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One of the major developments of twentieth century physics has been
the gradual recognition that a common feature of the known fundamental
interactions is their gauge structure. In this talk the early history of gauge
theory is reviewed, emphasising especially Weyl’s seminal contributions of
1918 and 1929.
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1. Introduction

The organisers of this conference asked me to review the early history of
gauge theories. Because of space and time limitations I shall concentrate on
Weyl’s seminal papers of 1918 and 1929. Important contributions by Fock,
Klein and others, based on Kaluza’s five-dimensional unification attempt,
will not be discussed. (For this I refer to [31] and [32].)

The history of gauge theories begins with GR, which can be regarded
as a non-Abelian gauge theory of a special type. To a large extent the
other gauge theories emerged in a slow and complicated process gradually
from GR. Their common geometrical structure — best expressed in terms
of connections of fibre bundles — is now widely recognised.

It all began with Weyl [2] who made in 1918 the first attempt to extend
GR in order to describe gravitation and electromagnetism within a unify-
ing geometrical framework. This brilliant proposal contains the germs of
all mathematical aspects of non-Abelian gauge theory. The word ‘gauge’
(German: ‘Eich-’) transformation appeared for the first time in this paper,
but in the everyday meaning of change of length or change of calibration.

Einstein admired Weyl’s theory as “a coup of genius of the first rate”,
but immediately realized that it was physically untenable. After a long dis-
cussion Weyl finally admitted that his attempt was a failure as a physical

∗ Presented at the PHOTON2005 Conference, 31 August–4 September 2005, Warsaw,
Poland.

(575)



576 N. StraumannEinstein, Nov.1915?���������+ Weyl, 1918�����	 JJJJĴ QQQQQQQsKaluza, 1921, (1919)
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theory. (For a discussion of the intense Einstein–Weyl correspondence, see
Ref. [4].) It paved, however, the way for the correct understanding of gauge
invariance. Weyl himself reinterpreted in 1929 his original theory after the
advent of quantum theory in a grand paper [5]. Weyl’s reinterpretation of
his earlier speculative proposal had actually been suggested before by Lon-
don [11]. Fock [15], Klein [16], and others arrived at the principle of gauge
invariance in the framework of wave mechanics along a completely different
line. It was, however, Weyl who emphasised the role of gauge invariance as
a constructive principle from which electromagnetism can be derived. This
point of view became very fruitful for our present understanding of funda-
mental interactions. We1 have described this more extensively in [31].

These works underlie the diagram in Fig. 1.

2. Weyl’s attempt to unify gravitation and electromagnetism

On the 1st of March 1918 Weyl writes in a letter to Einstein ( [3], Vol. 8B,
Doc. 472): “These days I succeeded, as I believe, to derive electricity and
gravitation from a common source . . . ”. Einstein’s prompt reaction by post-
card indicates already a physical objection which he explained in detail
shortly afterwards. Before we come to this we have to describe Weyl’s theory
of 1918.

2.1. Weyl’s generalisation of Riemannian geometry

Weyl’s starting point was purely mathematical. He felt a certain uneasi-
ness about Riemannian geometry, as is clearly expressed by the following
sentences early in his paper:

But in Riemannian geometry described above there is con-
tained a last element of geometry “at a distance” (fern-
geometrisches Element) — with no good reason, as far as I can
see; it is due only to the accidental development of Riemannian
geometry from Euclidean geometry. The metric allows the two
magnitudes of two vectors to be compared, not only at the same
point, but at any arbitrarily separated points. A true infinitesimal
geometry should, however, recognise only a principle for trans-
ferring the magnitude of a vector to an infinitesimally close point
and then, on transfer to an arbitrary distant point, the integra-
bility of the magnitude of a vector is no more to be expected that
the integrability of its direction.

1 Soon after our joint paper appeared in print Lochlain O‘Raifeartaigh died suddenly,
to the great sorrow and surprise of his family and numerous friends. I would like to
dedicate this contribution to the memory of Lochlain.
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After these remarks Weyl turns to physical speculation and continues as
follows:

On the removal of this inconsistency there appears a geometry
that, surprisingly, when applied to the world, explains not only
the gravitational phenomena but also the electrical. According
to the resultant theory both spring from the same source, indeed
in general one cannot separate gravitation and electromagnetism
in a unique manner. In this theory all physical quantities have a
world geometrical meaning; the action appears from the beginning
as a pure number. It leads to an essentially unique universal law;
it even allows us to understand in a certain sense why the world
is four-dimensional.

