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The exclusive production of one µ+µ− pair in collisions of two ultra-
relativistic nuclei is considered. We present the simple method for cal-
culation of the Born cross section for this process. Then we found that
the Coulomb corrections to this cross section (which correspond to multi-
photon exchange of the produced µ± with nuclei) are small while the uni-
tarity corrections are large. This is in sharp contrast to the exclusive e+e−

pair production where the Coulomb corrections to the Born cross section
are large while the unitarity corrections are small. We calculated also the
cross section for the production of one µ+µ− pair and several e+e− pairs in
the leading logarithmic approximation. Using this cross section we found
that the inclusive production of µ+µ− pair coincides in this approximation
with its Born value.

PACS numbers: 25.75.–q

1. Introduction

The lepton pair production in ultra-relativistic nuclear collisions were
discussed in numerous papers (see review [1] and references therein). For
the RHIC and LHC colliders the charge numbers of nuclei Z1 = Z2 ≡ Z and
their Lorentz factors γ1 = γ2 ≡ γ are given in Table I.
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TABLE I

Colliders and the Born cross sections for lepton pair production.

Collider Z γ σe
+

e
−

Born [kb] σµ
+

µ
−

Born
[b]

RHIC, Au–Au 79 108 36.0 0.23

LHC, Pb–Pb 82 3000 227 2.6

The cross section of one e+e− pair production in the Born approxima-
tion, described by Feynman diagram of Fig. 1, was obtained many years
ago [2]. Since the Born cross section σe+e−

Born is huge (see Table I), the
e+e− pair production can be a serious background for many experiments.
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Fig. 1. The Feynman diagram for the lepton pair production in the Born approxi-

mation.

It is also important for the problem of beam lifetime and luminosity of col-
liders. It means that the various corrections to the Born cross section are of
great importance. At present, there are a lot of controversial and incorrect
statements in papers devoted to this subject. The corresponding references
and critical remarks can be found in [1, 3, 4]. Since the parameter Zα may
be not small (Zα ≈ 0.6 for Au–Au and Pb–Pb collisions), the whole series
in Zα has to be summed to obtain the cross section with sufficient accuracy.
The exact cross section for one pair production σ1 can be written in the
form

σ1 = σBorn + σCoul + σunit , (1)

where two different types of corrections have to be distinguished. The
Coulomb correction σCoul corresponds to multi-photon exchange of the pro-
duced e± with nuclei (Fig. 2); it was calculated in [3]. The unitarity correc-
tion σunit corresponds to the exchange of light-by-light blocks between nuclei

Fig. 2. The Feynman diagram for the Coulomb correction.
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Fig. 3. The Feynman diargam for the unitarity correction.

(Fig. 3); it was calculated in [4]. The results of [4] recently were confirmed
in [5] by direct summation of the Feynman diagrams. It was found that the
Coulomb corrections are large while the unitarity corrections are small (see
Table II).

TABLE II

Coulomb and unitarity corrections to the e+e− pair production.

Collider σCoul/σBorn σunit/σBorn

RHIC, Au–Au −25% −4.1%

LHC, Pb–Pb −14% −3.3%

Muon pair production may be easier for an experimental observation.
The calculation scheme for the µ+µ− pair production is quite different from
that for the e+e− pair production.

2. Born cross section for one µ
+

µ
− pair production

The production of one µ+µ− pair

Z1 + Z2 → Z1 + Z2 + µ+µ− , (2)

in the Born approximation is described by the Feynman diagram of Fig. 1.
When two nuclei with charges Z1e and Z2e collide with each other, they emit
equivalent (virtual) photons with the 4-momenta q1, q2, energies ω1, ω2 and
the virtualities Q2

1 = −q2
1, Q2

2 = −q2
2. Upon fusion, these photons produce

a µ+µ− pair with the total four-momentum q1 + q2 and the invariant mass
squared W 2 = (q1 + q2)

2, besides we denote (P1 + P2)
2 = 4E2 = 4M2 γ2,

L = ln (γ2), α ≈ 1/137 and use the system of units in which c = 1 and
~ = 1.

