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We review some new developments in modern nonlinear optics. They
are related to optics with both photons and atoms. The goals of the pre-
sentation were to give a cursory review on contemporary challenges in non-
linear optics (focusing on problems that are of interest to the Warsaw non-
linear optics group) and to show how fruitful it can be to transfer ideas
across the border between different fields.
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1. Short introduction to nonlinear optics

Nonlinear optics is the study of the interaction of intense laser light
with matter. It is a young field of research, which takes its beginning
from the observation of second harmonic generation in 1961 by Franken’s
group [1] (this milestone is flawed, as the second harmonic signal actu-
ally does not appear on the experimental plate presented there as Fig. 1).
Almost immediately a series of experiments followed, where other wave mix-
ing phenomena were obtained (third harmonic generation, sum and differ-
ence frequency generation, etc.). The field now ranges from fundamental
studies of interaction of laser light with matter to applications such as laser
frequency conversion, optical switching and quantum gates. Here we will
give a few examples of new developments, concentrating on new sources of
coherent radiation and solitons. A second goal of this presentation is to show
how fruitful it can be to transfer ideas across the border between different
fields, in this case nonlinear and atom optics.
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Tunable sources of coherent radiation are very desirable. The last decade
has seen spectacular developments in ultrafast laser technology, due to the
introduction of solid state active materials and of new mode-locking and am-
plification techniques. These advances, together with the discovery of new
nonlinear optical crystals, have fostered the introduction of ultrafast opti-
cal parametric amplifiers and oscillators as practical sources of femtosecond
pulses tunable across the visible and infrared spectral ranges. Spontaneous
parametric down-conversion is an important process in nonlinear optics.
A nonlinear crystal splits incoming individual photons into pairs of lower
energy whose combined energy and momentum are equal to the energy and
momentum of the original photon. “Parametric” refers to the fact that the
state of the crystal is left unchanged in the process, which is why energy
and momentum are conserved (this is related to phase matching in nonlin-
ear optics; phase matching in this particular case is illustrated in Fig. 1).
The process is spontaneous in the same sense as is spontaneous emission. It
is initiated by random vacuum fluctuations. Consequently, the photon pairs
are created at random times. Nevertheless, if one of the pairs (the “signal”)
is detected at any time, then we know its partner (the “idler”) is also present.
This then allows for the creation of optical fields containing a single pho-
ton. As of 2005, this is the predominant mechanism for experimentalists
to create single photons (also known as Fock states). The single photons
as well as photon pairs are often used in quantum information experiments
and applications such as quantum cryptography and Bell tests [2].

Fig. 1. Schematic presentation of the features of parametric down conversion, in-

cluding phase matching and energy conservation (from Wikipedia).
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2. Atom optics

It is well known that photons do not interact in free space. To create
polarization (linear or nonlinear) responsible for wave mixing phenomena
it is necessary for light to propagate within a medium, be it an atomic
vapor, a crystal, a plasma, etc. Far from resonances it becomes possible
to eliminate the material dynamics and obtain effective nonlinear equations
for the optical fields only. The information of the medium remains in the
nonlinear susceptibilities, as mentioned in the previous section.

The situation appears to be fundamentally different for atoms: after all,
it is known that for high enough fluxes or densities, atoms undergo collisions.
The presence of other atoms modifies the evolution of a given atom, hence
atom optics is inherently nonlinear. Most of the collisions are incoherent
and we had to wait until 1995, when for the first time neutral atom gasses
were Bose–Einstein condensed. This created a condition analogous to that
familiar from nonlinear optics. The miracle is in the peculiar behavior of
ultra cold Bose atoms, which all like to occupy the same quantum state. In
this case elastic collisions merely result in a coherent phase shift between
atoms, an effect analogous to the creation of coherent “nonlinear polariza-
tion”. Moreover, the macroscopic population of this quantum state allows us
to introduce a control parameter, a wavefunction which satisfies a nonlinear
Gross–Pitaevskii equation:
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where V (r, t) is an external potential, U0 = (4πa0~
2)/m is the atom–atom

interaction strength that is proportional to the s-wave scattering length a0,
and N0 is the total number of atoms.

