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1. Introduction

The mass transport that consists of two parts, drift and diffusion, can
be described in quite a few ways. On the molecular level i.e. the Brow-
nian particle behavior, the velocity and displacement are described by the
Langevin equation [1–3]. The probability density field (i.e. normalized con-
centration of the matter in question) description is delivered, in turn, by the
Fokker–Planck (Smoluchowski) type equations [1, 4–9].

This set, i.e. Langevin and Fokker–Planck equations provides a com-
plete description of a given transport system, both on a molecular and phe-
nomenological levels. Of course, the complexity of a particular equation and
especially, the structure of their components, depend very much of a given
case and the method of derivation.

If one is interested in enlighting the discrete properties of the system, one
has to deal with either a random walk (RW) problem [10–12] or nonlinear
iterated maps (NIM) of some special class [13–19]. In this paper we would
like to contribute to the latter in the following way

• characterize the eligible class of maps;

• show the aspects of mass transport suitable for description by NIM;

• derive the Fokker–Planck (Smoluchowski) equation from NIM.
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Poincare has first recognized the importance of studying the dynamical
behavior of mappings, as defined by a difference equation

xn+1 = T (xn) , (1)

where x is an d-dimensional vector and T is a nonlinear transformation.
The index n refers to either discrete steps in time or successive returns to
a surface of section.

It is clear that the nature of T generates the mapping with a particular
properties. As for the “diffusive” mappings it is rather difficult to specify
the detailed conditions on T (our understanding of this complex behavior is
still incomplete). A sort of “experimental” reasoning leads to the following
conditions on T : it should be a quasi periodic, non-trapping and symmetric
mapping (see the next paragraph for details).

It is not difficult to realize an analogy between a random walk (RW) and
NIM mechanisms of generating mass transport. While in the RW, jumps
along with their prescribed probabilities build up a microscopic view of trans-
port, in case of NIM — it is a “local dynamics”, i.e. in a sense, a mesoscopic
scale of a bath influence (coded by T ) on the molecule behavior.

To provide the final step of deterministic analysis of diffusional transport
system, the Smoluchowski equation for probability density (concentration)
field dynamics will be derived. From the “technical” point of view the deriva-
tion is similar to that from RW to PDE [10, 12], however, the assumptions
made in both cases are quite different, and lead to a different structure of
the transport coefficients.

2. Deterministic generator of diffusion

Let us consider a periodic chaotic map F , defined on a single interval
as [13]

xn+1 = int(xn) + F (xnmod1) , (2)

where x stands for a particle position and n denotes the iteration num-
ber (discrete time), int(x) denotes the integer value of x. F is symmetric
(F (x) = −F (1−x)) and periodic with period 1 (this is handled by the mod1
operator). The escape of particles from the (0, 1) single cell period subject
to absorbing boundaries is described by an escape rate formalism [16,19].

In such case, due to the symmetry assumption, no direction can be dis-
tinguished and the particles escape from the single intervals according to the
escape rate with equal fluxes to either side of the cell.

The requirement for the description in the escape rate formalism is quite
strong, and for many maps the single cell repellers cannot meet it. An
example can be the Geisel–Thomae map [18], the maps with traps, ballistic
maps, etc.
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Using the above assumptions, we can write an equation for the time
evolution of the number of particles in a single cell in a similar way as we
do in the random walk problem

W (x, t + ∆t) = W (x, t) +
1

2
W (x − ∆x, t)

(

1 − e−γ∆t
)

+
1

2
W (x+∆x, t)

(

1−e−γ∆t
)

−W (x, t)
(

1−e−γ∆t
)

, (3)

where W is the number of particles in a single cell, γ is the escape rate
constant of a repeller, 1 − e−γ∆t is the fraction of particles that leave the
single cell in the time ∆t, and the coefficient 1/2 comes from the fact that
particles escape either to the left, or to the right from the single cell.

We assume that the particles can escape only to nearby cells, but fur-
ther generalization to more cells is also possible. However, it would require
some knowledge on distribution of the escaping particles that cannot appear
a priori like the knowledge of the equal fluxes that came from the symmetry
of the mapping.

Note that the key point for writing above equation is an observation that
we do not care what happens inside the single cell, as long as it is small,
and the escape rate provides the interface for the interchange of the particles
between cells. We will not always be allowed to make it, especially when
going to the potential force influence. In such case we encounter a major
difference of this, and a Langevin or RW approach.