In brief, Weyl’s geometry can be described as follows (see also Ref. [8]).
First, the spacetime manifold M is equipped with a conformal structure,
i.e., with a class [g] of conformally equivalent Lorentz metrics g (and not
a definite metric as in GR). This corresponds to the requirement that it
should only be possible to compare lengths at one and the same world point.
Second, it is assumed, as in Riemannian geometry, that there is an affine
(linear) torsion-free connection which defines a covariant derivative ∇, and
respects the conformal structure. Differentially this means that for any
g ∈ [g] the covariant derivative ∇g should be proportional to g:

∇g = −2A⊗ g (∇λgµν = −2Aλgµν) , (1)

where A = Aµdx
µ is a differential 1-form.

Consider now a curve γ : [0, 1] → M and a parallel-transported vector
field X along γ. If l is the length of X, measured with a representative
g ∈ [g], we obtain from (1) the following relation between l(p) for the initial
point p = γ(0) and l(q) for the end point q = γ(1):

l(q) = exp



−

∫

γ

A



 l(p) . (2)

Thus, the ratio of lengths in q and p (measured with g ∈ [g]) depends in
general on the connecting path γ (see Fig. 2). The length is only independent
of γ if the curl of A,

F = dA (Fµν = ∂µAν − ∂νAµ) , (3)

vanishes.
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Fig. 2. Path dependence of parallel displacement and transport of length in Weyl

space.

The compatibility requirement (1) leads to the following expression for
the Christoffel symbols in Weyl’s geometry:

Γ
µ
νλ =

1

2
gµσ(gλσ,ν + gσν,λ − gνλ,σ) + gµσ(gλσAν + gσνAλ − gνλAσ) . (4)

The second A-dependent term is a characteristic new piece in Weyl’s ge-
ometry which has to be added to the Christoffel symbols of Riemannian
geometry.

Until now we have chosen a fixed, but arbitrary metric in the conformal
class [g]. This corresponds to a choice of calibration (or gauge). Passing to
another calibration with metric ḡ, related to g by

ḡ = e2λg , (5)

the potential A in (1) will also change to Ā, say. Since the covariant deriva-
tive has an absolute meaning, Ā can easily be worked out: On the one hand
we have by definition

∇ḡ = −2Ā⊗ ḡ, (6)

and on the other hand we find for the left side with (1)

∇ḡ = ∇(e2λg) = 2dλ⊗ ḡ + e2λ∇g = 2dλ⊗ ḡ − 2A⊗ ḡ . (7)

Thus
Ā = A− dλ (Āµ = Aµ − ∂µλ). (8)

This shows that a change of calibration of the metric induces a “gauge trans-
formation” for A:

g → e2λg , A→ A− dλ . (9)
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Only gauge classes have an absolute meaning. (The Weyl connection is,
however, gauge-invariant. This is conceptually clear, but can also be verified
by direct calculation from expression Eq. (4).)

2.2. Electromagnetism and gravitation

Turning to physics, Weyl assumes that his “purely infinitesimal geome-
try” describes the structure of spacetime and consequently he requires that
physical laws should satisfy a double-invariance: 1. They must be invariant
with respect to arbitrary smooth coordinate transformations. 2. They must
be gauge invariant, i.e., invariant with respect to substitutions (9) for an
arbitrary smooth function λ.

Nothing is more natural to Weyl, than identifying Aµ with the vector
potential and Fµν in Eq. (3) with the field strength of electromagnetism. In
the absence of electromagnetic fields (Fµν = 0) the scale factor exp(−

∫

γ
A)

in (2) for length transport becomes path independent (integrable) and one
can find a gauge such that Aµ vanishes for simply connected spacetime
regions. In this special case one is in the same situation as in GR.

