have been used.
Performing in (16) the integration over t and extracting DetL2 =(DetL)2

one gets

C(l)=

( √
2π

DetL

)3M(l−1)

l−
3M
2

∫

dK
e−lv(K)

√

DetA
∏l

j=1 Det(1 + ΛjL
−1R2L−1)

,

(19)
where

A = l

l
∑

j=1

CjL
−1V (j) 1

λ(j)T
V (j)TL−1. (20)

Using (15) this can be also rewritten as

A = l

l
∑

j=1

Cj

1 + ΛjL
−1R2L−1 , (21)

which yields

C(l)=

( √
2π

DetL

)3M(l−1)

l−
3M
2

∫

dK
e−lv(K)

√

Det
[

∑l
j=1Cj

∏l(j)
k (1+ΛkL

−1R2L−1)
]

.

(22)
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The symbol
∏l(j)

k=1 denotes the product
∏l

k=1 with the j-th factor omitted.
This is a usable expression for the coincidence probabilities C(l) 1. The
formula, however, can be significantly simplified. In order to derive the
simplification we will need a result concerning the one-dimensional Gaussian
model. This is derived in the following section.

3. The one-dimensional Gaussian model

The model considered in the present paper is a generalization of the more
common Gaussian model, where the M -particle density matrix is a product
of 3M one dimensional Gaussian density matrices of the form:

ρ(K, q) =
R√
2π

e−
1

2
R2K2− 1

2
L2q2

, (23)

where K, q,R,L are just real numbers. Let us calculate the coincidence
probabilities C1(l) for the one-dimensional model (23). To this end we ob-
serve that ρ(K, q) is diagonal in the representation of the wave functions of
the harmonic oscillator [6–9] and can be written in the form

ρ(K, q) =

∞
∑

n=0

ψn(p)λnψ
∗
n(p′) , (24)

where

λn = (1 − z)zn , (25)

ψn(p) =

√

α√
π2nn!

exp

(

−1

2
α2p2

)

Hn(αp) , (26)

α =
√
RL , z =

1 −R/(2L)

1 +R/(2L)
. (27)

Therefore,

Tr ρl =

∞
∑

n=0

λl
n = (1 − z)l

1

1 − zl
, (28)

where a geometric progression has been summed. It is seen from (27) that
|z| < 1, as it should.

1 It requires, however, the determination of the eigenvalues Λk and of the coefficients
Cj . This is a nontrivial task for large l.
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To show that formulae (23) and (24) are equivalent, one may use the
identity2

∞
∑

n=0

zn

n!
Hn(x)Hn(y) =

1√
1 − 4z2

exp

(

−4z
z(x2 + y2) − xy

1 − 4z2

)

. (29)

Substituting the formula for z into (28) one easily finds

C1(l) =

(

R

L

)l 1
(

1 + R
2L

)l −
(

1 − R
2L

)l
. (30)

This is the formula we need.

4. Final expression for C(l)

The one-dimensional Gaussian model can be also studied using the meth-
ods from Section 2. There is a number of simplifications, however. Since the
dimension of the matrices 3M is replaced by one

λ(j) = L2 + ΛjR
2; (d = 1) . (31)

Since there is no need to diagonalize L2+ΛiR
2: V (j) = V (j)T = 1. Moreover,

e−lv(K) =

(

R√
2π

)l

e−
l
2
R2K

2

, (d = 1) . (32)

Thus

C1(l) =
Rl

2π
√

∏l
j=1(L

2 + ΛjR2)

∫

dKe−
l
2
K2R2

×
∫

dt exp



− l

2

l
∑

j=1

Cj

t2

L2 + ΛjR2



 . (33)

Note that in spite of all these simplifications the eigenvalues Λj and the co-
efficients Cj are the same as in the general case. Performing the integrations
over t and K:

C1(l) =
Rl−1

√
l
√

A
∏l

j=1(L
2 + ΛjR2)

, (34)

2 To prove (29) it is enough to substitute on the left-hand side twice the definition

Hn(u) = 2
n

√
π

R ∞
−∞dt (u+it)ne−t2 , perform the summation and a Gaussian integration.
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where

A = l

l
∑

j=1

Cj

L2 + ΛjR2
, (d = 1) . (35)

The formula for C1(l) can be rewritten as

C1(l) =

(

R

L

)l−1 1

l

1
√

∑l
j=1Cj

∏l(j)
k=1(1 + Λj

(

R
L

)2
)
. (36)

Let us compare now this result with formula (30). The equivalence of the
two formulae implies that

l

√

√

√

√

√

l
∑

j=1

Cj

l(j)
∏

k=1

(

1 + Λj

(

R

L

)2
)

=
L

R

[

(

1 +
R

2L

)l

−
(

1 − R

2L

)l
]

, (37)

or equivalently

√

√

√

√

√

l
∑

j=1

Cj

l(j)
∏

k=1

(

1+Λj

(

R2

L2

))

= 1+

N(l)
∑

n=1

2−2n (l − 1)!

