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Hadron pair production from two-photon annihilation plays an impor-
tant role in unraveling the perturbative and non-perturbative structure of
QCD, first by testing the validity and empirical applicability of leading-
twist factorization theorems, second by verifying the structure of the un-
derlying perturbative QCD subprocesses, and third, through measurements
of angular distributions and ratios which are sensitive to the shape of the
distribution amplitudes. In effect, photon–photon collisions provide a mi-
croscope for testing fundamental scaling laws of PQCD and for measuring
distribution amplitudes. The determination of the shape and normalization
of the distribution amplitude is particularly important in view of their im-
portance in the analysis of exclusive semi-leptonic and two-body hadronic
B-decays. The data from the Belle and CLEO collaborations on single
and double meson production are in excellent agreement with the QCD
predictions. In contrast, the normalization of the nominal leading-order
predictions of PQCD for proton pair production appears to be significantly
below recent Belle measurements. I also review issues relating to renormal-
ization scale setting.

PACS numbers: 12.38.–t, 13.66.Bc, 13.40.–f, 13.66.Lm

1. Introduction

Photon–photon collisions provide a comprehensive laboratory for testing
the fundamental couplings and dynamics of the Standard Model and be-
yond [1]. In particular, two-photon exclusive processes such as γγ → π+π−,
γγ → pp̄, and γγ∗ → π0 provide a remarkable window into hadron dynamics
and structure and recent measurements utilizing the virtual photon beams
of e+e− colliders are now providing detailed tests of QCD.

At large momentum transfer, the angular distribution of hadron pairs
produced by photon–photon annihilation are among the best determinants
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of the shape of the meson and baryon distribution amplitudes φM (x,Q),
and φB(xi, Q) which control almost all exclusive processes involving a hard
scale Q. The determination of the shape and normalization of the dis-
tribution amplitudes, which are gauge-invariant and process-independent
measures of the valence wavefunctions of the hadrons, has become partic-
ularly important in view of their importance in the analysis of exclusive
semi-leptonic and two-body hadronic B-decays [2–6]. There has also been
considerable progress both in calculating hadron wavefunctions from first
principles in QCD and in measuring them using diffractive di-jet dissocia-
tion.

2. The photon-to-pion transition form factor and the pion

distribution amplitude

The simplest and perhaps most elegant illustration of an exclusive re-
action in QCD is the evaluation of the photon-to-pion transition form fac-
tor Fγ→π(Q2) which is measurable in single-tagged two-photon ee → eeπ0

reactions and tests the transition from the anomaly-dominated pion de-
cay constant to the short-distance structure of currents dictated by the
operator-product expansion and perturbative QCD factorization theorems.
The transition form factor is defined via the invariant amplitude Γ

µ =
−ie2Fπγ(Q2)εµνρσpπ

νερqσ. As in inclusive reactions, one must specify a fac-
torization scheme which divides the integration regions of the loop integrals

into hard and soft momenta, compared to the resolution scale Q̃. At lead-
ing twist, the transition form factor then factorizes as a convolution of the
γ∗γ → qq̄ amplitude (where the quarks are collinear with the final state
pion) with the valence light-cone wavefunction of the pion [7]:

FγM (Q2) =
4√
3

1∫

0

dxφM

(
x, Q̃

)
TH

γ→M

(
x,Q2

)
. (1)

The hard scattering amplitude for γγ∗ → qq̄ is

TH
γM (x,Q2) =

[
(1 − x)Q2

]−1
(1 + O(αs)) .

For the asymptotic distribution amplitude φasympt
π (x) =

√
3fπx(1 − x) one

predicts [8]

Q2Fγπ(Q2) = 2fπ

(
1 − 5

3

αV (Q∗)

π

)
,

where Q∗ = e−3/2Q is the estimated BLM scale for the pion form factor in
the V scheme.
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3. Non-perturbative calculations of the

pion distribution amplitude

The distribution amplitude φ(x, Q̃) is the gauge-invariant Fourier trans-
form of the vacuum to meson matrix element 〈0 | q(x)W (x, 0)q(0) |M 〉 where
W is the Wilson line. It can be computed from the integral over transverse
momenta of the renormalized hadron valence wavefunction in the light-cone
gauge at fixed light-cone time [7]:

φ(x, Q̃) =

∫
d2 ~k⊥ θ

(
Q̃2 −

~k⊥
2

x(1 − x)

)
ψ( eQ)(x, ~k⊥), (2)

where a global cutoff in invariant mass is identified with the resolution Q̃.