Weyl proceeds to find an action which is generally invariant as well as
gauge invariant and which would give the coupled field equations for g and
A. We do not want to enter into this, except for the following remark. In his
first paper [2] Weyl proposes what we call nowadays the Yang–Mills action

S(g,A) = −
1

4

∫

Tr(Ω ∧ ∗Ω) . (10)

Here Ω denotes the curvature form and ∗Ω its Hodge dual2. Note that the
latter is gauge invariant, i.e., independent of the choice of g ∈ [g]. In Weyl’s

geometry the curvature form splits as Ω = Ω̂ + F , where Ω̂ is the metric
piece [8]. Correspondingly, the action also splits,

Tr(Ω ∧ ∗Ω) = Tr(Ω̂ ∧ ∗Ω̂) + F ∧ ∗F . (11)

The second term is just the Maxwell action. Weyl’s theory thus contains
formally all aspects of a non-Abelian gauge theory.

Weyl emphasises, of course, that the Einstein–Hilbert action is not gauge
invariant. Later work by Pauli [9] and by Weyl himself [1,2] led soon to the
conclusion that the action (10) could not be the correct one, and other possi-
bilities were investigated (see the later editions of Weyl’s classic treatise [1]).

2 The integrand in (10) is in local coordinates indeed just the expression
RαβγδR

αβγδ√−gdx0 ∧ . . .∧dx3 which is used by Weyl (Rαβγδ= the curvature tensor
of the Weyl connection).
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Independent of the precise form of the action Weyl shows that in his
theory gauge invariance implies the conservation of electric charge in much
the same way as general coordinate invariance leads to the conservation of
energy and momentum3. This beautiful connection pleased him particularly:
“. . . [it] seems to me to be the strongest general argument in favour of the
present theory — insofar as it is permissible to talk of justification in the
context of pure speculation.” The invariance principles imply five ‘Bianchi
type’ identities. Correspondingly, the five conservation laws follow in two
independent ways from the coupled field equations and may be “termed the
eliminants” of the latter. These structural connections hold also in modern
gauge theories.

2.3. Einstein’s objection and reactions of other physicists

After this sketch of Weyl’s theory we come to Einstein’s striking coun-
terargument which he first communicated to Weyl by postcard (see Fig. 3).
The problem is that if the idea of a nonintegrable length connection (scale
factor) is correct, then the behaviour of clocks would depend on their his-
tory. Consider two identical atomic clocks in adjacent world points and bring
them along different world trajectories which meet again in adjacent world
points. According to (2) their frequencies would then generally differ. This
is in clear contradiction with empirical evidence, in particular with the exis-
tence of stable atomic spectra. Einstein therefore concludes (see [3], Vol. 8B,
Doc. 507):

. . . (if) one drops the connection of the ds to the measurement
of distance and time, then relativity looses all its empirical basis.

Nernst shared Einstein’s objection and demanded on behalf of the Berlin
Academy that it should be printed in a short amendment to Weyl’s article.
Weyl had to accept this. One of us has described the intense and instructive
subsequent correspondence between Weyl and Einstein elsewhere [4] (see
also Vol. 8B of [3]). As an example, let us quote from one of the last letters
of Weyl to Einstein ( [3], Vol. 8B, Doc. 669):

This [insistence] irritates me of course, because experience
has proven that one can rely on your intuition; so unconvincing
as your counterarguments seem to me, as I have to admit . . .

3 We adopt here the somewhat naive interpretation of energy-momentum conservation
for generally invariant theories of the older literature.
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Fig. 3. Postcard of Einstein to Weyl 15.4.1918 (Archives of ETH).



Gauge Principle and QED 583

By the way, you should not believe that I was driven to in-
troduce the linear differential form in addition to the quadratic
one by physical reasons. I wanted, just to the contrary, to get
rid of this ‘methodological inconsistency (Inkonsequenz)’ which
has been a bone of contention to me already much earlier. And
then, to my surprise, I realized that it looked as if it might explain
electricity. You clap your hands above your head and shout: But
physics is not made this way ! (Weyl to Einstein 10.12.1918).

Weyl’s reply to Einstein’s criticism was, generally speaking, this: The
real behaviour of measuring rods and clocks (atoms and atomic systems) in
arbitrary electromagnetic and gravitational fields can be deduced only from
a dynamical theory of matter.

Not all leading physicists reacted negatively. Einstein transmitted a very
positive first reaction by Planck, and Sommerfeld wrote enthusiastically to
Weyl that there was “. . . hardly doubt, that you are on the correct path and
not on the wrong one.”