(2n+1)!(l−1−2n)!

(

R2

L2

)n

,

(38)
where N(l) = E

[

1
2(l − 1)

]

. Note that this identity is valid whatever is

substituted for R2/L2.
Let us now go back to the general case. The argument of the determinant

in formula (38) differs from the argument of the square root in formula (36)
only by the substitution of the matrix L−1R2L−1 for the number R2/L2.
Therefore, the same substitution can be made in the identity (38) and one
obtains

C(l)=

( √
2π

DetL

)3M(l−1)

l−
3M
2

∫

dK
e−lv(K)

Det
[

1+
∑N(l)

n=1 an

(

L−1R2L−1
)n
] , (39)

where

an = 2−2n (l − 1)!

(2n + 1)!(l − 1 − 2n)!
. (40)

This is our final formula and the main result of this paper. Let us note that
when the eigenvalues t1, . . . , t3M of matrix

V = L−1R2L−1 (41)
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are known, the determinant in the integrand of formula (39) can be evaluated
and then we get

C(l)=

( √
2π

DetL

)3M(l−1)

l
3M
2

∫

dK
e−lv(K)

√
Q

3M
α=1

tα

∏3M
α=1

[

(1+ 1
2

√
tα)l−(1− 1

2

√
tα)l
] . (42)

5. Discussion

We have derived an explicit formula for the coincidence probabilities in
a general, multidimensional Gaussian model. This model can be considered
as an approximation, at large volume of the system, of a model with an
arbitrary momentum distribution. Therefore, our result may be useful for
a rather wide class of physical situations, particularly for analyses of the
systems created in heavy ion collisions. The formula obtained in the present
paper is elegant, transparent and easy to use.

Some comments are in order.

• Since we do not assume factorization of the multiparticle density ma-
trix, our calculation takes into account possible correlations between
particles. Correlations show up as the non-diagonal terms in the ma-
trix R2. There is no restriction on their character and magnitude.

• It should be emphasized that, although the model is considered as an
asymptotic expansion for large L, the terms in Eq. (39) of higher order
in L−2 should, in general, be included in spite of the fact that terms of
these orders have been already neglected in the exponent of (1). The
point is that in the presence of correlations some eigenvalues of matrix
L−1R2L−1 may be of the order of the number of particles M . Then
the expansion in formula (39) contains terms of the order (M/L2)n,
which for high multiplicities are not necessarily small even for a large
system.

In order to illustrate the last point consider the matrices3

R2
ij = α(δij + β) , Lij = Lδij , i, j = 1, . . . , 3M . (43)

For these matrices the eigenvalues of matrix L−1R2L−1 are

λ1 =
α(1 + 3Mβ)

L2
, λ2 = · · · = λ3M =

α

L2
. (44)

3 The model could be made more realistic by distinguishing between the interparticle
correlations and the correlations between the directions x, y, z. This, however, would
not change the qualitative results we need.
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Therefore,

Det



1+

N(l)
∑

n=1

an

(

L−1R2L−1
)n



 =



1 +

N(l)
∑

n=1

an

(

α(1 + 3Mβ)

L2

)n





×



1 +

N(l)
∑

n=1

an
αn

L2n





3M−1

, (45)

which shows that terms of the kind (3Mαβ/L2)n do occur in the expansion.

The contribution of Wiesław Czyż at the early stages of this investigation
is highly appreciated. This work has been partly supported by the Polish
Ministry of Education and Science grant number 1P03B 045 29(2005–2008).

Appendix A

Matrix V = L−1R2L−1 in a model

Let us consider a model where

v(K) =

M
∑

n=1

v(Kn) ,

v(K) =
1

T

√

K2
T +m2 +

Y 2

2A
+ log

[

ÃE
]

, (A.1)

Ã = πT (m+ T )
√

8πA e−
m
T .

