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We have calculated the splitting functions governing the evolution of
the unpolarized parton distributions of the photon at the next-to-next-
to-leading order (NNLO) of massless perturbative QCD. The results, pre-
sented here mainly in terms of compact and accurate parametrizations, are
consistent with our previous approximations based on the lowest six even-
integer Mellin moments. Consequently the NNLO corrections are small in
both the MS and the DISγ factorization schemes at momentum fractions
x >

∼
0.1.

PACS numbers: 12.38.Bx, 13.60.Hb, 13.66.Bc, 14.70.Bh

The partonic structure of the photon, accessed in particular by the deep-
inelastic structure function F γ

2 , is a classic subject in perturbative QCD.
The leading-order (LO) and next-to-leading order (NLO) expressions for
the photon–parton splitting functions Ppγ , p = q, g, and the coefficient func-
tions c2,γ have been known for a long time [1–6]. A couple of years ago we
have presented [7] the corresponding next-to-next-to-leading order (NNLO)
corrections, albeit with one important qualification concerning the O(αα2

s )

∗ Presented by A. V. at the PHOTON2005 Conference, 31 August–4 September 2005,
Warsaw, Poland.

(683)



684 A. Vogt, S. Moch, J. Vermaseren

splitting functions: at that time we were only able to derive the lowest six
even-integer Mellin moments, N = 2, . . . , 12, which are sufficient for a reli-
able reconstruction only at momentum fractions x >

∼
0.05.

Using the methods and results derived in the meantime for the hadronic
case [8–10], we are now able to present the complete results for the splitting
functions and coefficient functions to order αα2

s , thus finalizing the NNLO
description and providing an important partial result for F γ

2 at N3LO. In the
present brief contribution, we confine ourselves to the NNLO splitting func-
tions, presenting accurate compact parametrizations of those results which
are rather lengthy. Furthermore, we take a first look at their numerical
effects. A more detailed account, including the exact results and the αα2

s
photonic coefficient functions for F2 and FL, will be presented elsewhere [11].

At the lowest order in the electromagnetic coupling aem ≡ αem/(4π), the
parton distributions of the photon are subject to the evolution equations of
the form

dqγ

d ln µ2
= P γ + P ⊗ qγ , (1)

where µ represents the MS factorization and renormalization scale, and ⊗
stands for the Mellin convolution in the momentum variable. For brevity
writing out only the flavor-singlet case, qγ is given by

qγ =

(

q γ
s

gγ

)

, qγ
s ≡

n
f
∑

j=1

(qγ
j + q̄γ

j ) = 2

n
f
∑

j=1

qγ
j . (2)

nf is the number of active flavors, and the splitting-function matrices are

P γ =

(

Pqγ

Pgγ

)

, P =

(

Pqq Pqg

Pgq Pgg

)

. (3)

The expansions of the photon–parton and parton–parton splitting functions
up to NNLO read, with as ≡ αs/(4π),

P γ = aem

(

P (0)
γ + as P (1)

γ + a2
s P (2)

γ

)

, (4)

P = as P (0) + a2
s P (1) + a3

s P (2) . (5)

The hadronic quantities P (2) in Eq. (5) can be found in Refs. [8,9]. Our
new results for the photonic non-singlet (see Ref. [7] for notational details)

and gluon MS splitting functions P
(2)
γ in Eq. (4) can be parametrized as
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δ−1
ns P (2)

nsγ(x) ∼= 128/27L4
1 + 112/9L3

1 + 175.3L2
1 + 142.3L1 + 1353 − 1262x

+ 449.2x2 − 1445x3 − L0L1(162.7L0 + 195.4L1) + 1169xL0

+ 50.08(1 − x)L3
1 + 744.6L0 + 201.6L2

0 + 80/3L3
0 + 64/27L4

0

+ nf{ − 32/27L3
1 − 11.858L2

1 − 18.77L1 − 40.035 + 114.4x

− 24.86x2 − 53.39x3 + L0L1(8.523L0 + 269.4L1) − 26.63xL0

+ 270.0(1 − x)L2
1 − 21.55L0 − 10.992L2

0 − 32/27L3
0} (6)

and

δ−1
s P (2)

gγ (x) ∼= (1 − x){32/27L3
1 − 79.13L2

1 + 87.22L1 + 1738 − 1580x

− 160.0x2 − 566.7x3 − L0L1(549.5 + 1230L0 + 433.2L1)

+ 2176L0+1123.7L2
0+2400/27L3

0+448/27L4
0−73.1409x−1

+ 128/3x−1L0} + nf (1 − x){− 32/9L2
1 + 16.38L1 + 68.10

− 36.42x + 56.95x2 − 44.10x3 − L0L1(16.18 + 38.33L0

+ 9.133L1)−10.76L0+26.41L2
0−64/27L3

0−40.5597x−1} (7)

with L0 ≡ ln x and L1 ≡ ln(1 − x). These parametrizations deviate from
the lengthy full expressions by about 0.1% or less, an accuracy which should
be amply sufficient for practical applications. On the other hand, the exact
expression is very compact for the NNLO pure-singlet splitting function

δ−1
s P (2)

psγ(x) = 4/3nf{2464/81x
−1 − 432 − 72x + 38360/81x2

−L0(344 + 368x + 3584/27x2) − L2
0(144 + 104x + 224/9x2)

−L3
0(16 − 16x − 128/9x2) − L4

0 8/3(1 − 2x)} . (8)

Recall that Pqγ in Eqs. (3) and (4) is given by Pqγ = δs/δns Pnsγ +Ppsγ with

δs = 3
∑n

f

j=1 e 2
qj

. A pure-singlet term enters at order αα2
s for the first time.

Our complete results for P
(2)
pγ , p = q, g, are compared in Fig. 1 with the

previous approximations of Ref. [7]. In Fig. 2 these results are combined,
after transformation to the DISγ scheme [6,7], with the lower-order splitting
functions. As indicated by the previous approximate results, the perturba-
tive expansion is well-behaved at least at x >

∼
0.1. For a further discussion,

including the small-x limit, the reader is referred to Ref. [11].
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Fig. 1. The exact results for the aema2

s
photon–quark (left) and photon–gluon

(right) splitting functions (multiplied by x) in the MS scheme, compared with the

(dashed) estimated error bands based on the lowest six even-integer moments [7].
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Fig. 2. The perturbative expansion (4) of the photon–quark (left) and photon–

gluon (right, multiplied by x) splitting functions in the DISγ factorization scheme

for typical values of αs and nf . Note the very different scales of the two graphs.
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