In his encyclopedia article on relativity [10] Pauli gave a lucid and precise
presentation of Weyl’s theory, but commented on Weyl’s point of view very
critically. At the end he states:

. . . In summary one may say that Weyl’s theory has not yet
contributed to getting closer to the solution of the problem of
matter.

Also Eddington’s reaction was at first very positive but he soon changed
his mind and denied the physical relevance of Weyl’s geometry.

The situation was later appropriately summarised by London in his 1927
paper [11] as follows:

In the face of such elementary experimental evidence, it must
have been an unusually strong metaphysical conviction that pre-
vented Weyl from abandoning the idea that Nature would have to
make use of the beautiful geometrical possibility that was offered.
He stuck to his conviction and evaded discussion of the above-
mentioned contradictions through a rather unclear re-interpreta-
tion of the concept of “real state”, which, however, robbed his
theory of its immediate physical meaning and attraction.

In this remarkable paper, London suggested a reinterpretation of Weyl’s
principle of gauge invariance within the new quantum mechanics: The role
of the metric is taken over by the wave function, and the rescaling of the
metric has to be replaced by a phase change of the wave function.
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In this context an astonishing early paper by Schrödinger [12] has to
be mentioned, which also used Weyl’s “World Geometry” and is related to
Schrödinger’s later invention of wave mechanics. This relation was discov-
ered by Raman and Forman [13]. (See also the discussion by Yang in [14].)

Even earlier than London, Fock [15] arrived along a completely different
line at the principle of gauge invariance in the framework of wave mechanics.
His approach was similar to the one by Klein [16].

The contributions by Schrödinger [12], London [11] and Fock [15] are
commented in [7], where also English translations of the original papers
can be found. Here, we concentrate on Weyl’s seminal paper “Electron and
Gravitation”.

3. Weyl’s 1929 Classic: “Electron and Gravitation”

Shortly before his death late in 1955, Weyl wrote for his Selecta [17] a
postscript to his early attempt in 1918 to construct a ‘unified field theory’.
There he expressed his deep attachment to the gauge idea and adds (p.192):

Later the quantum-theory introduced the Schrödinger-Dirac
potential ψ of the electron-positron field; it carried with it an
experimentally-based principle of gauge-invariance which guar-
anteed the conservation of charge, and connected the ψ with the
electromagnetic potentials Aµ in the same way that my specu-
lative theory had connected the gravitational potentials gµν with
the Aµ, and measured the Aµ in known atomic, rather than un-
known cosmological units. I have no doubt but that the correct
context for the principle of gauge-invariance is here and not, as
I believed in 1918, in the intertwining of electromagnetism and
gravity.

This re-interpretation was developed by Weyl in one of the great papers
of this century [5]. Weyl’s classic does not only give a very clear formulation
of the gauge principle, but contains, in addition, several other important
concepts and results — in particular his two-component spinor theory.

The modern version of the gauge principle is already spelled out in the
introduction:

The Dirac field-equations for ψ together with the Maxwell
equations for the four potentials fp of the electromagnetic field
have an invariance property which is formally similar to the one
which I called gauge-invariance in my 1918 theory of gravitation
and electromagnetism; the equations remain invariant when one
makes the simultaneous substitutions

ψ by eiλψ and fp by fp −
∂λ

∂xp
,
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where λ is understood to be an arbitrary function of position in
four-space. Here the factor e

ch
, where −e is the charge of the elec-

tron, c is the speed of light, and h
2π

is the quantum of action, has
been absorbed in fp. The connection of this “gauge invariance”
to the conservation of electric charge remains untouched. But a
fundamental difference, which is important to obtain agreement
with observation, is that the exponent of the factor multiplying
ψ is not real but pure imaginary. ψ now plays the role that Ein-
stein’s ds played before. It seems to me that this new principle
of gauge-invariance, which follows not from speculation but from
experiment, tells us that the electromagnetic field is a necessary
accompanying phenomenon, not of gravitation, but of the mate-
rial wave-field represented by ψ. Since gauge-invariance involves
an arbitrary function λ it has the character of “general” relativity
and can naturally only be understood in that context.

We shall soon enter into Weyl’s justification which is, not surprisingly,
strongly associated with general relativity. Before this we have to describe
his incorporation of the Dirac theory into GR which he achieved with the
help of the tetrad formalism.

