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The study of the number of photons leads to a new way of characterizing
curves and to a novel integral invariant over curves.
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1. Introduction

It is always surprising how far one good idea can go. And while we are
here celebrating the 100th birthday of the photon, I would like to add one
more fillip on that good idea. This time verging into almost pure mathe-
matics; the photon leads us to a new way of characterizing curves and to a
novel integral invariant over curves.

In classical radiation theory practically all there is to calculate is the
energy radiated; or perhaps occasionally a frequency spectrum or a polar-
ization. But with the advent of the photon there is a new quantity in the
radiation field: just the plain number of photons. This is an ordinary real
number, evidently dimensionsless. And independent of the Lorentz frame;
while changing your velocity can change the energy of a photon, it cannot
change one photon into two photons. If it is well-defined there ought to be
some nice simple formula for it. “But aha”, you will say, “that’s just the
trouble, it’s not well defined. There’s the notorious infra-red catastrophe,
where as we all know, the number of photons radiated is infinite — even
while the radiated energy remains finite.”

Correct. But nevertheless, as I was surprised to realize, there is a general
class of situations where the infra-red catastrophe is averted.

* Presented at the PHOTON2005 Conference, 31 August—4 September 2005, Warsaw,
Poland.

(977)



978 L. STODOLSKY
2. Finite number of photons

Let n be the number of photons radiated by a charge following some
given trajectory. Let the initial and final velocities be exactly the same
— let us “identify” them. In this case n can in fact be finite. This is
because in a scattering process the infra-red catastrophe arises from the
infinite flight paths for the incoming and outgoing particle, as the infinite
range field is shaken off or re-constituted. Or in terms of Fourier transforms,
zero frequency results from infinite time. When the re-constituting is not
necessary because the infinite paths are identical, or when the infinite times
do not occur, the number of photons can be finite. Naturally the exact,
perfect, identity of initial and final velocities will never occur in reality. But
we can still imagine the idealized case and ask ourselves what the nice simple
formula looks like. It looks like this [1]:
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In the first writing S;. is the four-distance between the points z,z’ in the
following way: S2 = (t —t' + i€)? — (z — ’)%. This formula follows from
taking the text book formula for the energy radiated at frequency w and
dividing by w to get n (Planck). This is the only place where quantum
mechanics enters. The e arises in making sure the resulting integral is
defined, but we get rid of it in the second writing by some manipulations
which lead to the factor 2 and the “transverse tangent” expression in the last
writing. The “transverse tangent” means to take the tangent vector dx and to
remove the component of it along the vector A, = (x, —},) connecting the
two points x, z’. This construction cleverly avoids the threatened singularity
as x — ', since as two points approach each other along a curve the tangents
point at each other and dz™ — 0. The result refers of course to the average
number of photons since the number fluctuates — n is not an integer.

Such a formula for n is quite amusing since it means that any curve
satisfying the “identification” requirement has a real number belonging to it
— its own “name”. This is a simple number, an invariant, intrinsic property
of the curve. The “identification” requirement is not really very restrictive
since the curve can do almost anything it wants before it finally goes back out
to infinity parallel (in the four-dimensional sense) to the direction it came
in. “Almost” because to avoid that other lurking danger, the ultra-violet
divergence, the curve must be smooth and not have any kinks or jumps.
One may verify that Eq. (1) leads to the correct result for dipole radiation
and yields the usual association between acceleration and radiation.
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3. Euclidean space

In Minkowski space then, we have a nice way of associating a number
to a curve. We may now even forget photons and physics for a moment
and wonder if this applies to ordinary curves, plain garden-variety curves in
Euclidean space. Indeed, if we take the last form in Eq. (1) as our starting
point, there appears to be nothing against this. The argument that the
transverse tangent construction is finite as z — 2’ still holds. So we write
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and n is still an invariant dimensionless quantity, an intrinsic property of the
curve — basically characterizing its “wiggliness”. We must of course retain
our requirement concerning the infra-red problem. As the curve goes to
+o0 it has the same tangent — becomes the same straight line (remember
that in four-space the tangent was the velocity). But otherwise, as long
as it is smooth, the curve can do anything on its way from —oo to +o0.
We have dropped the a/m since we are now only interested in the purely
mathematical structure, but have kept the (—) sign since this makes things
come out positive.

Fig. 1 shows an example, with n evaluated according to Eq. (2). Accord-
ing to a little Fortran program, the number for this curve is 38.8. Playing
with the end points indicates that the number has essentially gone asymp-
totic in the picture. For the straight line Eq. (2) gives of course zero.
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Fig.1. A curve whose number is 38.8.

Furthermore, in Euclidean space a new opportunity presents itself: the
possibility of closed curves. In Minkowski space a curve could not go “back-
wards” since it could not have a tangent > 45°, outside the light cone. But
now with no light cone to cross, there is no reason not to consider closed
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curves. Furthermore, note that for a closed curve the “beginning” and “end”
of a trajectory are the same, so the identity of initial and final tangents is
automatic.
If all this is true then what is the number of that most basic of closed
curves, the circle? It is:
Ncircle = 271'2 s (3)

as just follows from integrating Eq. (2) directly. The value is of course
a result of the normalization we chose for our integral, but once we have
chosen it, it is the same for all circles, big ones and small ones; n depends
only the shape of the curve. In addition, we also might have the strong
suspicion that among all plane curves the circle has the smallest n. I believe
this is indeed true and hope to present a proof shortly. To exemplify this,
here is a little table for the ellipse with different eccentricities €. The first
entry, for the circle, is close to 72 = 9.87, and as would be expected, the
more eccentric the ellipse the larger n.

TABLE

Numerical evaluation of Eq. (2) for ellipses of increasing eccentricity.

Eccentricity | n/2
0 9.83
0.5 9.93
0.7 10.4
0.9 134
0.95 17.2
0.99 35.2

4. Inversion and a new integral invariant

Given a curve, what other curves have the same n? We might suspect,
because of the dimensionless character of Eq. (2), that in addition to the
usual invariances under translation, rotation and so forth, that n is confor-
mally invariant [2]. The essential part of conformal invariance is the inversion
T; — ;ﬂ—; The inversion carries closed curves into closed curves except when
the center of inversion is on the curve itself, in which case the circle, for
example, becomes the straight line going to infinity. It then turns out that
Eq. (2) is invariant under inversions, except for these exceptional cases. In
the exceptional cases one must universally add 272. This is just right to get
Eq. (3) when inverting the straight line, for which n is zero, to a circle.
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The fact that this extra addition is universal — in this case is the same
for any closed curve — is suggestive [3] of the “anomaly”. That is we have
symmetry breaking — here for the inversion — but in a universal manner.
The analysis of this situation leads to the study of a quantity called I [2].
I has the same value for all curves of a given class, of which there are four,
and represents a novel kind of integral invariant.
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