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This talk describes the measurement of F2 and inclusive and exclusive
diffractive cross-sections in the low-x region by HERA experiments. The
abundance of diffractive reactions observed at HERA indicates the presence
of perturbative multi-ladder exchanges. The exclusive diffractive vector-
meson and diffractive dijet production are discussed in terms of dipole
models which connect the measurement of F2 with diffractive processess
and in which multiple exchanges and saturation processes are natural. The
diffractive dijets are also discussed within the diffractive parton density
approach. Good description of diffractive dijets in the dipole picture and in
the diffractive parton density approach indicates that these two seemingly
different views on diffraction are not really distinct.

PACS numbers: 13.85.Dz, 13.85.Lg

1. F2 and diffraction at HERA

The HERA machine is a large electron-proton collider, in which electrons
with energy of 27.5 GeV scatter on protons of 920 GeV. The collision prod-
ucts are recorded by the two large, multipurpose experiments ZEUS and
H1. The detectors consist of the inner tracking detectors surrounded by the
large calorimeters measuring the spatial energy distribution, event by event.
The calorimeters are in addition surrounded by the muon detector systems.
Figure 1 shows, as an example, a picture of a high Q2 DIS event measured
by the H1 and ZEUS detectors.

From the amount and positions of energy deposited by the scattered
electron and the hadronic debris, the total γ∗p CMS energy, W , and the
virtuality of the exchanged photon, Q2, are determined. Counting the events
at given Q2 and W 2 allows the determination of the total cross section for
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ZR View

Fig. 1. Two examples of DIS events seen in the H1 (left) and ZEUS (right) detector.

the collisions of the virtual photon with the proton, σγ∗p(W
2, Q2), and in

turn the structure function,

F2(x,Q
2) =

Q2

4π2αem

σγ∗p(W
2, Q2) ,

with x ≈ Q2/W 2 when Q2 ≪W 2.
Deep inelastic scattering and the structure function F2 have a simple and

intuitive interpretation when viewed in the fast moving proton frame. The
incoming electron scatters on the proton by emitting an intermediate photon
with a virtuality Q2. The incoming proton consists of a fluctuating cloud
of quarks, antiquarks and gluons. Since the lifetime of the virtual photon is
much shorter than the lifetime of the qq̄-pair, the photon scans the “frozen”
parton cloud and picks up quarks with longitudinal momentum x, see Fig. 2.
F2 measures then the density of partons with a size which is larger than the
photon size, 1/Q, at a given x. Figure 3 shows the structure function F2

as measured by H1, ZEUS and fixed target experiments for selected Q2

values [1].

p

e

e

γ*

Fig. 2. Schematic view of deep inelastic scattering

In the low x regime, F2 measured at HERA exhibits a striking behavior.
At low Q2 values, Q2 < 1 GeV2, where the photon is large, F2 rises only
moderately with diminishing x, whereas as Q2 increases, i.e. the photon
becomes smaller, the rise of F2 accelerates quickly. The rise of F2 at low
Q2 values, i.e. when the photon is of similar size as a hadron, corresponds
to the rise of the hadronic cross-sections with energy. The fast rise at large
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Fig. 3. The structure function F2 as a function of x as measured by H1, ZEUS and

fixed target experiments for selected Q2 between 0.1 and 150 GeV2

Q2 indicates the strong growth of the cloud of partons in the proton. The
onset of the fast growth at Q2 values larger than 1 GeV2 indicates that these
partons are of perturbative origin.

For sufficiently large Q2 perturbative QCD provides a set of leading-twist
linear evolution equations (DGLAP) which describe the variation of the cross
section as a function of Q2; see Fig. 4. Moreover, a closer look at the x-
dependence of the parton splitting functions has led to the prediction that
the gluon density, at small x, should rise with 1/x. This rise should translate
into a growth with energy of the total γ∗p cross-section or, equivalently, of
F2 with diminishing x. The data show that the growth of F2 starts in the
low x regime which indicates that this is mainly due to the abundant gluon
production.