The Gross–Pitaevskii equation is formally reminiscent of the nonlinear
wave equation describing the paraxial propagation of light in a nonlinear
medium characterized by an instantaneous cubic nonlinearity. In view of
this analogy it is not surprising that many nonlinear effects first predicted
and demonstrated in optics could be repeated with matter waves. For exam-
ple, four-wave mixing of atom waves (4WM), a process in which three matter
waves combine to produce a fourth while conserving energy and momentum,
has been demonstrated by researchers at NIST [3]. This experiment provided
the first example in atoms of “nonlinear optics” effects which are known for
laser beams. In lasers, these effects arise when the light is so intense that
it changes the index of refraction of the material which it traverses. The
behavior of the material thereby depends on the intensity of light, and this
non-linearity can lead to the self-focusing of light and the creation of new
colors from a single one. The NIST researchers created three overlapping
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Bose–Einstein condensates of sodium atoms moving at different velocities
relative to one another. The three BECs interfered to create a fourth con-
densate moving at a different velocity. This four-wave mixing phenomenon,
which also occurs in light waves, can be used to explore the uniquely quan-
tum mechanical properties of matter waves (see Fig. 2). For methods to
strengthen the process see Ref. [4].

Fig. 2. Numerical simulation and experimental results for 4WM. Left: Calculated

two dimensional atomic distribution after 1.8 ms, showing the 4WM. We note that

atoms are removed primarily from the inner ends of the wave-packets because

these regions overlap for the longest time. Right: An image of the experimental

atomic distribution showing the fourth (small) wave-packet generated by the 4WM

process. We have verified that if we make initial wave-packets such that energy

and momentum conservation cannot be simultaneously satisfied, no 4WM signal is

observed, as expected. From Deng et al., 1999.

A four wave process, analogous to that described above, is also possi-
ble by mixing atoms and photons. For instance, the MIT group investi-
gated Rayleigh scattering off a Bose–Einstein condensate [5]. Observation
of super-radiant Rayleigh scattering was conducted in the following way. An
elongated condensate was illuminated by a single off-resonant laser beam.
Collective scattering leads to photons scattered predominantly along the
long axial direction and atoms emerging at 45 degrees. Notice that this
is a four wave mixing process in which two particles are annihilated: one
photon from the laser beam and one atom from the initial stationary con-
densate, and two particles are created: one photon at the direction of the
long axis and one atom at 45 degrees. This is illustrated in Fig. 3.

In the future, practical matter-wave devices based on phenomena de-
scribed above are likely to be built on chips, very much like electronic sen-
sors. It has recently been possible to generate a Bose–Einstein condensate
directly on a chip and to couple atomic condensates into waveguides. These
spectacular and rapid developments augur well for the future.
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Fig. 3. Exposing an elongated condensate to a single off-resonant laser beam re-

sulted in the observation of highly directional scattering of light and atoms. This

collective light scattering is caused by the coherent center-of-mass motion of the

atoms in the condensate. A directional beam of recoiling atoms was built up by

matter wave amplification.

3. Solitons

In August 1834 Scott Russell, an important engineer who never man-
aged to succeed in obtaining a university chair, was investigating the Union
Canal for its possible use for steamships. Indeed, the good captain was
best known for his work on ship design. On this day he was mounted on
a horse and luckily observed a boat drawn by a pair of horses that sud-
denly stopped. A bow wave so created detached itself from the boat and
continued down the canal in the form of a single hump, easily followed by
the horseman. The wave kept both its shape and its velocity for a long
time (one foot high and thirty feet long propagating at 8 to 9 mph) [6].
This discovery is one of the finest examples of serendipity in XIX Century
physics. A similar soliton was recently created at the same spot (1995, see
http://www.ma.hw.ac.uk/solitons/press.html).

In the work published in 1965 Zabusky and Kruskal numerically inves-
tigated an equation describing the strong interaction of phonons [7]. They
found that an initially cosine profile broke up into a sequence of solitary
waves, which they called solitons due to their apparent quantal nature
(see Fig. 4)

The soliton equation involved (Korteveg de Vries) was nonlinear, but
two years later became the first in a long sequence to be solved by an “in-
verse scattering method” [8]. The method involves linearization in some
space. This fortunate fact and the plethora of applications subsequently
found across the board of physics catapulted solitons into the very forefront
of modern research.
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Fig. 4. Evolution of an initially periodic profile, cos(πx), as given by the KdV equa-

tion. The breaking time for the wave profile, when the 3rd term is neglected, is tB.

