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We discuss a model for total hadronic and photonic cross-sections which
includes hard parton–parton scattering to drive the rise and soft gluon re-
summation to tame it. Unitarity is ensured by embedding the cross-section
in the eikonal formalism. Predictions for LHC and ILC are presented.
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1. Introduction

Over three decades ago, the unexpected rise of the total proton–proton
cross-section gave the first strong indications regarding the existence of hard
scattering amongst the parton constituents of the proton [1]. And in the very
near future, at the LHC, a new much higher energy window for parton parton
scattering will open up for which a precise knowledge of total cross-section
predictions will be necessary to disentangle background from other processes
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and perhaps detect new physics. In this note we shall give an overview of
the physical role of the various parameters entering most phenomenological
descriptions of the total cross-section and subsequently present a model —
which incorporates them — that can be used to predict the total cross-
section at the LHC and at the Photon Collider.

2. Understanding the parameters in total cross-section models

The proton data exhibit, and require explanation of, three basic features:

(i) the normalization of the cross section,

(ii) an initial decrease and

(iii) a subsequent rise with energy.

Many models are available in the literature regarding the above issues,
their predictions depending upon a number of parameters which are usually
fixed by comparison with the low energy data. Before discussing some of
these models and their predictions, we shall provide phenomenomenological
reasons for the approximate values of the parameters which are responsible
towards a satisfactory description of the above behaviours (i)–(iii).

Let us recall that the decrease and the subsequent rise are well under-
stood within a number of models as due to the exchange of a Regge and a
Pomeron trajectory, through the expression

σtot(s) = Xsǫ + Y s−η . (1)

The two terms of Eq. (1) reflect the well known duality between resonance
and Regge pole exchange on the one hand and background and Pomeron
exchange on the other, established in the late 60’s through FESR [3]. This
correspondence meant that, while at low energy the cross-section could be
written as due to a background term and a sum of resonances, at higher
energy it could be written as a sum of Regge trajectory exchanges and a
Pomeron exchange.

Before entering into the phenomenological analysis, it is good to ask (i)
where the “two component” structure of Eq. (1) comes from and (ii) why
the difference in the two powers (in s) is approximately a half.

Our present knowledge of QCD and its employment for a description of
hadronic phenomena can and does provide some insight into the nature of
these two terms. We shall begin answering the above two questions through
considerations about the bound state nature of hadrons which necessarily
transcends perturbative QCD. For hadrons made of light quarks (q) and
glue (g), the two terms arise from qq̄ and gg excitations. For these, the
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energy is given by a sum of three terms: (i) the rotational energy, (ii) the
Coulomb energy and (iii) the “confining” energy. If we accept the Wilson
area conjecture in QCD, (iii) reduces to the linear potential [4,5]. Explicitly,
in the CM frame of two massless particles, either a qq̄ or a gg pair separated
by a relative distance r with relative angular momentum J , the energy is
given by

Ei(J, r) =
2J

r
−

Ciᾱ

r
+ Ciτr , (2)

where i = 1 refers to qq̄, i = 2 refers to gg, τ is the “string tension” and
the Casimir’s are C1 = CF = 4/3, C2 = CG = 3. ᾱ is the QCD
coupling constant evaluated at some average value of r and whose precise
value will disappear in the ratio to be considered. The hadronic rest mass
for a state of angular momentum J is then computed through minimizing
the above energy

Mi(J) = Minr

[

2J

r
−

Ciᾱ

r
+ Ciτr

]

, (3)

which gives

Mi(J) = 2
√

(Ciτ)[2J − Ciᾱ] . (4)

The result may then be inverted to obtain the two sets of linear Regge
trajectories αi(s)

αi(s) =
Ciᾱ

2
+

(

1

8Ciτ

)

s = αi(0) + α′
is . (5)

Thus, the ratio of the intercepts is given by

αgg(0)

αqq̄(0)
=

CG

CF
=

9

4
. (6)

Employing our present understanding that resonances are qq̄ bound states
while the background, dual to the Pomeron, is provided by gluon–gluon
exchanges [6], the above equation can be rewritten as

αP (0)

αR(0)
=

CG

CF
=

9

4
. (7)

If we restrict our attention to the leading Regge trajectory, namely the
degenerate ρ − ω − φ trajectory, then αR(0) = η ≈ 0.48 − 0.5, and we
obtain for ǫ ≈ 0.08–0.12, a rather satisfactory value. The same argument
for the slopes gives

α′
gg

α′
qq̄

=
CF

CG
=

4

9
, (8)
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so that if we take for the Regge slope α′
R ≈ 0.88–0.90, we get for α′

P ≈
0.39–0.40, in fair agreement with lattice estimates [7].