This is confirmed by all detailed theoretical investigations of HERA data.
As an example figure 5 shows the results of the ZEUS and MRST analyses
of parton densities. Both analyses show that in the low-x region the gluon
density dwarfs all quark densities with exception of the sea-quarks. The
sea-quarks, in perturbative QCD, are generated from the gluon density.
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γ* γ*
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Fig. 4. Illustration of the pQCD description of the total cross section σγ∗p
tot

. The

gluon ladder represents the linear QCD evolution equations.
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Fig. 5. Quark and gluon densities at Q2 = 10 GeV2 as determined from HERA

data. Note that the gluon and sea-quark densities are displayed diminished by a

factor 0.05.

One of the most important observation of the HERA experiments is that,
in addition to the usual DIS events, in which the struck proton is transformed
into a swarm of particles, there are also events in which the proton remains
intact after collision. Whereas the usual DIS events are characterized by
large energy depositions in the forward (proton) direction, see Fig. 1, the
events with intact protons show no activity in this region; see Fig. 6.

By analogy to the absorption of light waves on a black disk, the events
of this type are called diffractive events and the process in which they are
produced is called diffractive scattering. The intact forward proton corre-
sponds in optics to the forward white spot observed in the center of the disc
shadow.
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ZR View ZR View

Fig. 6. Two examples of diffractive events seen in the ZEUS detector.

The measurement of diffractive reactions requires the determination of
two additional variables: the diffractive mass, MX , and the square of the
four-momentum transferred by the outgoing proton, t. The variable MX ,
which is equal to the invariant mass of all particles emitted in the reaction
with exception of the outgoing proton (or the proton dissociated system), is
determined from energy depositions recorded by the central detectors of the
H1 and ZEUS experiments. The variable t is determined by forward detec-
tors, which measure the momentum of the outgoing diffractively scattered
proton. In exclusive diffractive vector-meson production the t variable can
also be determined from the precise measurement of the momenta of the
vector-meson decay products measured in the tracking chamber systems of
central detectors.

The analysis of the observed lnM2
X distribution allows a separation of

diffractive and non-diffractive events as indicated in figure 7. The plateau
like structure, most notably seen at higher W values, is due to diffractive
events since in diffraction dN/d lnM2

X ≈ const. The high mass peaks in
Fig. 7, which are due to non-diffractive events, have a steep exponential
fall-off, dN/d lnM2

X ∝ exp(λ lnM2
X), towards smaller lnM2

X values. This
exponential fall-off is directly connected to the exponential suppression of
large rapidity gaps in a single gluon ladder exchange diagram, Fig. 4, which
represents the dominant QCD contribution.

In the ZEUS investigation [2,3] the diffractive contribution was therefore
identified as the excess of events at small MX above the exponential fall-
off of the non-diffractive contribution in lnM2

X . This selection procedure is
called the MX method. In the H1 investigation [5] the selection of diffractive
events was performed by the requirement of a large rapidity gap in the event.
The ZEUS MX and the H1 rapidity gap methods allow only to measure the
diffractive cross section integrated over the square of the four-momentum
transfer t.
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Fig. 8. The ratio of the inclusive diffractive and total DIS cross-sections versus the

γ∗p energy W .

The measured diffractive cross-sections show a clear rise with increasing
energy W in all MX regions. It is interesting to note that the increase of the
differential diffractive cross sections with W is very similar to the increase
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of the total inclusive DIS cross-sections, i.e. σdiff/σ
tot
γ∗p is approximately in-

dependent of energy in all Q2 and MX regions as seen in Fig. 8. The ratio
of the diffractive to the total DIS cross-section integrated over the whole
accessible MX range, MX < 35 GeV, was evaluated at the highest energy
of W ≈ 220 GeV. At Q2 = 4 GeV2, σdiff/σ

tot
γ∗p reaches ∼ 16%. It decreases

slowly with increasing Q2, reaching ∼ 10% at Q2 = 27 GeV2.
The observation of such a large fraction of diffractive events was unex-