The Born cross section of the process (2) can be calculated with a good
accuracy using the equivalent photon approximation (EPA) — see, for ex-
ample, Ref. [6]. Let the numbers of equivalent photons be dn1 and dn2. The
most important contribution to the production cross section stems from pho-
tons with very small virtualities Q2

i ≪ µ2 where µ is the muon mass. In this
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very region the Born differential cross section dσB for the considered process
is related to the cross section σγγ for the real γγ → µ+µ− process by the
equation

dσB = dn1dn2 dσγγ(W 2) , W 2
≈ 4ω1 ω2 . (3)

The number of equivalent photons are (see Eq. (D.4) in Ref. [6])

dni(ωi, Q
2
i ) =

Z2
i α

π

(

1 −
ωi

Ei

)

dωi

ωi

(

1 −
Q2

i min

Q2
i

)

F 2(Q2
i )

dQ2
i

Q2
i

, (4)

where

Q2
i ≥ Q2

i min =
ω2

i

γ2
, (5)

and F (Q2) is the nucleus electromagnetic form factor. It is important that
the integral over Q2 converges fast at Q2 > 1/R2, were R = 1.2A1/3 fm is
the nucleus radius and A ≈ M/mp (R=7 fm, 1/R=28MeV for Au and Pb).
Since Q2

min . 1/R2, the main contribution to the cross section is given by
virtual photons with energies ωi . γ/R.

In calculation below we use the form factor in a simple approximate form

F (Q2) =
1

1 + Q2/Λ2
, (6)

which leads to

dni(ωi) =
Z2

i α

π
f

(

ωi

Λγ

)

dωi

ωi
, (7)

with

f(x) =
(

1 + 2x2
)

ln

(

1

x2
+ 1

)

− 2 . (8)

Finally we obtain the Born cross section as a simple two dimension in-
tegral:

σB =
Z2

1Z2
2α2

π2

∞
∫

4µ2

dW 2

W 2
G(W 2)σγγ(W 2) =

(Z1αZ2α)2

πµ2
J

(

γΛ

µ

)

, (9)

where

G(W 2) =

ωmax
∫

ωmin

dω

ω
f

(

ω

Λγ

)

f

(

W 2

4Λγω

)

. (10)

It is easy to show that an accuracy of this calculation is determined by the
omitted terms of the order of η1 = Λ2/(W 2 L), i.e. η1 ∼ 5% for the collisions
considered.
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Fig. 4. The function J(γΛ/µ) from Eq. (9).

A numerical evaluation of the integrals in Eqs. (9), (10) yields the func-
tion J(γΛ/µ) presented in Fig. 4.

Let us now consider the probability of muon pair production PB(ρ) in
collision of two nuclei at a fixed impact parameter ρ. The Born cross section
σB can be obtained by the integration of PB(ρ) over the impact parameters:

σB =

∫

PB(ρ) d2ρ . (11)

We calculate this probability in the LLA:

PB(ρ) =

∫

dn1dn2 δ(ρ1−ρ2−ρ)σγγ(W 2) =
28

9π2

(Z1αZ2α)2

(µρ)2
Φ(ρ) . (12)

There are two scales in dependence of function Φ(ρ) on ρ:

Φ(ρ) =
(

4 ln γ
µρ + ln ρ

R

)

ln ρ
R at R ≪ ρ ≤

γ

µ
, (13)

Φ(ρ) =

(

ln
γ2

µ2ρR

)2

at
γ

µ
≤ ρ ≪

γ2

µ2R
. (14)

We compare equations for Φ(ρ) with the numerical calculations based on the
exact matrix element calculated with the approach outlined in [7]. There is
a good agreement for the Pb–Pb collisions: the discrepancy is less then 10%
at µρ > 10 and it is less then 15% at µρ > 2µR = 7.55.

3. Coulomb and unitarity corrections

The Coulomb correction corresponds to Feynman diagram of Fig. 2. Due
to restriction of transverse momenta of additional exchange photons on the
level of 1/R, the effective parameter of the perturbation series is not (Zα)2
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but (Zα)2/(Rµ)2. Besides, the contribution of the additional photons is
suppressed by logarithmic factor. Indeed, the cross section for two-photon
production mechanism is proportional to L3, while the cross section for
multiple-photon production mechanism is proportional to L2. Therefore,
the real suppression parameter is of the order of η2 = (Zα)2/[(Rµ)2L],
which corresponds to the Coulomb correction less then 1%.