One of the reasons for adapting the Dirac theory of the spinning electron
to gravitation had to do with Einstein’s recent unified theory which invoked
a distant parallelism with torsion. Wigner [18] and others had noticed a
connection between this theory and the spin theory of the electron. Weyl did
not like this and wanted to dispense with teleparallelism. In the introduction
he says:

I prefer not to believe in distant parallelism for a number of
reasons. First my mathematical intuition objects to accepting
such an artificial geometry; I find it difficult to understand the
force that would keep the local tetrads at different points and in
rotated positions in a rigid relationship. There are, I believe,
two important physical reasons as well. The loosening of the
rigid relationship between the tetrads at different points converts
the gauge-factor eiλ, which remains arbitrary with respect to ψ,
from a constant to an arbitrary function of space-time. In other
words, only through the loosening the rigidity does the established
gauge-invariance become understandable.

This thought is carried out in detail after Weyl has set up his two-
component theory in special relativity, including a discussion of P and T

invariance. He emphasises thereby that the two-component theory excludes
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a linear implementation of parity and remarks: “It is only the fact that the
left–right symmetry actually appears in Nature that forces us to introduce
a second pair of ψ-components.” To Weyl the mass-problem is thus not
relevant for this4. Indeed he says: “Mass, however, is a gravitational effect;
thus there is hope of finding a substitute in the theory of gravitation that
would produce the required corrections.”

3.1. Tetrad formalism

In order to incorporate his two-component spinors into GR, Weyl was
forced to make use of local tetrads (Vierbeine). In section 2 of his paper he
develops the tetrad formalism in a systematic manner. This was presumably
independent work, since he does not give any reference to other authors.
It was, however, mainly Cartan who demonstrated with his work [20] the
usefulness of locally defined orthonormal bases — also called moving frames
— for the study of Riemannian geometry.

In the tetrad formalism the metric is described by an arbitrary basis of
orthonormal vector fields {eα(x);α = 0, 1, 2, 3}. If {eα(x)} denotes the dual
basis of 1-forms, the metric is given by

g = ηµνe
µ(x) ⊗ eν(x) , (ηµν) = diag(1,−1,−1,−1) . (12)

Weyl emphasises, of course, that only a class of such local tetrads is de-
termined by the metric: the metric is not changed if the tetrad fields are
subject to spacetime-dependent Lorentz transformations:

eα(x) → Λα
β(x)eβ(x). (13)

With respect to a tetrad, the connection forms ω = (ωα
β) have values in the

Lie algebra of the homogeneous Lorentz group:

ωαβ + ωβα = 0 . (14)

(Indices are raised and lowered with ηαβ and ηαβ, respectively.) They are
determined (in terms of the tetrad) by the first structure equation of Cartan:

deα + ωα
β ∧ eβ = 0 . (15)

(For a textbook derivation see, e.g., [21], especially Sects. 2.6 and 8.5.)
Under local Lorentz transformations (13) the connection forms transform in
the same way as the gauge potential of a non-Abelian gauge theory:

ω(x) → Λ(x)ω(x)Λ−1(x) − dΛ(x)Λ−1(x) . (16)

4 At the time it was thought by Weyl, and indeed by all physicists, that the 2-
component theory requires a zero mass. In 1957, after the discovery of parity non-
conservation, it was found that the 2-component theory could be consistent with a
finite mass. See Case, [19].
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The curvature forms Ω = (Ωµ
ν) are obtained from ω in exactly the same

way as the Yang–Mills field strength from the gauge potential:

Ω = dω + ω ∧ ω (17)

(second structure equation).
For a vector field V , with components V α relative to {eα}, the covariant

derivative DV is given by

DV α = dV α + ωα
βV

β . (18)

Weyl generalises this in a unique manner to spinor fields ψ:

Dψ = dψ +
1

4
ωαβσ

αβψ . (19)

Here, the σαβ describe infinitesimal Lorentz transformations (in the repre-
sentation of ψ). For a Dirac field these are the familiar matrices

σαβ =
1

2
[γα, γβ ] . (20)

(For 2-component Weyl fields one has similar expressions in terms of the
Pauli matrices.)