pected since according to the intuitive interpretation of DIS the incoming
proton consists of a parton cloud and at least one of the partons is kicked
out in the hard scattering process. In the language of QCD diagrams, at
low x and not so small Q2, the total cross section or F2 is dominated by the
abundant gluon emission as described by the single ladder exchange shown
in Fig. 4; the ladder structure also illustrates the linear DGLAP evolution
equations that are used to describe the F2 data. In the region of small x
gluonic ladders are expected to dominate over quark ladders. The cut line
in Fig. 4 mark the final states produced in a DIS event: a cut parton (gluon)
hadronizes and leads to jets or particles seen in the detector. It is generally
expected that partons produced from a single chain are unlikely to generate
large rapidity gaps between them, since large gaps are exponentially sup-
pressed as a function of the gap size. This is a general property of QCD
evolution equations of the DGLAP, BFKL or other types.

In the single ladder contribution of Fig. 4, diffractive final states can,
therefore, only reside inside the blob at the lower end, i.e. lie below the initial
scale Q2

0 which separates the parton description from the non-perturbative
strong interaction, as shown in Fig. 9. The thick vertical wavy lines de-
note the non-perturbative Pomeron exchanges which generate the rapidity
gap in DIS diffractive states 1. The diagram of Fig. 9 exemplifies therefore
the “Regge factorization” approach to diffractive parton densities as descrip-
tion of diffractive phenomena in DIS. In this approach the diffractive states
are essentially of non-perturbative origin but they evolve according to the
perturbative QCD evolution equations. Note, however, that the effective
Pomeron intercept, αIP , extracted from diffractive DIS data lies significantly
above the ‘soft’ Pomeron intercept, indicating a substantial contribution to
diffractive DIS from perturbative Pomeron exchange [3, 4].

The properties of special diffractive reactions at HERA, such as exclusive
diffractive vector-meson and jets production, give clear indications that the
diffractive processes could be hard and of perturbative origin. A significant
contribution from perturbative multi-ladder exchanges should be present, in
particular from the double ladder exchange of Fig. 10. This diagram pro-

1 It is customary to call the exchange of a colourless system in scattering reactions a
Pomeron. The simplest example of a (perturbative) Pomeron is given by the ladder
diagram of Fig. 4.



798 H. Kowalski

γ* γ*

p p

Fig. 9. Diffractive final states as part of the initial condition to the evolution

equation in F2. The thick vertical wavy lines denote the non-perturbative Pomeron

exchanges which generate the rapidity gap in DIS diffractive states.
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Fig. 10. The double gluon ladder contribution to the inclusive diffractive γ∗p cross

section.

vides a potential source for the harder diffractive states: the cut blob at
the upper end may contain qq̄ and qq̄g states which hadronize into harder
jets or particles. The evidence for the presence of multi-ladder contribu-
tions is emerging mostly from the interconnections between the various DIS
processes: inclusive γ∗p reaction, inclusive diffraction, exclusive diffractive
vector-meson production and diffractive jet-jet production. These inter-
connections are naturally expressed in the dipole saturation models, which
have been shown to successfully describe HERA F2 data in the low x region.
These models are explicitly built on the idea of summing over multiple ex-
changes of single ladders. In the following we will discuss the exclusive and
inclusive diffractive DIS processes and their connection with the total DIS
cross-section in terms of dipole models.
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2. Dipole models

In the dipole model, deep inelastic scattering is viewed as interaction of a
colour dipole, i.e. mostly a quark-antiquark pair, with the proton. The size
of the pair is denoted by r and a quark carries a fraction z of the photon
momentum. In the proton rest frame, the dipole life-time is much longer
than the life-time of its interaction with the target proton. Therefore, the
interaction is assumed to proceed in three stages: first the incoming virtual
photon fluctuates into a quark–antiquark pair, then the qq̄ pair elastically
scatters on the proton, and finally the qq̄ pair recombines to form a virtual
photon. The amplitude for the complete process is simply the product of
these three processes.

