MEASUREMENTS OF $\gamma \gamma \to K_{\rm S}^0 K_{\rm S}^0$ AND CHARMONIUM PRODUCTION AT BELLE*

W.T. CHEN

Department of Physics, National Central University 300 Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan

S. UEHARA

High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

(Received February 24, 2006)

We use data samples collected with the Belle detector at the KEKB e^+e^- collider at 397 fb⁻¹ integrated luminosity to measure the cross sections and angular distributions of $K^0_{\rm S}K^0_{\rm S}$ production in two-photon collisions at the center-of-mass energy (W) and angle (θ^*) ranges, 2.4 GeV< $W < 4.0 \,{\rm GeV}$ and $|\cos\theta^*| < 0.6$. A $\sin^{-4}\theta^*$ behavior of the cross section in the region 2.4 GeV $< W < 4.0 \,{\rm GeV}$ is observed. Signals of χ_{c0} and χ_{c2} are also observed. Furthermore, new resonance Z(3930) is observed in $\gamma\gamma \rightarrow D\overline{D}$ process using data corresponding to 280 fb⁻¹ integrated luminosity.

PACS numbers: 13.60.-r, 14.40.Lb

1. Introduction

We report on the measurements of the $\gamma\gamma \to K_{\rm S}^0 K_{\rm S}^0$ process, and on a search for χ'_{cJ} states in the mass range of 3.73–4.3 GeV/ c^2 produced via the $D\overline{D}$ process, which are based on data samples collected with the Belle detector using 397 fb⁻¹ and 280 fb⁻¹ integrated luminosity, respectively. The results presented here are preliminary.

2. KEKB accelerator and Belle detector

The analysis is performed with the Belle detector [1] at KEKB [2], an asymmetric e^+e^- collider where an 8.0 GeV e^- beam collides with a 3.5 GeV e^+ beam with a crossing angle of 22 mrad. Momenta of charged tracks are

 $^{^{\}ast}$ Presented at the PHOTON2005 Conference, 31 August –4 September 2005, Warsaw, Poland.

measured with a cylindrical drift chamber (CDC) located in a uniform 1.5 T magnetic field which surrounds the interaction point (IP) and subtends the polar angle range $17^{\circ} < \theta_{\text{lab}} < 150^{\circ}$, where θ_{lab} is a scattering angle in the laboratory frame. Trajectory of charged tracks near the collision is provided by CDC and a silicon vertex detector (SVD). Neutral particles or photon detection and energy measurements are made by a CsI electromagnetic calorimeter (ECL). Species of charged hadron are identified by means of information from time-of-flight counters (TOF) and a silicaaerogel Cherenkov counters (ACC). Low energy kaons are also identified by specific ionization (dE/dx) measurements in the CDC.

3. Measurements of $\gamma \gamma \rightarrow K_{\rm S}^0 K_{\rm S}^0$

For $\gamma\gamma \to \pi\pi$ and $\gamma\gamma \to KK$, quark counting rule [3] predicts a W^{-6} dependence of the cross section. Detailed leading-order QCD calculations by Brodsky and Lepage (BL) [4] predicted the dependence on the $W (\equiv \sqrt{s})$ and scattering angle θ^* for the $\gamma\gamma \to M^+M^-$ process:

$$\frac{d\sigma}{d|\cos\theta^*|} \left(\gamma\gamma \to M^+M^-\right) \simeq \frac{16\pi\alpha^2}{s} \frac{|F_M(s)|^2}{\sin^4\theta^*},\tag{1}$$

where M is a meson and F_M is its electromagnetic form factor. Eq. (1) could also be applied to neutral pseudoscalar meson cases.

Benayoun and Chernyak (BC) [5] predict that at high energies the total cross sections should be equal to about 1/200 of that for K^+K^- after investigating in details the consequences of SU(3)-system breaking effects. Diehl, Kroll and Vogt (DKV) [6] also predict the value of $\sigma(K_S^0K_S^0)/\sigma(K^+K^-)$ ~ 0.08 because the contribution of the non-valence form factor to the amplitudes is further suppressed by the charge factor. Most recently, nonperturbative approaches [7], which base on Regge theory and Veneziano model, are introduced for the study of the low energy mechanism.

In the analysis the selection criteria are:

- (1) Only four charged tracks with zero net electric charge and two or more among the tracks satisfy the following conditions: transverse momentum in laboratory frame $p_{\rm t} > 0.4 \,{\rm GeV}/c$; smallest distance to the nominal collision point in the cylindrical coordinates, $|dr| < 1 \,{\rm cm}$, $|dz| < 5 \,{\rm cm}$; $-0.8660 < \cos \theta_{\rm lab} < +0.9563$.
- (2) No photon cluster whose energy is larger than $0.4 \,\text{GeV}$.
- (3) Momentum balance is required for all tracks in the c.m. frame of e^+e^- beams, by imposing $|\Sigma \mathbf{p}_{\rm t}| < 0.2 \,{\rm GeV}/c$.
- (4) Two $K_{\rm S}^0$ candidates which are identified using the selection rules in [9].