After a while patterns roughly repeat themselves. From Zabusky and Kruskal [7].

Solitons have been observed in plasma physics experiments and crystal
lattices [9]. Solitons are used in models of high temperature superconductors
systems and of energy transport in DNA. They are even used as models in
nuclear theory. The fact that solitons are so robust makes them ideal for
fiber optical communication systems [10]. Nowadays, research on soliton
telecommunications is basically focused on solutions provided by dispersion
management or compensation. In this regime, optical pulse propagation in
the presence of fiber nonlinearity turns out to be extremely stable.

Solitons can be essentially one dimensional, as the water wave ones men-
tioned above, two dimensional e.g. cylindrical, known as lumps, or three
dimensional, often referred to as bullets. In the case of solitons, nonlin-
ear effects balance the diffractive spreading of a pulse. In isotropic optical
media the most common type of nonlinearity is the so called Kerr nonlin-
earity, which is cubic. Unfortunately the balance between dispersion and
Kerr nonlinearity is only possible in 1D. For the stability of higher dimen-
sional pulses a saturable nonlinearity and/or modulation of parameters is
necessary [11, 12]. As an example we suggest considering two and three
dimensional bright solitons in a BEC.

Bose–Einstein condensates are media in which two of the above kinds of
soliton can be created (2D and 3D). Suppose the condensate is confined by
a one dimensional optical lattice. If we combine the temporal modulation of
the nonlinearity with confinement by the one dimensional lattice, both two
and three dimensional optical solitons can be created. Strong confinement
will lead to two dimensional solitons, moderate confinement to three di-
mensional ones. Weak confinement further allows the individual solitons to
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interact [13]. Modulation of the nonlinearity is achieved by variation of the
external magnetic field, which causes the so called Feshbach resonance [14].
If the magnetic field oscillates around an appropriate value we have a peri-
odic modulation of the scattering length, including a change of sign. These
oscillations, when fast, can stabilize the soliton. Fully three dimensional
BEC solitons can be created by a combination of Feshbach resonance man-
agement and a one dimensional optical lattice. Such a lattice can be created
by illuminating the BEC by a pair of counter-propagating laser beams such
that they form a periodic interface pattern.

Somewhat unexpectedly we found one region of stable 2D solitons in pa-
rameter space and two for 3D soliton formation. This situation is illustrated
in Fig. 5. The two regions where stable 3D solitons exist are distinct. Only
one of them has a counterpart for 2D solitons. The other region appears
when the frequency of the modulation exceeds the lowest excitation fre-
quency of the confining potential which is fixed. The results of Fig. 5 come
from direct simulations, a simplified variational analysis and some simple
theoretical considerations. At first glance it might seem strange that adding

Fig. 5. Stability regions for solitons in the (|g0f |, Ω) plane, as predicted by the

variational approximation (shaded area), and by direct simulations of the Gross–

Pitaevskii equation (circles). Here |g0f | is the average value of the nonlinear inter-

action, Ω is the frequency of the modulation of the scattering length. The frame

on the left was obtained from a 3D analysis and that on the right is the result

of a 2D treatment. The lower region on the left corresponds to 2D solitons, and

solitons in the upper region are fully 3D. As the confinement increases, the lower

region obtained from the 3D analysis becomes more and more like that following

from 2D. For more details see Ref. [13].
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a degree of freedom stabilizes a soliton situation. The key to this dichotomy
seems to be the presence of a periodic modulation. This can be illustrated
by a simple case involving oscillators. Take as the one dimensional version
a forced oscillator problem:

ẍ+ ω2

0x = y cos(ω0t) . (2)

If y is fixed, the solution has a secular component x = yt/(2ω0) sin(ω0t)
+ F (t), where F (t) is a periodic function, and so the amplitude will grow
as t. If, however, we allow a second degree of freedom, such that y also
oscillates (for instance ÿ+ ε2y = 0) the solution stabilizes, unless ε = ±2ω0.
In general this can be the case when there are periodic modulations.
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