The amplitude of the incoming virtual photon to fluctuate into a quark–
antiquark pair is given by the photon wave function ψ, which is determined
from light cone perturbation theory to leading order in the fermionic charge
(for simplicity, the indices of the quark and antiquark helicities are sup-
pressed). Similarly the amplitude for the qq̄ to recombine to a virtual photon
is ψ∗. The cross-section for elastic scattering of the qq̄ pair with squared mo-
mentum transfer ∆2 = −t is described by the elastic scattering amplitude,
Aqq̄

el (x, r,∆), as

dσqq̄

dt
=

1

16π
|Aqq̄

el (x, r,∆)|2. (1)

To evaluate the connections between the total cross section and various
diffractive reactions it is convenient to work in coordinate space and define
the S-matrix element at a particular impact parameter b

S(b) = 1 +
1

2

∫

d2∆ exp(i~b · ~∆)Aqq̄
el (x, r,∆). (2)

This corresponds to the intuitive notion of impact parameter when the dipole
size is small compared with the size of the proton. The Optical Theorem
then connects the total cross-section of the qq̄ pair to the imaginary part of
iAel

σqq̄(x, r) = ℑiAqq̄
el (x, r, 0) =

∫

d2b 2[1 −ℜS(b)]. (3)

The integration over the S-matrix element motivates the definition of the
elastic qq̄ differential cross-section as

dσqq̄

d2b
= 2[1 −ℜS(b)]. (4)
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The total cross-section for γ∗p scattering, or equivalently F2, is obtained by
averaging the dipole cross-sections with the photon wave functions, ψ(r, z):

σγ∗p =

∫

d2r

∫

dz

4π
ψ∗ σqq̄(x, r)ψ. (5)

In the dipole picture the elastic vector-meson production appears in a simi-
larly transparent way. The amplitude is given by

Aγ∗p→pV (∆) =

∫

d2r

∫

dz

4π

∫

d2b ψ∗

V ψ exp(−i~b · ~∆)2[1 − S(b)]. (6)

We denote the wave function for a vector meson to fluctuate into a qq̄ pair
by ψV . Assuming that the S-matrix element is predominantly real, we may
substitute 2[1 − S(b)] with dσqq̄/d

2b. Then, the elastic diffractive cross-
section is

dσγ∗p→V p

dt
=

1

16π

∣

∣

∣

∣

∫

d2r

∫

dz

4π

∫

d2b ψ∗

V ψ exp(−i~b · ~∆)
dσqq̄

d2b

∣

∣

∣

∣

2

. (7)

The equations (5) and (7) determine the inclusive and exclusive diffractive
vector-meson production using the universal elastic differential cross-section
dσqq̄/d

2b which contains all the interaction dynamics.
The inclusive diffractive cross section can be obtained from the Eq. (7)

summing over all (generalized) vector-meson states as

dσγ∗p
diff

dt

∣

∣

∣

∣

∣

t=0

=
1

16π

∫

d2r

∫

dz

4π
ψ∗ σ2

qq̄ ψ. (8)

Thus, properties of inclusive diffraction are also determined by the elastic
cross-section only and, contrary to vector-meson production, are not depen-
dent on the wave function of the outgoing diffractive state.

2.1. Dipole cross-section and saturation

The dipole models became an important tool in investigations of deep in-
elastic scattering due to the initial observation of Golec-Biernat and Wüsthoff
(GBW) [10] that a simple ansatz for the dipole cross-section integrated over
the impact parameter b, σqq̄, is able to describe simultaneously the total
inclusive and diffractive DIS cross-sections:

σGBW
qq̄ = σ0

[

1 − exp

(

−r2

4R2
0

)]

, (9)
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where σ0 is a constant and R0 denotes the x dependent saturation radius
R2

0 = (x/x0)
λGBW × (1/GeV2). The parameters σ0 = 23 mb, λGBW and

x0 = 3 × 10−4 were determined from a fit to the data. Although the dipole
model is theoretically well justified for small size dipoles only, the GBW
model provides a good description of data from medium size Q2 values (∼30
GeV2) down to low Q2 (∼0.1 GeV2). The inverse of the saturation radius R0

is analogous to the gluon density. The exponent λGBW determines therefore
the growth of the total and diffractive cross-sections with decreasing x. For
dipole sizes which are large in comparison to R0 the dipole cross section
saturates by approaching a constant value σ0, which becomes independent
of λGBW. It is a characteristic of the model that a good description of data
is due to large saturation effects, i.e. the strong growth due to the factor
(1/x)λGBW is, for large dipoles, significantly flattened by the exponentiation
in Eq. (9).