In this formula T and A are parameters, m is the mass of the particle; K are
the three-dimensional momentum vectors composing the 3M dimensional
vector K, KT is the transverse component of K; the energy E =

√
m2 +K2,

the rapidity Y = 1
2 log E+Kz

E−Kz
. This is a commonly used model, where the

particles are uncorrelated, but there are some correlations between the x, y, z
components of the momentum vectors. Thus, matrix R2 consists of M di-
agonal 3 × 3 blocks which will be denoted R2. The transverse momenta
have a Boltzmann distribution, while in the longitudinal direction there is
a mild cut-off by a Gaussian in rapidity. The last term in the expression for
v ensures the correct normalization. Matrix L is assumed to be diagonal
with diagonal elements Lx = Ly ≡ LT, Lz in every diagonal block corre-
sponding to the diagonal blocks of R2. Further we use the labels α, β for
the components x, y, z and the labels a, b for the transverse components x, y,

the transverse mass mT =
√

m2 +K2
T.
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Let us define

Vαβ =
R2

αβ

LαLβ

. (A.2)

This gives

Vab = ΘKaKb + Φ δab , (A.3)

Vaz = ωKa , (A.4)

Vzz = Ψ , (A.5)

where

L2
TΘ = − 1

Tm3
T

− 2

E4
+

Kz

AEm2
T

(

Kz

Em2
T

+
2Y

m2
T

+
Y

E2

)

, (A.6)

L2
TΦ =

1

TmT
+

1

E2
− Y Kz

AEm2
T

, (A.7)

LTLzω = − 1

AE2

(

Kz

m2
T

+
Y

E

)

− 2Kz

E4
, (A.8)

L2
zΨ =

1

E2

[

A+ 1

A
− Kz

E

2AKz + EY

EA

]

. (A.9)

As seen from (A.3)–(A.5) matrix T can be written in the form

Vαβ = Φδαβ + V ′
αβ . (A.10)

The second row of matrix V ′ is proportional to the first. Therefore,
DetV ′ = 0. Consequently, one of the eigenvalues of matrix V equals Φ and
the other two can be found by solving a quadratic equation. The result is

t1 = Φ, (A.11)

t2 =
1

2

(

ΘK2
T + Φ+ Ψ +

√

(ΘK2
T + Φ− Ψ)2 + 4ω2K2

T

)

, (A.12)

t3 =
1

2

(

ΘK2
T + Φ+ Ψ −

√

(ΘK2
T + Φ− Ψ)2 + 4ω2K2

T

)

. (A.13)

Since the eigenvalues are known formula (42) can be used to calculate C(l).
In particular for l = 3 the result is

C(3)=

(√
2π

L2
TLz

)6M

3−
3M
2

∫

dK
e−3v(K)

[

(1+ Φ
12)
(

1+
ΘK2

T
+Φ+Ψ

12 +
(ΘK2

T
+Φ)Ψ−ω2K2

T

144

)]M
.

(A.14)
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Appendix B

Evaluation of the matrix S

Let us represent each vector kj , j = 1, . . . , l as a linear combination of
the vectors qj , j = 1, . . . , l − 1

kj =
1

2
(pj + pj+1) −

1

l
(p1 + · · · + pl) =

l−1
∑

k=1

cjkqk . (B.1)

Because of the second identity (6) it is not mandatory to include ql in the
expansion. Equating the coefficients of the vectors p1, . . . pl on both sides
of the second equality we get the equation system

1

2
(δjn + δj+1,n) − 1

l
= cjn − cj,n−1; n = 1, . . . , l , (B.2)

where cj0 = cj,l = 0 and δl+1,n stands for δ1,n. Summing each side of the
equations over n from n = k+1 to n = l one gets from the resulting equalities

cjk = −k
l

+ 1 +
1

2
δjl −

1

2
[Θ(j − k) +Θ(j − k + 1)] , (B.3)

where Θ(n) equals one for n > 0 and zero otherwise.
The coefficients Smn are defined by

kjαkjβ =

l
∑

m,n

Smnqmαqnβ . (B.4)

Substituting on the left-hand side the expansions of kj in terms of the qj

one finds

Smn =

l
∑

j=1

cjmcjn . (B.5)

Note that this matrix is symmetric and that by construction Sml = Slm = 0.
Using the explicit formulae to perform the summation

Smn =
m(l − n)

l
− 1

4
(1 + δmn), for m ≤ n < l . (B.6)

For m > n one finds the matrix elements from the symmetry Smn = Snm.
For l = 2 one gets S = 0, which greatly simplifies the analysis [10]. Note

also that because of the second identity (6) one can add on the left-hand
side of relation (B.4) a term

l
∑

j=0

qj

l
∑

k=1

ckqk , (B.7)
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where ck are arbitrary constants. This modifies S without affecting the
products kjαkjβ and sometimes can be used to simplify the calculations.

Choosing for instance: c1 = c2 = −c3 = − 1
12 for l = 3 and c1 = c3 =

−c4 = 1
3c2 = 1

8 for l = 4 one gets the simple formulae:

S(3) =





1
12 0 0
0 1

12 0
0 0 1

12



 ,

S(4) =









1
8 0 −1

8 0
0 1

8 0 −1
8

−1
8 0 1

8 0
0 −1

8 0 1
8









, (B.8)

from which the eigenvalues are immediately visible.
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