We now have good reasons for a break up of the amplitude into two
components. To proceed further, it is necessary to realize that precisely
because massless hadrons do not exist, Eq. (1) violates the Froissart bound
and thus must be unitarized. To begin this task, let us first rewrite Eq. (1)
by putting in the “correct” dimensions

σ̄tot(s) = σ1

(s

s̄

)ǫ
+ σ2

( s̄

s

)1/2

, (9)

where we have imposed the nominal value η = 1/2. In the following, we
shall obtain rough estimates for the size of the parameters in Eq. (9).

A minimum occurs in σ̄tot(s) at s = s̄, for σ2 = 2ǫσ1. If we make this
choice, then Eq. (9) has one less parameter and it reduces to

σ̄tot(s) = σ1

[

(s

s̄

)ǫ
+ 2ǫ

( s̄

s

)1/2
]

. (10)

We can isolate the rising part of the cross-section by rewriting the above as

σ̄tot(s) = σ1

[

1 + 2ǫ
( s̄

s

)1/2
]

+ σ1

[(s

s̄

)ǫ
− 1
]

. (11)

Eq. (11) separates cleanly the cross-section into two parts: the first part is a
“soft” piece which shows a saturation to a constant value (but which contains
no rise) and the second a “hard” piece which has all the rise. Moreover, s̄
naturally provides the scale beyond which the cross-sections would begin to
rise. Thus, our “Born” term assumes the generic form

σB
tot(s) = σsoft(s) + ϑ(s − s̄)σhard(s) , (12)

with σsoft containing a constant (the “old” Pomeron with αP (0) = 1) plus
a (Regge) term decreasing as 1/

√
s and with an estimate for their relative

magnitudes (σ2/σ1 ∼ 2ǫ). We shall assume that the rising part of the
cross-section σhard is provided by jets which are calculable by perturbative
QCD, obviating (at least in principle) the need of an arbitrary parameter ǫ.

An estimate of σ1 may also be obtained through the hadronic string
picture. Eq. (3) gives us the mean distance between quarks or the “size” of
a hadronic excitation of angular momentum J in terms of the string tension

r̄(J)2 =
2J − CF ᾱ

τ
. (13)



Total Cross Sections and Soft Gluon Resummation 1097

Thus, the size R1 of the lowest hadron (which in this Regge string picture
has J = 1, since αR(0) = 1/2) is given by

R2
1 =

1

τ
= 8α′ . (14)

If two hadrons each of size R1 collide, their effective radius for scattering
would be given by

Reff =
√

R2
1 + R2

1 =
√

2R1 , (15)

and the constant cross-section may be estimated (semi-classically) to be
roughly

σ1 = 2πR2
eff = 4πR2

1 ≈
4π

τ
= 32πα′ , (16)

which is about 40 mb, a reasonable value. In the later sections, for the “soft”
cross-section we shall take a value of this order of magnitude as the nominal
value.

The last remaining parameter is the scale s̄, the jet production threshold
in the hadronic cross-section. In e+e− annihilation, the threshold for jet pro-
duction can be estimated from the appearance of multihadronic production
in e+e− scattering first observed at ADONE around 3 GeV. For scattering of
two hadrons, this should translate into

√
s̄ ≈ 12 GeV. Thus, from Eq. (11),

we have

σ1

[

1 + 2ǫ
( s̄

s

)1/2
]

≈ σ1

(

1 +
2
√

s

)

. (17)

The above phenomenological estimate holds for proton–antiproton scatter-
ing, whereas for proton–proton, which has no resonances in the s-channel,
no Regge exchange is expected to contribute and only the (approximately)
constant term remains.