The assumption of dipole saturation provided an attractive theoretical
background for investigation of the transition from the perturbative to non-
perturbative regime in the HERA data. Despite the appealing simplicity and
success of the GBW model it suffers from clear shortcomings. In particular
it does not include scaling violation, i.e. at large Q2 it does not match with
QCD evolution (DGLAP). Therefore, Bartels, Golec-Biernat and Kowalski
(BGBK) [11] proposed a modification of the original ansatz of Eq. (9) by
replacing 1/R2

0 by a gluon density with explicit DGLAP evolution:

σBGBK
qq̄ = σ0[1 − exp(−π2r2αs(µ

2)xg(x, µ2)/3σ0)] . (10)

The scale of the gluon density, µ2, was assumed to be µ2 = C/r2 + µ2
0, and

the density was evolved according to DGLAP equations.
The BGBK form of the dipole cross section led to significantly better

fits to the HERA F2 data than the original GBW model, especially in the
region of larger Q2. The good agreement of the original model with the DIS
diffractive HERA data was also preserved, as seen from the comparison of
the predictions of the model with data for the ratio of the diffractive to the
total cross-section, Fig. 8.

The BGBK analysis found, surprisingly, that there exist two distinct
solutions giving very good description of HERA data, depending on the
quark mass in the photon wave function. The first solution is obtained
assuming mq = 140 MeV and leads to the initial gluon density distribution
with the value of exponent λg = 0.28, which is very similar to the λGBW. As
in the original model, the good agreement with data is due to substantial
saturation effects. In the second solution, mq ≈ 0, and the value of the
exponent is very different, λg = −0.41 . The initial gluon density no longer
rises at small x, it is valence-like, and QCD-evolution plays a much more
significant role than in the first solution.
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The DGLAP evolution, which is generally used in the analysis of HERA
data, may not be appropiate when x approaches the saturation region.
Therefore, Iancu, Itakura and Munier (IIM) [13] proposed a new saturation
model, the Colour Glass Condensate model, in which gluon saturation effects
are incorporated via an approximate solution of the Balitsky–Kovchegov
equation. Later, also Forshaw and Shaw (FS) [14] proposed a Regge type
model with saturation effects. The IIM and FS models provide a descrip-
tion of HERA F2 and diffractive data which is better than the original GBW
model and comparable in quality to the BGBK analysis. Both models find
strong saturation effects in HERA data comparable to the GBW model and
the first solution of the BGBK model.

All approaches to the dipole saturation discussed so far ignored a possible
impact parameter dependence of the dipole cross-section. This dependence
was introduced by Kowalski and Teaney (KT) [12], who assumed that the
dipole cross-section is a function of the opacity Ω:

dσqq

d2b
= 2

(

1 − exp

(

−
Ω

2

))

. (11)

At small-x the opacity Ω can be directly related to the gluon density,
xg(x, µ2), and the transverse profile of the proton, T (b):

Ω =
π2

NC

r2 αs(µ
2)xg(x, µ2)T (b). (12)

The transverse profile is assumed to be of the form:

T (b) =
1

2πBG

exp

(

−b2

2BG

)

, (13)

since the Fourier transform of T (b) has the exponential form:

dσγ∗p
VM

dt
= exp(−BG|t|) (14)

The formulae of Eq. (11) and (12) are called the Glauber–Mueller dipole
cross-section. The diffractive cross-section of this type was used around 50
years ago to study the diffractive dissociation of the deuterons by Glauber
and reintroduced by A. Mueller to describe dipole scattering in deep inelastic
processes.