With these tools the action principle for the coupled Einstein–Dirac sys-
tem can be set up. In the massless case the Lagrangian is

L =
1

16πG
R− iψ̄γµDµψ , (21)

where the first term is just the Einstein–Hilbert Lagrangian (which is lin-
ear in Ω). Weyl discusses, of course, immediately the consequences of the
following two symmetries:

(i) local Lorentz invariance,

(ii) general coordinate invariance.

3.2. The new form of the gauge-principle

All this is a kind of a preparation for the final section of Weyl’s paper,
which has the title “electric field”. Weyl says:

We come now to the critical part of the theory. In my opin-
ion the origin and necessity for the electromagnetic field is in
the following. The components ψ1 ψ2 are, in fact, not uniquely
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determined by the tetrad but only to the extent that they can still
be multiplied by an arbitrary “gauge-factor” eiλ. The transforma-
tion of the ψ induced by a rotation of the tetrad is determined
only up to such a factor. In special relativity one must regard
this gauge-factor as a constant because here we have only a sin-
gle point-independent tetrad. Not so in general relativity; every
point has its own tetrad and hence its own arbitrary gauge-factor;
because by the removal of the rigid connection between tetrads at
different points the gauge-factor necessarily becomes an arbitrary
function of position.

In this manner Weyl arrives at the gauge-principle in its modern form
and emphasises: “From the arbitrariness of the gauge-factor in ψ appears the
necessity of introducing the electromagnetic potential.” The first term dψ

in (19) has now to be replaced by the covariant gauge derivative (d− ieA)ψ
and the nonintegrable scale factor (1) of the old theory is now replaced by
a phase factor:

exp



−

∫

γ

A



 → exp



−i

∫

γ

A



 ,

which corresponds to the replacement of the original gauge group R by
the compact group U(1). Accordingly, the original Gedankenexperiment of
Einstein translates now to the Aharonov–Bohm effect, as was first pointed
out by Yang in [22]. The close connection between gauge invariance and
conservation of charge is again uncovered. The current conservation follows,
as in the original theory, in two independent ways: On the one hand it is
a consequence of the field equations for matter plus gauge invariance, at
the same time, however, also of the field equations for the electromagnetic
field plus gauge invariance. This corresponds to an identity in the coupled
system of field equations which has to exist as a result of gauge invariance.
All this is nowadays familiar to students of physics and does not need to be
explained in more detail.

Much of Weyl’s paper penetrated also into his classic book “The The-
ory of Groups and Quantum Mechanics” [23]. There he mentions also the
transformation of his early gauge-theoretic ideas: “This principle of gauge
invariance is quite analogous to that previously set up by the author, on
speculative grounds, in order to arrive at a unified theory of gravitation and
electricity. But I now believe that this gauge invariance does not tie together
electricity and gravitation, but rather electricity and matter.”

When Pauli saw the full version of Weyl’s paper he became more friendly
and wrote [24]:
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In contrast to the nasty things I said, the essential part of my
last letter has since been overtaken, particularly by your paper
in Z. f. Physik. For this reason I have afterward even regretted
that I wrote to you. After studying your paper I believe that
I have really understood what you wanted to do (this was not
the case in respect of the little note in the Proc. Nat. Acad.).
First let me emphasise that side of the matter concerning which
I am in full agreement with you: your incorporation of spinor
theory into gravitational theory. I am as dissatisfied as you are
with distant parallelism and your proposal to let the tetrads rotate
independently at different space-points is a true solution.

In brackets Pauli adds:

Here I must admit your ability in Physics. Your earlier theory
with g′ik = λgik was pure mathematics and unphysical. Einstein
was justified in criticising and scolding. Now the hour of your
revenge has arrived.

Then he remarks in connection with the mass-problem:

Your method is valid even for the massive [Dirac] case. I
thereby come to the other side of the matter, namely the unsolved
difficulties of the Dirac theory (two signs of m0) and the question
of the 2-component theory. In my opinion these problems will not
be solved by gravitation . . . the gravitational effects will always be
much too small.

Many years later, Weyl summarised this early tortuous history of gauge
theory in an instructive letter [25] to the Swiss writer and Einstein biogra-
pher Seelig, which we reproduce in an English translation.