3. The Bloch–Nordsieck model for LHC

In the past, several authors realized that QCD offers an elegant expla-
nation of the rise of the cross-section via the minijets and hence suggested
that the rise of σtot with energy was driven by the rapid rise with energy of
the inclusive jet cross-section

σab
jet(s) =

√
s/2
∫

ptmin

dpt

1
∫

4p2
t
/s

dx1

1
∫

4p2
t
/(x1s)

dx2

∑

i,j,k,l

fi|a(x1)fj|b(x2)
dσ̂ij→kl(ŝ)

dpt
.

(18)
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In an eikonal minijet model (EMM), the total cross-section then reads

σtot ≃ 2

∫

d2~b
[

1 − e−n(b,s)/2
]

(19)

wherein

n(b, s) = 2Im χ(b, s) = nsoft + nhard = Asoft(b)σsoft(s) + Ajet(b)σjet(s) (20)

and Re χ(b, s) = 0. In the Bloch–Nordsieck (BN) model [8], the overlap
functions Ai(b) are s-dependent and given by

ABN =
e−h(b,s)

∫

d2~be−h(b,s)
, (21)

h(b, s) =
8

3π

qmax
∫

0

dk

k
αs(k

2) ln

(

qmax +
√

q2
max − k2

qmax −
√

q2
max − k2

)

[1 − J0(kb)] (22)

and qmax depends on energy and the kinematics of the process [9].
The eikonal formalism which we use to describe the total cross-section,

incorporates multiple parton–parton collisions, accompanied by soft gluon
emission from the initial valence quarks, to leading order. Notice that in
this model, we consider emissions only from the external quark legs. In
the impulse approximation — on which the parton model itself is based —
the valence quarks are free, external particles. In this picture, emission of
soft gluons from the gluons involved in the hard scattering, is non leading.
As the energy increases, more and more hard gluons are emitted but there
is also a larger and larger probability of soft gluon emission: the overall
effect is a rise of the cross-section, tempered by the soft emission, i.e. the
violent mini-jet rise due to semi-hard gluon–gluon collisions is tamed by
soft gluons. Crucial in this model, are the scale and the behaviour of the
strong coupling constant which is present in the integral over the soft gluon
spectrum. While in the jet cross-section αs never plunges into the infrared
region, as the scattering partons are by construction semi-hard, in the soft
gluon spectrum, the opposite is true and a regularization is mandatory. We
notice however that here, as in other problems of soft hadron physics [10],
what matters most is not the value of αs(0), but rather its integral. Thus, all
that we need to demand, is that αs be integrable, even if singular [11]. We
employ the same phenomenological expression for αs as used in our previous
works, namely

αs(k⊥) =
12π

(33 − 2Nf )

p

ln[1 + p(k⊥

Λ )2p]
. (23)
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Through the above, we were able to reproduce the effect of the phenomeno-
logically introduced intrinsic transverse momentum of hadrons [11], and
more recently obtained a very good description of the entire region where
the total cross-section rises [8]. This expression for αs coincides with the
usual one-loop expression for large values of k⊥, while going to a singular
limit for small k⊥. For p = 1 this expression corresponds to the Richardson
potential [12] used in bound state problems. We see from Eq. (22) that
p = 1, leads to a divergent integral, and thus cannot be used. Notice that,
presently, in the expression for h(b, s), the masses of the emitting particles
are put to zero as is usual in perturbative QCD. Thus, for a convergent in-
tegral, one requires p < 1 and the successful phenomenology indicated in [8]
gave p = 3/4.
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Fig. 1. Comparison of pp and pp̄ total cross-section data [13–19] with predictions

for the total pp and pp̄ cross-section from the QCD model described in the text for

an optimal choice of parameters.
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4. The photon–photon total cross-section

We now show an application of the above model [21] to photon–photon
scattering and its comparison with present data [20, 22] and with another
model [23].
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Fig. 2. Predictions for the total photon–photon cross-section based on the QCD

model described in the text a parameters set consistent with those for proton and

proton–antiproton scattering.
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