The unitarity correction σunit to one muon pair production corresponds
to the exchange of light-by-light blocks between nuclei (Fig. 3). We start
with more general process — the production of one µ+µ− pair and n electron–
positron pairs (n ≥ 0) in collision of two ultra-relativistic nuclei

Z1 + Z2 → Z1 + Z2 + µ+µ− + n (e+e−) , (15)

taking into account the unitarity corrections which correspond to the ex-
change of the blocks of light-by-light scattering via the virtual lepton loops.
The corresponding cross section dσ1+n can be calculated by a simple gener-
alization of the results obtained in paper [5] for the process without muon
pair production: Z1 + Z2 → Z1 + Z2 + n (e+e−). Our result is the following

dσ1+n

d2ρ
= PB(ρ)

[n̄e(ρ)]n

n!
e−n̄e(ρ) , (16)

where n̄e(ρ) is the average number of the e+e− pairs produced in collisions
of two nuclei at a given impact parameter ρ.

In particular, the cross section for the one µ+µ− pair production includ-
ing the unitarity correction is

σ1+0 =

∞
∫

2R

PB(ρ) e−n̄e(ρ) d2ρ . (17)

This expression can be rewritten in the form σ1+0 = σB + σunit , where

σB =

∞
∫

2R

PB(ρ) d2ρ (18)

is the Born cross section discussed in Sec. 2 and

σunit = −

∞
∫

2R

[

1 − e−n̄e(ρ)
]

PB(ρ) d2ρ , (19)

corresponds to the unitarity correction for one muon pair production.
In LLA we find σunit ∼ −1.2 barn for the Pb–Pb collisions at LHC, which

correspond approximately to −50% of the Born cross section. It is seen that
unitarity corrections are large, in other words, the exclusive production of
one muon pair differs considerably from its Born value.
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4. Inclusive production of one µ
+

µ
− pairs

The experimental study of the exclusive muon pair production seems
to be a very difficult task, because this process requires that the muon pair
should be registered without any electron–positron pair production including
e± emitted at very small angles. Otherwise, the corresponding cross section
will be close to the Born cross section.

Indeed, it is clearly seen from the expression for σ1+n that after sum-
ming up over all possible electron pairs we obtain the Born cross section
∑

∞

n=0 σ1+n = σB. Therefore, there is a very definite prediction: the in-
clusive muon pair production coincides with the Born limit. This direct
consequence of calculations which take into account strong field effects, may
be easier to test experimentally then the prediction for cross sections of
several e+e− pair production.

5. Conclusion

The exclusive production of one µ+µ− pair in collisions of two ultra-
relativistic nuclei is considered. We present the simple method for calcula-
tion of the Born cross section for this process.

Then we found that the Coulomb corrections to this cross section are
small while the unitarity corrections are large. This is in sharp contrast
with the exclusive e+e− pair production where the Coulomb corrections to
the Born cross section are large while the unitarity corrections are small.

We calculated also the cross section for the production of one µ+µ− pair
and several e+e− pairs in LLA. Using this cross section we found that the
inclusive production of µ+µ− pair coincides in this approximation with its
Born value.

This work is supported in part by RFBR (code 05-02-16211) and by the
Fund of Russian Scientific Schools (code 2339.2003.2). V.G.S. acknowledged
the financial support from the Organizing Committee of the PHOTON2005
Conference.

REFERENCES

[1] G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, Yu. Kharlov, Phys. Rep.
364, 359 (2002).

[2] L.D. Landau, E.M. Lifshitz, Phys. Zs. Sowjet 6, 244 (1934); G. Racah, Nuovo
Cim. 14, 93 (1937).

[3] D.Yu. Ivanov, A. Schiller, V.G. Serbo, Phys. Lett. B454, 155 (1999).

[4] R.N. Lee, A.I. Milstein, V.G. Serbo, Phys. Rev. A65, 022102-1 (2002).



976 K. Hencken, E.A. Kuraev, V.G. Serbo
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