The distribution amplitude φ(x, Q̃) is boost and gauge invariant and evolves

in ln Q̃ through an evolution equation [7]. Since it is formed from the same
product of operators as the non-singlet structure function, the anomalous
dimensions controlling φ(x,Q) dependence in the ultraviolet logQ scale are
the same as those which appear in the DGLAP evolution of structure func-
tions [9]. The decay π → µν normalizes the wave function at the origin:∫ 1
0 dxφ(x,Q) = fπ/(2

√
3). One can also compute the distribution amplitude

from the gauge invariant Bethe–Salpeter wavefunction at equal light-cone
time. This also allows contact with both QCD sum rules [10] and lattice
gauge theory; for example, moments of the pion distribution amplitudes
have been computed successfully in lattice gauge theory [11–14]. Confor-
mal symmetry can be used as a template to organize the renormalization
scales and evolution of QCD predictions [9, 15]. For example, Braun and
collaborators have shown how one can use conformal symmetry to classify
the eigensolutions of the baryon distribution amplitude [16].

Dalley [17] and Burkardt and Seal [18] have calculated the pion distribu-
tion amplitude from QCD using a combination of the discretized light-cone
quantization [19] method for the x− and x+ light-cone coordinates with
the transverse lattice method [20, 21] in the transverse directions, A finite
lattice spacing a can be used by choosing the parameters of the effective
theory in a region of renormalization group stability to respect the required
gauge, Poincaré, chiral, and continuum symmetries. The overall normaliza-
tion gives fπ = 101 MeV compared with the experimental value of 93 MeV.
Figure 1(a) compares the resulting DLCQ/transverse lattice pion wavefunc-
tion with the best fit to the diffractive di-jet data (see the next section)
after corrections for hadronization and experimental acceptance [22]. The
theoretical curve is somewhat broader than the experimental result. How-
ever, there are experimental uncertainties from hadronization and theoreti-
cal errors introduced from finite DLCQ resolution, using a nearly massless
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Fig. 1. (a) Transverse lattice results for the pion distribution amplitude at

Q2 ∼ 10 GeV2. The solid curve is the theoretical prediction from the combined

DLCQ/transverse lattice method [17]; the chain line is the experimental result ob-

tained from dijet diffractive dissociation [22,24]. Both are normalized to the same

area for comparison. (b) Scaling of the transition photon to pion transition form

factor Q2Fγπ0(Q2). The dotted and solid theoretical curves are the perturbative

QCD prediction at leading and next-to-leading order, respectively, assuming the

asymptotic pion distribution The data are from the CLEO collaboration [25].

pion, ambiguities in setting the factorization scale Q2, as well as errors in
the evolution of the distribution amplitude from 1 to 10 GeV2. Instanton
models also predict a pion distribution amplitude close to the asymptotic
form [23]. Recent preliminary lattice gauge theory results for the second mo-
ment [11] are however somewhat broader than predicted by the asymptotic
form. Bethe–Salpeter wavefunctions can also be used to predict light-cone
wavefunctions and hadron distribution amplitudes by integrating over the
relative k− momentum. One can also use the Bethe–Salpeter wavefunctions
within light-cone gauge quantized QCD [26, 27] in order to properly match
to the light-cone gauge Fock state decomposition.

Recently Guy de Teramond and I have shown how one can use the
AdS/CFT correspondence to obtain predictions for the light-front wavefunc-
tions and distribution amplitudes of hadrons in a conformal approximation
of QCD [28]. The prediction is consistent with the asymptotic form obtained
in pQCD.

The E791 collaboration at Fermilab has measured the diffractive di-jet
dissociation of 500 GeV incident pions on nuclear targets [22]. The results
are consistent with color transparency, and the momentum partition of the
jets conforms closely with the shape of the asymptotic distribution ampli-
tude, φasympt

π (x) =
√

3fπx(1 − x), corresponding to the leading anomalous
dimension solution of the ERBL QCD evolution equation [7, 29] .