The first attempt to develop a unified field theory of gravita-
tion and electromagnetism dates to my first attempt in 1918, in
which I added the principle of gauge-invariance to that of coor-
dinate invariance. I myself have long since abandoned this the-
ory in favour of its correct interpretation: gauge-invariance as
a principle that connects electromagnetism not with gravitation
but with the wave-field of the electron. — Einstein was against it
[the original theory] from the beginning, and this led to many dis-
cussions. I thought that I could answer his concrete objections.
In the end he said “Well, Weyl, let us leave it at that! In such a
speculative manner, without any guiding physical principle, one
cannot make Physics.” Today one could say that in this respect
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we have exchanged our points of view. Einstein believes that in
this field [Gravitation and Electromagnetism] the gap between
ideas and experience is so wide that only the path of mathemati-
cal speculation, whose consequences must, of course, be developed
and confronted with experiment, has a chance of success. Mean-
while my own confidence in pure speculation has diminished, and
I see a need for a closer connection with quantum-physics ex-
periments, since in my opinion it is not sufficient to unify Elec-
tromagnetism and Gravity. The wave-fields of the electron and
whatever other irreducible elementary particles may appear must
also be included.

Independently of Weyl, Fock [26] also incorporated the Dirac equation
into GR by using the same method. On the other hand, Tetrode [27],
Schrödinger [28] and Bargmann [29] reached this goal by starting with space-
time dependent γ-matrices, satisfying {γµ, γν} = 2 gµν . A somewhat later
work by Infeld and van der Waerden [30] is based on spinor analysis.

4. Concluding remarks

Gauge invariance became a serious problem when Heisenberg and Pauli
began to work on a relativistically invariant QED that eventually resulted
in two important papers “On the Quantum Dynamics of Wave Fields” [33],
[34]. Straightforward application of the canonical formalism led, already for
the free electromagnetic field, to nonsensical results. Jordan and Pauli on
the other hand, proceeded to show how to quantise the theory of the free
field case by dealing only with the field strengths Fµν(x). For these they
found commutation relations at different space-time points in terms of the
now famous invariant Jordan–Pauli distribution that are manifestly Lorentz
invariant.

The difficulties concerned with applying the canonical formalism to the
electromagnetic field continued to plaque Heisenberg and Pauli for quite
some time. By mid-1928 both were very pessimistic, and Heisenberg began
to work on ferromagnetism5. In fall of 1928 Heisenberg discovered a way to
bypass the difficulties. He added the term −1

2
ε(∂µA

µ)2 to the Lagrangian,

5 Pauli turned to literature. In a letter of 18 February 1929 he wrote from Zürich to
Oskar Klein: “For my proper amusement I then made a short sketch of a utopian
novel which was supposed to have the title ‘Gulivers journey to Urania’ and was
intended as a political satire in the style of Swift against present-day democracy. [...]
Caught in such dreams, suddenly in January, news from Heisenberg reached me that
he is able, with the aid of a trick ... to get rid of the formal difficulties that stood
against the execution of our quantum electrodynamics.” [6]
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in which case the component π0 of the canonical momenta

πµ =
∂L

∂0Aµ

does no more vanish identically (π0 = −ε∂µA
µ). The standard canonical

quantisation scheme can then be applied. At the end of all calculations one
could then take the limit ε→ 0.

In their second paper, Heisenberg and Pauli stressed that the Lorentz
condition cannot be imposed as an operator identity but only as a supple-
mentary condition selecting admissible states. This discussion was strongly
influenced by a paper of Fermi from May 1929.

As in Weyl’s work GR also played a crucial role in Pauli’s discovery of
non-Abelian gauge theories. (See Pauli’s letters to Pais and Yang in Vol. 4
of [6]). He arrived at all basic equations through dimensional reduction of a
generalisation of Kaluza–Klein theory, in which the internal space becomes
a two-sphere. (For a description in modern language, see [31].)

On the other hand, in the work of Yang and Mills GR played no role. In
an interview Yang said on this in 1991:

“It happened that one semester [around 1970] I was teaching
GR, and I noticed that the formula in gauge theory for the field
strength and the formula in Riemannian geometry for the Rie-
mann tensor are not just similar – they are, in fact, the same
if one makes the right identification of symbols! It is hard to
describe the thrill I felt at understanding this point.”

The developments after 1958 consisted in the gradual recognition that
— contrary to phenomenological appearances — Yang–Mills gauge theory
could describe weak and strong interactions. This important step was again
very difficult, with many hurdles to overcome.
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