The parameters of the gluon density are determined from the fit to the to-
tal inclusive DIS cross-section, as shown in Fig. 11 [12]. The transverse pro-
file was determined from the exclusive diffractive J/Ψ cross-sections shown
in the same figure. In this approach the charm quark was explicitly taken
into account with the mass mc = 1.25 GeV.
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Fig. 11. LHS: The γ∗p cross-section as a function of W 2. RHS: The differential

cross section for exclusive diffractive J/Ψ production as a function of the four-

momentum transfer t. The solid line shows a fit by the IP saturation model (KT).
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For a small value of Ω the dipole cross-section, Eq. (11), is equal to Ω
and therefore proportional to the gluon density. This allows one to identify
the opacity with the single Pomeron exchange amplitude of Fig. 4.

The KT model with parameters determined in this way has predictive
properties which go beyond the models discussed so far; it allows a descrip-
tion of the other measured reactions, e.g. the charm structure function or
elastic diffractive J/Ψ production shown in Fig.12.

The initial gluon distribution determined in the model is valence-like,
with λg = −0.12 and the fit pushes the quark mass to small values, mq ≈
50 MeV. The resulting gluon distribution is therefore similar to the second
solution of the BGBK model. The first solution of the BGBK model was
disfavoured by the data. This behaviour is presumably due to the assump-
tion of the Gaussian-like proton shape, Eq. (13). In the tail of the Gaussian,
the gluon density is low, but the relative contribution of the tail to the cross-
section is large. The saturation effects cannot therefore be as large as in the
GBW-like models (i.e. BGBK-1, IIM, FS). In addition, as noted in the KT
paper and also in the Thorne analysis [15], the introduction of charm in the
analysis of HERA data lowers the gluon density and therefore diminishes
the saturation effects. Nevertheless, the KT analysis shows that in the cen-
ter of the proton (b ≈ 0) the saturation effects are similar to the ones in
the GBW-like models in which charm is properly taken into account. This
can be seen from the evaluation of the saturation scale in the center of the
proton in the KT paper and the comparison to the value of the saturation
scale evaluated with charm in the original GBW paper.

3. Exclusive diffractive vector-meson production

The exclusive diffractive vector-meson production is very interesting be-
cause, in the low-x region, it is driven by the square of the gluon density.
It was, therefore, investigated by many authors [12,16–20]. In addition, the
information contained in the Q2, W and t dependence of the cross-sections
allows to determine vector-meson wave functions together with the proton
shape. The analysis can also be performed separately for the longitudinal
and transverse photons.

The recent analysis of vector-meson production by Kowalski, Motyka and
Watt (KMW) [24] shows that it is possible to describe the measured differen-
tial cross-sections making simple assumptions about the vector-meson wave
functions [16, 20]. The analysis shows that using the gluon density deter-
mined from the total cross-sections and the size of the interaction region
determined from the t distribution of the J/Ψ meson at Q2 = 0, it is pos-
sible to simultaneously describe not only the shape of various differential
cross-sections as a function of Q2, W and t but also their absolute mag-
nitude. In this analysis the assumption that vector-meson size should be
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much smaller than proton size was relaxed. Following the work of Bartels,
Golec-Biernat and Peters [21] the Fourier transform of Eq. (7) was modified
to take into account the finite size of the vector-meson:

exp(−i~b · ~∆) → exp(−i(~b+ (1 − z)~r) · ~∆). (15)

In this way, the information about the size of the vector-meson, contained in
the wave function, is contributing to the size of the interaction region BD,
together with the size of the proton. As an example of results obtained in
this analysis Fig. 13 shows the comparison of KMW model predictions for
the total exclusive diffractive vector-meson cross-section and the size of the
interaction region with data.
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Fig. 13. Top: The exclusive diffractive cross-sections for J/Ψ , φ and ρ vector-meson

production as a function of Q2 + M2
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as a function of Q2 + M2

V .The solid line shows predictions of the KMW model
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Here, the profile function is assumed to have a Gaussian form (13), with
the parameter BG = 4 GeV−2. The ‘boosted Gaussian’ vector-meson wave
functions [20] are used. The light quark masses are mq = 140 MeV, with
mc = 1.4 GeV.