The pQCD predictions have been tested in measurements of eγ → eπ0

by the CLEO collaboration [25] (see Fig. 1(b)). The flat scaling of the
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Q2Fγπ(Q2) data from Q2 = 2 to Q2 = 8 GeV2 provides an important confir-
mation of the applicability of leading twist QCD to this process. The magni-
tude of Q2Fγπ(Q2) is remarkably consistent with the predicted form, assum-
ing the asymptotic distribution amplitude and including the LO QCD radia-
tive correction with αV (e−3/2Q)/π ≃ 0.12 in the V scheme [8]. Radyushkin
[30, 31] and Kroll [32] have also noted that the scaling and normalization
of the photon to pion transition form factor tends to favor the asymptotic
form for the pion distribution amplitude and rules out broader distributions
such as the two-humped form suggested by QCD sum rules [33]. When both
photons are virtual, the denominator of TH for the γγ∗ → π0 reaction be-
comes (1 − x)Q2

1 + xQ2
2, and the amplitude becomes nearly insensitive to

the shape of the distribution amplitude once it is normalized to the pion
decay constant. Thus the ratio of singly virtual to doubly virtual pion pro-
duction is particularly sensitive to the shape of φπ(x,Q2) since higher order
corrections and normalization errors tend to cancel in the ratio.

4. Exclusive two-photon annihilation into hadron pairs

Two-photon reactions, γγ → HH̄ at large s = (k1 + k2)
2 and fixed θcm,

provide a particularly important laboratory for testing QCD since these
cross-channel “Compton” processes are the simplest calculable large-angle
exclusive hadronic scattering reactions. The helicity structure, and often
even the absolute normalization can be rigorously computed for each two-
photon channel [34]. In the case of meson pairs, dimensional counting [35]
predicts that for large s, s4dσ/dt(γγ → MM̄) scales at fixed t/s or θcm
modulo logarithms from the running coupling of αs and the evolution of
the distribution amplitudes. The angular dependence of the γγ → HH̄
amplitudes can be used to determine the shape of the process-independent
distribution amplitudes, φH(x,Q). An important feature of the γγ →MM̄
amplitude for meson pairs is that the contributions of Landshoff pitch sin-
gularities are power-law suppressed at the Born level — even before taking
into account Sudakov form factor suppression. There are also no anomalous
contributions from the x → 1 endpoint integration region. Thus, as in the
calculation of the meson form factors, each fixed-angle helicity amplitude can
be written to leading order in 1/Q in the factorized form [Q2 = p2

T = tu/s;

Q̃x = min(xQ, (1 − x)Q)]:

Mγγ→MM̄ =

1∫

0

dx

1∫

0

dyφM̄ (y, Q̃y)TH(x, y, s, θcm)φM (x, Q̃x) , (3)

where TH is the hard-scattering amplitude γγ → (qq̄)(qq̄) for the production

of the valence quarks collinear with each meson, and φM (x, Q̃) is the ampli-
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tude for finding the valence q and q̄ with light-cone fractions of the meson’s

momentum, integrated over transverse momenta k⊥ < Q̃. The contribu-
tion of non-valence Fock states are power-law suppressed. Furthermore, the
helicity-selection rules [36] of perturbative QCD predict that vector mesons
are produced with opposite helicities to leading order in 1/Q and all or-
ders in αs. The dependence in x and y of several terms in Tλ,λ′ is quite
similar to that appearing in the meson’s electromagnetic form factor. Thus
much of the dependence on φM (x,Q) can be eliminated by expressing it in
terms of the meson form factor. In fact, the ratio of the γγ → π+π− and
e+e− → µ+µ− amplitudes at large s and fixed θCM is nearly insensitive to
the running coupling and the shape of the pion distribution amplitude:

dσ
dt (γγ → π+π−)
dσ
dt (γγ → µ+µ−)

∼ 4|Fπ(s)|2
1 − cos2 θcm

. (4)

The comparison of the pQCD prediction for the sum of π+π− plus K+K−

channels with Belle and CLEO data [37, 38] is shown in Fig. 2. The data
for charged pion and kaon pairs show a clear transition to the scaling and
angular distribution predicted by pQCD [34] for W =

√
sγγ > 2 GeV.

Unlike predictions based on the handbag approximation [39], there is a
strong suppression of neutral pair production in pQCD due to the destructive
interference of the

∑
i e

2
i diagrams where the photons couple to a single

quark line versus
∑

i6=j eiej diagrams involving both quark currents. It is
thus very important to measure the magnitude and angular dependence of
the two-photon production of neutral pions and ρ+ρ− in view of the strong
sensitivity of these channels to the shape of meson distribution amplitudes
(see Figs. 3 and 4). QCD also predicts that the production cross section for
charged ρ-pairs (with any helicity) is much larger than for that of neutral ρ
pairs, particularly at large θcm angles. Similar predictions are possible for
other helicity-zero mesons.

