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The kernel of the BFKL equation at next-to-leading order is presented
and discussed in general case of non-zero momentum transfer t and any
possible t-channel colour state.
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1. Introduction

In the BFKL approach [1] amplitudes of processes A+ B −→ A′ + B′ at
large center of mass energy

√
s and fixed momentum transfer

√
−t, s ≫ |t|,

can be written as

AA′B′

AB =
〈

ΦA′A

∣

∣

∣
eK̂ ln(s/s0)

∣

∣

∣
ΦB′B

〉

. (1)

Here the impact factors ΦA′A and ΦB′B describe the transitions A → A′

and B → B′ due to scattering on Reggeized gluons, the BFKL kernel K̂
describes interaction of these gluons and s0 is some energy scale.

For the case of the forward scattering, i.e. t = 0 and vacuum quantum
numbers in the t-channel, the kernel K̂ was found at next-to-leading order
(NLO) several years ago [2]. However, the BFKL approach is not limited to
this particular case and, what is more, from the beginning it was developed
for arbitrary t and for all possible t-channel colour states. Evidently, the
forward kernel carries only restrictive information about the BFKL dynam-
ics. Moreover, the non-forward case has an advantage of smaller sensitivity
to large-distance contributions, since the diffusion in the infrared region is
limited by

√

|t|. Unfortunately, the NLO calculation of the non-forward
kernel was not completed till last year. The reason is a complexity of the
two-gluon contribution.
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The kernel K̂ is given by the sum of the “virtual” Ω̂ and “real” K̂r con-
tributions. Due to colour conservation its colour structure is determined by
representations R of the colour group in the t-channel. At that the “vir-
tual” part does not depend on R and is expressed through the gluon Regge
trajectory, which has been known at NLO for a long time [3]. The “real”
part is related to particle production in Reggeon–Reggeon collisions and con-
sists of pieces coming from one-gluon, two-gluon and quark–antiquark pair
production:

K̂r = K̂G + K̂QQ̄ + K̂GG. (2)

The first piece was found in [4]. It depends on R only through a common

coefficient. Each of K̂QQ̄ and K̂GG is written as a sum of two terms with co-

efficients depending on R. For the QQ̄ case both these terms were found [5].
Instead, for the GG case till recently only the term related to the octet
representation was calculated. Since the quark contribution to the kernel is
known, we shall discuss in the following the case of pure gluodynamics.

2. The two-gluon contribution

For the representation R of the colour group this contribution can be
written [6] as

K̂(R)
GG = 2cRK(8)

GG + bRK(s)
GG , (3)

where K(8)
GG is the two-gluon contribution for the adjoint representation

(gluon channel), K(s)
GG is so called “symmetric” two-gluon contribution, cR

and bR are the group coefficients. Remarkably, only planar diagrams con-

tribute to K(8)
GG due to the colour structure. In contrast, K(s)

GG is defined in
such a way that all diagrams have equal colour weights. A marvelous fea-

ture of K(s)
GG is the absence of infrared singularities, i.e. divergences in the

limit ε → 0. The disappearance of the singularities is rather tricky: it takes

place due to independence of infrared singular terms in the K(s)
GG-integrand

from relative rapidity of produced gluons. Because of this the singularities
vanish after the subtraction, necessary in order to avoid double counting of
the region of large invariant mass of the gluons.

For the colour group SU(Nc) with Nc =3 the possible representations R
are 1, 8a, 8s, 10, 10, 27. Corresponding coefficients are

c1 = 1 , c8a
= c8s

=
1

2
, c10 = c10 = 0 , c27 = − 1

4Nc
(4)

and bR = cR(cR − 1/2).
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The colour octet contribution K(8)
GG was found in [4]. It is concerned with

the gluon Reggeization and looks rather simple. The “symmetric” contribu-
tion is much more complicated because of the non-planar diagrams, which

do not contribute to K(8)
GG. The complexity of contributions of non-planar

diagrams is known since the calculation of the non-forward kernel for the
QED Pomeron, which was found only in the form of two-dimensional inte-
gral [7]. In QCD the situation is considerably worse because of existence of
the cross-pentagon and cross-hexagon diagrams in addition to the QED-type
cross-box diagrams. It requires the use of additional Feynman parameters.
At arbitrary space-time dimension, D = 4 + 2ε, no integration over these
parameters can be done in elementary functions. It occurs, however, that
in the limit ε → 0 the integration over additional Feynman parameters can
be performed, so that the result can be written as two-dimensional integral,

as well as in QED. Unfortunately, the representation of K̂(s)
GG in this form is

rather complicated [6]. Here we present another form of this contribution in
the transverse momentum space:

K(s)
GG(~q1, ~q2; ~q)=

α2
sN

2
c

4π3

(

[Js(~q1, ~q2; ~q)+Js(−~q2,−~q1;−~q)]+[~qn ↔ ~q−~qn]
)

, (5)

where ~qn and ~q − ~qn ≡ −~q ′
n (n = 1, 2) are the t-channel Reggeized gluon

momenta
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. (6)

Here ~k = ~q1−~q2 = ~q ′
1−~q ′

2,
~k2 =~k−~k1, ~Qn = ~q1−~kn, ~Q ′

n = ~q ′
1−~kn, Ωij

n = δij

− 2ki
nki

n/~k 2
n ,

I(a, b, c) =

1
∫

0

dx

a(1 − x) + bx − cx(1 − x)
ln

(

a(1 − x) + bx

cx(1 − x)

)

. (7)
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3. Non-forward BFKL kernel at NLO

In the pure gluodynamics a complete expression for the kernel in the
transverse momentum space is

K(R) (~q1, ~q2; ~q ) =
[

ω
(

−~q 2
1

)

+ ω
(

−~q ′ 2
1

)

]

~q 2
1 ~q ′ 2

1 δ(D−2) (~q1 − ~q2)

+ 2cRK(8)
r (~q1, ~q2; ~q) + 2bR K(s)

GG (~q1, ~q2; ~q) , (8)

where

ω(t) = −2ḡ2
µ

(

1

ε
+ln
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27
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]

(9)

is the gluon Regge trajectory, ζ(n) is the Riemann zeta function (ζ(2) =
π2/6),

ḡ2
µ =

g2
µNΓ (1 − ε)

(4π)2+ε
, (10)

Γ (x) is the Euler function, gµ is the renormalized coupling in the MS
scheme, concerned with the bare coupling constant g through the relation

g = gµµ−ε

[

1 +
11

3

ḡ2
µ

2ε

]

,

and
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{

(

~q 2
1 ~q ′ 2

2 + ~q ′ 2
1 ~q 2

2

~k 2
− ~q 2

)

(

1

2
+ ḡ2
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The kernel (11) is singular at ~k 2 = 0 so that the region of small ~k 2 values such

that ε| ln(~k 2/µ2)| ∼ 1 is important at integration of the kernel. Therefore,

the expansion of (~k 2/µ2)ε is not done in Eq. (11). Moreover, the terms ∼ ε

are taken into account in the coefficient of the expression divergent at ~k 2 = 0
in order to save all contributions non-vanishing in the limit ε → 0 after the
integration. Note that apart from the coefficient the infrared singularities
are the same for all representations in the “real” contribution. Moreover,
they do not depend on t, i.e. they are the same as in the forward kernel.

4. Summary

Equations (5)–(11) determine the NLO kernel for arbitrary representa-
tion R. The most important are the colour octet and the colour singlet
representations. The first of them is required for the proof of the multi-
Regge form of QCD amplitudes with gluon exchanges (see for instance [8]
and references therein). This form is the basis of the BFKL approach. The
colour singlet representation is related to scattering of physical (colorless)
particles. The total kernel (8) is infrared safe in this case due to cancellation
of infrared singularities in “virtual” and “real” parts of the kernel. In [6] the
infrared safety is demonstrated and formulations free from the singularities
are suggested.

The non-forward kernel has a wide field for phenomenological applica-
tions. Apart from this there are extremely intriguing problems of conformal
invariance and dipole picture of high energy scattering related to the kernel.
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