Expanding the term exp(−γ∆t) on the RHS and LHS of the equation
into a Taylor series, we can rewrite Eq. (3)
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2∂t2
∆t2

= W (x, t)+
1

2
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. (5)
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Now, we can use a Taylor expansion to the RHS of Eq. (5) with respect
to position. We will expand it up to quadratic terms in space to obtain
nonzero dynamics for the probability evolution. Of course, this is just an
approximation of the real probability density that will be different for each
particular mapping considered (each mapping has its own invariant measure,
corresponding to probability distribution within cells [19]). Please notice,
however, that Eq. (3) depends only on the coefficient γ and thus is indepen-
dent of the particular form of the mapping (any mapping characterized by
the same γ will behave identically in (3)). This is not surprising, since this
equation does not describe what happens between unit cells but gives some
macroscopic description at points separated by ∆x. What happens between,
can be modeled in various ways, depending on the mapping. Nevertheless,
the results at ∆x spaced points should be the same no matter the model-
ing of probability shape between cells (as long as we consider a mapping
with the same γ coefficient). Therefore, we use the simplest possible model
i.e. a quadratic expansion for the probability changes between cells. This
is the expected probability distribution between cells for some maps with
quenched disorder [13] which mimic the random walk (but have nonzero γ
coefficient). After elementary calculations, we get
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2
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4
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∂x2
(∆x)2 − γW (x, t)
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×

(
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)

. (6)

Dividing Eq. (6) by ∆t and letting this parameter to go to zero, reduces
the quadratic terms in time, and consequently gives

∂W (x, t)

∂t
=

γ(∆x)2

2

∂2W (x, t)

∂x2
. (7)

The final step is to introduce the probability density

P (x, t) =
W (x, t)

N
, (8)

where N is the total number of particles in the system, and end up with

∂P (x, t)

∂t
=

D

2

∂2P (x, t)

∂x2
, (9)
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where D = γ(∆x)2, i.e. the Fokker–Planck or Smoluchowski equation with-
out drift. (Putting D = (1/2)γ(∆x)2 we get an analytical representation of,
so called, second Fick’s law.)

It is interesting to compare the structure of the diffusion coefficients of
the Smoluchowski equation obtained in different ways, i.e. RW, Langevin
and chaotic dynamics,

D =
δ2

τ
= γ(∆x)2 =

ξ2

2η2
, (10)

where δ is the jump distance in RW, τ is the time of jump, ξ is the amplitude
of noise in stochastic Langevin equation, and η is the friction coefficient.

It shows, among other things, the formal connections between these three
mechanisms of diffusional transport. A drift term can be introduced when
the mapping is not symmetrical and we cannot assure the equality of fluxes
for particles escaping from a unit cell. By a suitable modification of the
previous procedure (Eq. (4)), we can write

W (x, t + ∆t) − W (x, t)

∆t
= pγ W (x, t) + qγ W (x, t)

+ pγ
∂W (x, t)
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∆x − qγ

∂W (x, t)

∂x
∆x

+
p

2
γ

∂2W (x, t)

∂x2
(∆x)2 +

q

2
γ

∂2W (x, t)

∂x2
(∆x)2

− γ W (x, t) , (11)

where p, q are the fractions of the particles, escaping to the left and right
respectively (they were both equal 1/2 in the Eq. (4)). The first two terms
on RHS cancel with the last term of RHS. However, the third and fourth
terms do not. This leads to

W (x, t + ∆t) − W (x, t)

∆t
= (p − q)γ

∂W (x, t)

∂x
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+
1

2
γ
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∂x2
(∆x)2 , (12)

after expanding the LHS of Eq. (11) we get finally

∂W (x, t)
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where P (x, t) is the probability density (c.f. Eq. (8)), c = (p − q)γ∆x is
a drift coefficient, and D = γ(∆x)2 stands for the diffusion coefficient.

It is interesting to compare the drift and diffusion coefficients obtained
here with those delivered by random walk, and Langevin approaches
[1, 3, 10, 12] (see Table I).

TABLE I

Comparison of diffusion and drift coefficients for different generating mechanisms.
∆x is the width of a cell in chaotic dynamics, δ is the size of jump in RW, τ is the
waiting time for a jump in RW, Fp is the potential force in the Langevin equation,
η is the friction coefficient and ξ is the amplitude of the noise.

Approach Chaotic dynamics RW Langevin

D γ(∆x)2 δ2

τ
ξ2

2η2

c (p − q)γ∆x (p − q) δ
τ

Fp(x)
η

As can be seen from Table I, the mechanism behind the mass transport
can express itself in quite a different formal form of its coefficients. On
the other hand there are striking similarities on a physical meaning level.
Comparing the three expressions for diffusion coefficient it is enough to re-
alize that γ is proportional to 1/τ . Moreover, the jumps of the Brownian
particles in the Langevin approach are proportional to the noise amplitude,
and inversely proportional to the environmental friction (so again we have
proportionality to δ2). As for the term Fp(x)/η (potential force divided by
a friction coefficient), in high friction limit it simply stands for the average
velocity of particles in the potential field, i.e.

v̄ =
Fp(x)

η
. (15)

Similar interpretation can be given to the (p − q) terms of chaotic and
RW approaches.

Looking at this relation, we can feel temptation to implement the poten-
tial forces into chaotic maps, since it seems to make no problem to implement
such systematic velocity correction to the considered particle dynamics.

However, we must be careful since such additional velocity term affects
the internal dynamics of a single cell, not only the dynamics of transitions
between the cells.

We must be aware of the fact that a particle can circulate within a unit
cell for considerably long time, going back and forward. The regions of
backward motion are localized in different places with respect to the most
frequently occupied one, so it may happen that when we add potential force,
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particles will hit such places more often, and no drift will occur, or even
opposite drift may appear.