4. Diffractive dijets

The diffractive dijet production is analysed within QCD in two seem-
ingly different ways: the diffractive parton density approach and the dipole
picture. The diffractive structure function is proportional to the diffractive
parton density which, in the simplest case, factorizes into the Pomeron flux
factor and the Pomeron parton density. The Pomeron flux factor gives the
probability to find a Pomeron within a proton with the momentum fraction
xIP . The Pomeron parton density gives the probability to find a parton
within a Pomeron carrying a Pomeron momentum fraction zIP [25]. This
parton interacts then with the incoming photon by a boson–gluon or QCD-
Compton process; see Fig. 14.

Fig. 14. Diagram describing diffractive production of a qq̄g state in the diffractive

structure function approach.

The diffractive parton distribution is extracted from the inclusive diffrac-
tive measurements at an initial scale, Q2

0, and then evolved according to the
DGLAP evolution to a Q2 scale of jet production. The events are generated
in the RAPGAP Monte Carlo in which the Q2, x, xIP and zIP variable are
obtained from the diffractive structure function and the jet variables, Et,
ηjets and β are obtained from the usual QCD matrix elements of the boson–
gluon fusion and QCD-Compton processes. The results are compared to
data in Fig. 16 [23].

In the dipole picture, diffractive dijet production can be directly deter-
mined from the unintegrated gluon density in the low-x region, f(x, l2),

where ~l is the transverse momentum of the gluon coupled to the quark pair.
The unintegrated gluon density is then obtained from the dipole cross section
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by [11]:

αsf(x, l2)

l4
=

3

8π2

∞
∫

0

drr J0(lr) [σqq̄(x,∞) − σqq̄(x, r)] . (16)

The jet cross-sections are then computed in the momentum space from dia-
grams shown in Fig. 15 [10]. In addition to the contributions of the qq̄ states
it is important to include the contributions of the qq̄g final states [22].

q
–

q

γ*

p p

q
q
–

g

γ*

p

Fig. 15. Diagrams describing the diffractive production of a qq̄ and qq̄g system in

the dipole picture approach.
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The results from the evaluation of the diagrams of Fig. 15, obtained
within SATRAP Monte-Carlo, are compared to data in Fig. 16.

The figure shows that the distributions of typical jet variables are well
described in both the diffractive parton densities (RAPGAP) and dipole
picture (SATRAP) approaches. It is remarkable that in addition to the
shapes also the absolute magnitudes of the diffractive jet cross-sections are
well described.

Finally, let us note for completeness that the diffractive parton density
approach uses as input the inclusive diffractive data at low Q2. It was ob-
served that small systematic differences of input data tend to be amplified
by the fitting procedure [23]. The dipole approach uses as input the dipole
cross-section determined from the F2 mesurements, which have smaller sys-
tematic errors than the FD

2 measurements.

5. Conclusions

One of the most important results of HERA measurements is the ob-
servation of large amount of diffractive processes. The inclusive diffraction,
diffractive jet process and the exclusive diffractive vector-meson production
are connected to the inclusive deep inelastic scattering and, in the dipole
picture, can be successfully derived from the measured F2. In the dipole ap-
proach, the Pomeron is essentially of the perturbative type, since the dipole
models are explicitly built on the idea of summing over multiple exchanges
of single ladders.

Inclusive diffraction and diffractive dijet production is also well described
in the diffractive parton density approach, in which the Pomeron could be
of non-perturbative origin. However, the effective Pomeron intercept ex-
tracted from diffractive DIS data lies significantly above the soft Pomeron
intercept [3,4], indicating a substantial contribution to diffractive DIS from
perturbative Pomeron exchange. In addition, the initial scale chosen for the
analysis is relatively high, Q2

0 = 3 GeV2. At this scale F2 exhibits a clear
growth with diminishing x indicating that the exchanged Pomeron should
be of perturbative type.

The good agreement between the diffractive parton density and dipole
model analysis in the description of diffractive dijets indicates that both
approaches, although seemingly different, are not really distinct. An attempt
to combine these two approaches is recently discussed in Ref. [25].

I would like to thank Graeme Watt for discussions and help in preparing
this manuscript.
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