The W distribution and total cross section are presented in Fig. 1. We found $161 \pm 14 \chi_{c0}$ and $44 \pm 7 \chi_{c2}$ event signals with statistical significance 11.7σ and 6.3σ , where σ is the standard deviation. The $\Gamma_{\gamma\gamma}(\chi_{cJ})\mathcal{B}(\chi_{cJ} \rightarrow K_{\rm S}^0 K_{\rm S}^0)$ are obtained to be equal to $7.07 \pm 0.61 \pm 0.62$ eV for χ_{c0} and $0.30 \pm 0.05 \pm 0.03$ eV for χ_{c2} . From the results of previous measurements of $\Gamma_{\gamma\gamma}\mathcal{B}(K^+K^-)$ [8], the ratios $\mathcal{B}(K_{\rm S}^0 K_{\rm S}^0)/\mathcal{B}(K^+K^-)$ equal to $0.49 \pm 0.07 \pm 0.09$ for χ_{c0} and $0.68 \pm 0.20 \pm 0.13$ for χ_{c2} , consistent with the isospin symmetry, were obtained. Using the records on PDG [10] we obtain $\Gamma_{\gamma\gamma}(\chi_{c0}) = 3.37 \pm 0.29(\text{stat.}) \pm 0.29(\text{syst.}) \pm 0.96(\text{br.})$ keV and $\Gamma_{\gamma\gamma}(\chi_{c2}) = 0.42 \pm 0.07(\text{stat.}) \pm 0.04(\text{syst.}) \pm 0.16(\text{br.})$ keV.

Fig. 1. Left: W distribution of the $\gamma\gamma \to K_{\rm S}^0 K_{\rm S}^0$ candidates ($|\cos\theta^*| < 0.6$). Right: Total cross section for $\gamma\gamma \to K_{\rm S}^0 K_{\rm S}^0$ in the c.m. angular region $|\cos\theta^*| < 0.6$. The curve shows the W-dependence obtained from the fit($\sigma \propto W^{-n}$, $n = 9.93 \pm 0.44$).

Differential cross sections with normalization in different W ranges are shown in Fig. 2. A $\sin^{-4} \theta^*$ behavior of the angular distribution, predicted by BL model, is obtained. Total cross sections in $|\cos \theta^*| < 0.6$ are also obtained (Fig. 1, right). The ratio of the measured total cross section for $K_S^0 K_S^0$ and $K^+ K^-$ is $\simeq 0.04 \pm 0.009$ for $W > 3.0 \,\text{GeV}$, which is in disagreement to the prediction of DKV model($\simeq 0.08$) or BC predictions ($\simeq 0.005$). W-dependence ($\sigma \propto W^{-n}$) of the $K_S^0 K_S^0$ cross section, which shows a property of the leading term of the amplitude, is also studied. We find $n = 9.93 \pm 0.44$ (stat.) for 2.4 GeV< $W < 4.0 \,\text{GeV}$. The result shows a different feature than in $K^+ K^-$ production for $3.0 < W < 4.1 \,\text{GeV}$ where $n = 7.3 \pm 0.3$ (stat.) ± 1.5 (syst.). This is compatible with a W^{-6} dependence predicted by quark counting rule. The smallness of the $K_S^0 K_S^0$ cross section compared to the $K^+ K^-$ gives an evidence that the leading term in QCD prediction (W^{-6}) no longer dominates, but next power correction (W^{-10}) contributes.

Fig. 2. Angular dependence of the cross section, $\sigma_0^{-1} d\sigma/d |\cos \theta^*|$, for $\gamma \gamma \to K_{\rm S}^0 K_{\rm S}^0$ process. The curves correspond to $1.227 \sin^{-4} \theta^*$. The errors are statistical only.

We assign a 9–10% total systematic error to the present measurement. This is primarily due to uncertainties in the trigger efficiency (4%), luminosity function (5%), non-exclusive events (1–5%), $K_{\rm S}^0$ particle identification (6%), and integrated luminosity (1%).

4. Observation of Z(3930)

Radial excitation states of charmonium have been found only for the ${}^{3}S_{1}$ states (ψ) and ${}^{1}S_{0}$ states (η_{c}) [11], but no radially excited ${}^{3}P_{J}$ states (χ_{cJ}) have yet been found. The first radially excited χ_{cJ} states are predicted to have masses 3.9–4.0 GeV, which is considerably above $D\overline{D}$ threshold [12]. Two new charmonium-like states in this mass region were reported by Belle [13]. Here we report on a search for the χ'_{cJ} (J = 0 or 2) states in the mass range of 3.73–4.3 GeV/ c^{2} produced via the $D\overline{D}$ process [14].