It may also happen that due to potential force, particles will become at-
tracted to some fixed trapping points that were of minor importance without
this force.

It is worth to notice that the most frequently occupied place of the unit
cell itself will also change under the potential force.

It is, therefore, different than in case of the RW or Langevin approaches,
and all this happens because the particles within single cells in NIM have
some density distribution which rarely corresponds to an uniform distribu-
tion. Therefore, no simple linearization of this effect is possible, and this is
a reason for difficulties in precise mathematical description.

The mapping with a potential force can be defined as

xn+1 = int(xn) + v̄∆t + F (xnmod1)t = int(xn) + Fa(xn) , (16)

where v̄∆t is an additional ∆xn, caused by the potential force in time ∆t
between the moments n and n + 1.

For positive velocities in Eq. (16) the region that causes the escape to
the second cell may grow (or remain unchanged), and the region that causes
escape to the previous cell may decrease (or remain unchanged). We cannot
tell anything about the frequency of occupation for such regions.

If we assume a smooth mapping, then the regions will grow and decrease
(consider a simple lifting of the chart of F , and check the width of regions
that go above single cell interval).

Nevertheless, we cannot talk about any proportionality, because this
depends on the structure of mapping. Proportionality could appear only in
case, when the slopes have constant angle in the mapping, and the number
of escaping regions does not grow (example of such mapping could be a sort
of the triangular mapping).

All these facts together support the claim that the influence of potential
force in a chaotic mapping is far more complicated than it is for the random
walk or Langevin model.

Example values of the velocity of the center of the mass of particles en-
semble (caused by a potential force in the symmetrical mapping) versus the
drift velocity (systematic velocity correction, coming from potential force),
as for the sine mapping

Fa(xn) = vdrift + 2.0 sin 2πxn , (17)

(comparing to Eq. (16) we assume ∆t = 1 for simplicity) are gathered in the
Fig. 1. We see that the positive values of this velocity correspond exactly to
the negative values (they are symmetrical about 0 value), but their behavior
as a function of the external potential force is highly irregular.
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Fig. 1. The velocity of center of the mass of particles in the sine mapping versus

the drift velocity caused by a potential force.

One can ask if it is wrong? The answer is no, it is not. Such system
reactions may occur in the reality, since there are known transport processes
that base on deterministic generators (like the Lorentz gas problems, the
scattering transport theory [16]). Thus we need to be prepared for such,
non-obvious, reactions of the systems.

3. Concluding remarks

A variety of phenomena can produce a probability propagation described
by Fokker–Planck equations. These equations take into account different
features of the underlying generators and have some limitations. However,
the structure of coefficients for diffusion and drift remains similar in all of
the examined approaches: RW, Langevin and chaotic.

Certainly the Langevin model of a Brownian particle dynamics breaks
on the micro scale, where we definitely do not have a continuous spectrum of
collisions with particles. The simple random walk model on the other hand
implements a discontinuous position domain and needs tricky definitions for
the jump probabilities in case, when we go with the limit of discretization
to zero.
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Also, the RW model stays apart of the microscopic dynamics. It makes
some abstraction of dynamics in terms of probabilities, but does not keep a
direct connection to it. The NIM approach is different in this respect, and
can provide means to connect the micro dynamics with a macroscopic prob-
ability flow. This is, in a way, similar to Langevin approach that connects
part of the dynamics (the friction) to probability propagation. The NIM
approach goes further, and allows to inspect the effect of nonlinearities that
are hidden in the noise term of Langevin approach.

The detailed derivation of suitable equations for deterministic generators
is the most important part of this work. It shows that a Fokker–Planck
equation can arise in this case coming purely from the chaotic properties of
a map (usually such equations are derived basing on some assumptions of
random walk similarities). It appears that the cells must be characterized
by the escape rate formalism, and should have a finite and constant length.

This discretization, however, does not mean that we loose connection
to what happens between, or inside single cells. This part of description is
provided by invariant measure, and other tools of chaotic dynamics, not cov-
ered by Fokker–Planck equation [19]. Such sub-distributions can be viewed
as second order corrections to the Fokker–Planck distribution that covers
the macroscopic view of many single cells, interacting together.

As can be seen from this derivation the limit of ∆t → 0 can be taken
without going into trouble of infinitely small differences in parameters, as it
is in case of RW [12].

A drift term can arise from considerations of an external potential force,
or from internal asymmetries of a mapping. In the first case, we see that
reaction on this force depends on the mapping, and is not as straightforward
as it was in the case of Langevin dynamics or random walk. This is because
the mapping comes with some invariant measure that says about the distri-
bution of particles within a single cell, and thus emphasizes the role of some
parts of the mapping or diminishes it.

Introducing drift by a potential force can modify the invariant measure,
and therefore, a simple proportionality cannot be expected. Additionally
the regions that cause escape from the unit cell do not grow proportionally
to the drift velocity which forms another problem. This sets a limit within
the RW–NIM analogy in the description of transport phenomena.

This work was supported in part by the Silesian University of Technology
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