There are a several features of QCD which are required to ensure the
consistency of the pQCD approach: (a) the effective QCD coupling αs(Q

2)
needs to be under control at the relevant scales of B decay; (b) the distribu-
tion amplitudes of the hadrons need to satisfy convergence properties at the
endpoints; and (c) one requires the coherent cancellation of the couplings of
soft gluons to color-singlet states. This property, color transparency [40], is
a fundamental coherence property of gauge theory and leads to diminished
final-state interactions and corrections to the pQCD factorizable contribu-
tions. The problem of setting the renormalization scale of the coupling for
exclusive amplitudes is discussed in [8].

The observed scaling of the Belle and CLEO data, like other hard exclu-
sive reactions, reflects the near conformal behavior of QCD. This behavior
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Fig. 2. Comparison of the sum of γγ → π+π− and γγ → K+K− meson pair pro-

duction cross sections with the scaling and angular distribution of the perturbative

QCD prediction [34]. The data are from the Belle and CLEO Collaborations [38].

can be understood if the QCD coupling αs(Q
2) has an infrared fixed point;

i.e., constant behavior at small Q2 This also justifies the use of AdS/CFT
to make predictions for QCD [41, 42]. Dimensional counting rules can be
proven without the use of perturbation theory using AdS/CFT [41]. The-
oretical and empirical evidence for an infrared fixed point is presented in
Ref. [43–45].
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5. Exclusive production of baryon pairs

Baryon pair production in two-photon annihilation is also an important
testing ground for QCD since it is connected by crossing to Compton scat-
tering and the deeply virtual Compton amplitudes which define generalized
parton distributions as well as the polarization correction to the hyperfine
splitting of hydrogen. The perturbative QCD predictions for the phase of
the Compton amplitude phase can be tested in virtual Compton scattering
by interference with Bethe–Heitler processes [46]. The Brooks–Dixon result
could be used for γγ → pp̄ by employing t→ s crossing. The calculation of
TH for Compton scattering γp→ γp requires the evaluation of 368 helicity-
conserving tree diagrams which contribute to γ(qqq) → γ′(qqq)′ at the Born
level and a careful integration over singular intermediate energy denomina-
tors [47–49]. Brooks and Dixon [50] have recalculated the proton Compton
process at leading order in pQCD, extending and correcting earlier work.

Recently the Belle collaboration [51] has made detailed measurements
of the large angle γγ → pp̄ cross section. (See Fig. 5.) The scaling of the
data appears to be consistent with the leading-order pQCD prediction at
W =

√
sγγ > 3 GeV. However, the predicted normalization [52] appears to

be too small compared to the data. This discrepancy is crucial to understand
— it is possibly due to running coupling effects, higher order corrections, or
the shape of the distribution amplitude. On the other hand, the prediction
of the handbag [53] and the quark–diquark models [54] are much closer to
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Schweiger [54] is also shown.
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the normalization of the Belle data [53] It is also useful to consider the ratio
dσ/dt(γγ → p̄p)/dσ/dt(e+e− → p̄p) since the power-law fall-off, the nor-
malization of the valence wavefunctions, and much of the uncertainty from
the scale of the QCD coupling cancel. The scaling and angular dependence
of this ratio is sensitive to the shape of the proton distribution amplitudes.

Pobylitsa et al. [55] have shown how the predictions of perturbative QCD
can be extended to processes such as γγ → pp̄π where the pion is produced
at low velocities relative to that of the p or p̄ by utilizing soft pion theorems
in analogy to soft photon theorems in QED. The distribution amplitude of
the pπ composite is obtained from the proton distribution amplitude from a
chiral rotation. A test of this procedure in semi-inclusive electron scattering
at large momentum transfer ep → pπ and small invariant p′π mass has been
remarkably successful. Many other tests of the soft meson procedure are
possible in multiparticle e+e− and γγ final states.

6. Scale-setting issues

The renormalization scale of the running coupling in processes such as
the exclusive two-photon amplitudes can be set in QCD without ambiguity
at each order in perturbation theory using the BLM method [8, 56]. The
BLM scale is derived by incorporating the non-conformal terms associated
with the β function into the argument of the running coupling. This can be
done systematically using the skeleton expansion [15,57]. The resulting scale
at leading order is identical to the photon virtuality in QED applications
and the gluon virtuality when one uses analogous physical schemes such as
the pinch scheme and the αV scheme. The BLM method properly sets the
momentum scale so that flavor number is changed correctly in any scheme,
including the MS scheme [58].