Four combinations of decays are used: $D^0\overline{D^0}$, $D^0 \to K^-\pi^+$, $\overline{D^0} \to K^+\pi^-$; $D^0\overline{D^0}$, $D^0 \to K^-\pi^+$, $\overline{D^0} \to K^+\pi^-\pi^0$; $D^0\overline{D^0}$, $D^0 \to K^-\pi^+$, $\overline{D^0} \to K^+\pi^-\pi^+\pi^-$; D^+D^- , $D^+ \to K^-\pi^+\pi^+$, $D^- \to K^+\pi^-\pi^-$. Kaons are separated from pions using likelihood method based on information from the particle identification detectors. We rejected the events from initial-state radiation processes using the z-component of the momentum of the $D\overline{D}$ system. We take the candidate events in the transverse momentum range $|\Sigma p_t(D\overline{D})| < 0.05 \,\mathrm{GeV}/c$.

We show the $M(D\overline{D})$ distributions in Fig. 3 (left). We find a resonant structure with a 5.5 σ statistical significance in the vicinity of 3.93 GeV/ c^2 . We tentatively designate this state as Z(3930). The total yield of the reso-

Fig. 3. Left: The sum of the $M(D\overline{D})$ invariant mass distributions for all four processes. The curves show the fits with (solid) and without (dashed) a resonance component. Right: The $|\cos\theta^*|$ distributions in the $3.91 < M(D\overline{D}) < 3.95 \text{ GeV}/c^2$ region (points with error bars) and background scaled from the $M(D\overline{D})$ sideband (solid histogram). The solid and dashed curves show the expectations from a J = 2(helicity = 2) resonance and a J = 0 resonance, respectively.

nance, mass and width are equal to $N = 41 \pm 11$ (stat.), $M = 3931 \pm 4$ (stat.) ± 2 (syst.) MeV/ c^2 and $\Gamma = 20 \pm 8$ (stat.) ± 3 (syst.) MeV, respectively. The points with error bars in Fig. 3(right) show that the $|\cos \theta^*|$ distribution in the Z(3930) region prefers a spin two over spin zero assignment. We obtain $\Gamma_{\gamma\gamma}\mathcal{B}(Z(3930) \rightarrow D\overline{D}) = 0.23 \pm 0.06$ (stat.) ± 0.04 (syst.) keV for J = 2 assumption. All results are consistent with expectations for the χ'_{c2} , the 2^3P_2 charmonium state.

5. Conclusion

The cross sections and angular distributions of the $K_{\rm S}^0 K_{\rm S}^0$ production from two-photon collisions in the ranges 2.4 GeV<W<4.0 GeV and $|\cos \theta^*|$ < 0.6 are measured. A $\sin^{-4} \theta^*$ behavior of the angular distribution and W-dependence ($\sigma \propto W^{-n}$) which $n=9.93\pm0.44(\text{stat.})$ are obtained. Signals of χ_{c0} and χ_{c2} are also observed. New resonance Z(3930) is observed in the $D\overline{D}$ process, and all measured numbers show that it is a candidate of χ'_{c2} .

REFERENCES

- [1] A. Abashian et al. (Belle Collab.), Nucl. Instrum. Methods A479, 117 (2002).
- [2] S. Kurokawa, E. Kikutani, Nucl. Instrum. Methods A499, 1 (2003).
- [3] S.J. Brodsky, G.R. Farrar, Phys. Rev. D11, 1309 (1975).
- [4] S.J. Brodsky, G.P. Lepage, Phys. Rev. D24, 1808 (1981).
- [5] M. Benayoun, V.L. Chernyak, Nucl. Phys. B329, 209 (1990).

- [6] M. Diehl, P. Kroll, C. Vogt, *Phys. Lett.* **B532**, 99 (2002).
- [7] K. Odagiri, R.-C. Verma, hep-ph/0508114.
- [8] H. Nakazawa et al. (Belle Collab.), Phys. Lett. B615, 39 (2005).
- [9] K.-F. Chen et al. (Belle Collab.), Phys. Rev. D72, 012004 (2005).
- [10] S. Eidelman et al. (Particle Data Group), Phys. Lett. B592, 1 (2004).
- [11] S.-K. Choi et al. (Belle Collab.), Phys. Rev. Lett. 89, 102001 (2002).
- [12] E. Eichten, K. Lane, C. Quigg, Phys. Rev. D69, 094019 (2004).
- [13] K.Abe et al. (Belle Collab.), hep-ex/0507019; S.-K. Choi et al. (Belle Collab.), Phys. Rev. Lett. 94, 182002 (2005).
- [14] K. Abe et al. (Belle Collab.), hep-ex/0507033.