The scale determined by the BLM method is consistent with (a) the
transitivity and other properties of the renormalization group [59], (b) the
analytic Abelian limit at NC → 0 at fixed CFαs, (c) relations between ob-
servables must be independent of the choice of intermediate renormalization
scheme, and (d) the cut structure of amplitudes at the flavor thresholds.
For example, consider the vacuum polarization lepton-loop correction to
e+e− → e+e− in QED. The amplitude must be proportional to α(s) since
this gives the correct cut of the forward amplitude at the lepton pair thresh-
old s = 4m2

ℓ . Thus the renormalization scale µ2
R = s is exact and unam-

biguous in the conventional QED Goldberger–Low scheme. If one chooses
any other scale µ2

R 6= s, the scale µ2
R = s will be restored when one sums all

bubble graphs.
It has been conventional to characterize pQCD predictions by using an

arbitrary renormalization scale in the MS scheme, such as µ2
R = Q2, and
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then varying the scale over an arbitrary range, e.g., Q2/2 < µ2
R < 2Q2 as a

means to estimate the convergence of the perturbative series. However, the
variation of µ2

R can only apply to the nonconformal terms, not the complete
series. Furthermore, as noted above, one must set the scale appropriately
so that amplitudes have the correct analytic cut structure at the quark
thresholds. This is done correctly in any renormalization scheme by using
the BLM method.

7. Other important two-photon QCD reactions

Two-photon annihilation γ∗(q1)γ
∗(q2) → hadrons for real and virtual

photons provide some of the most detailed and incisive tests of QCD.
Among the processes of special interest are:

1. The total two-photon annihilation hadronic cross section σ(s, q21 , q
2
2),

which is related to the light-by-light hadronic contribution to the muon
anomalous moment.

2. The formation of C = + hadronic resonances, which can reveal exotic
states such as qq̄g hybrids and discriminate gluonium formation [60].

3. Hadron pair production processes involving virtual photons such as
γ∗γ → π+π−,K+K−, pp̄, which at fixed invariant pair mass measures
the s → t crossing of the virtual Compton amplitude [34]. When one
photon is highly virtual, these exclusive hadron production channels
are dual to the photon structure function F γ

2 (x,Q2) in the endpoint
x→ 1 region at fixed invariant pair mass. The leading twist-amplitude
for γ∗γ → π+π− is sensitive to the 1/x− 1/(1 − x) moment of the qq̄
distribution amplitude Φπ+π−(x,Q2) of the two-pion system [61, 62],
the time-like extension of skewed parton distributions. In addition one
can measure the pion charge asymmetry in e+e− → π+π−e+e− arising
from the interference of the γγ → π+π− Compton amplitude with the
time-like pion form factor [63]. At the unphysical point s = q21 =q22 =0,
the amplitude is fixed by the low energy theorem to the hadron charge
squared.

4. At fixed pair mass, and high photon virtuality, one can study the
distribution amplitude of multi-hadron states [64].

A remarkable feature of the pQCD prediction for the Compton scattering
amplitude γH → γH is the existence of a J = 0 fixed pole; i.e., a constant
term in the Regge expansion at high s at fixed t [65]. The result is also
independent of the virtuality of the photons. This term reflects the local
two-photon couplings of the two photons analogous to the seagull term in
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scalar electrodynamics. It is also reflected in the angular distribution of the
time-like processes γγ → HH̄. The J = 0 fixed pole appears in vector meson
pair production, but it does not appear, however, in the case of pseudoscalar
meson pairs [34].

8. Conclusions

The leading-twist QCD predictions for exclusive two-photon processes
such as the photon-to-pion transition form factor and γγ → hadron pairs
are based on rigorous factorization theorems. The data from the Belle
and CLEO collaborations on Fγπ(Q2) and the sum of γγ → π+π− and
γγ → K+K− channels are in excellent agreement with the QCD predic-
tions. In contrast, the normalization of the nominal leading-order predic-
tions of PQCD for proton pair production appears to be significantly below
recent Belle measurements. It is particularly compelling to see a transi-
tion in angular dependence of the meson pair data between the low energy
chiral and pQCD regimes. The success of leading-twist perturbative QCD
scaling for these exclusive processes at presently experimentally accessible
momentum transfer can be understood if the effective QCD coupling is ap-
proximately constant at the relatively small scales Q∗ relevant to the hard
scattering amplitudes [8]. The evolution of the quark distribution ampli-
tudes in the low-Q∗ domain also needs to be minimal. Sudakov suppression
of the endpoint contributions is also strengthened if the coupling is frozen
because of the exponentiation of a double logarithmic series. Evidence for
an infrared fixed point is presented in Ref. [43–45].

Work supported by the Department of Energy under contract number
DE-AC02-76SF00515.
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