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The target mass dependence of the sum rule for the polarized vir-
tual photon structure function gγ

1 (x,Q2, P 2) is studied when P 2, the mass
squared of the target photon, changes from on-shell to far off-shell. Also the
sum rule for another polarized structure function gγ

2
(x,Q2, P 2) is analyzed

in Parton Model (PM). It is found that the first moment of gγ

2 calculated
in PM vanishes independent of Q2, P 2 and quark mass.
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1. Introduction

In the electron–positron collision experiments in the future International
Linear Collider, we can study the structure of the photon. When e+ and e−

beams are polarized, we can measure the spin-dependent structure functions
gγ
1 (x,Q2, P 2) and gγ

2 (x,Q2, P 2) of photon (Fig. 1), where −Q2(−P 2) is the
mass squared of the probe (target) photon. We have studied the sum rules
of gγ

1 and gγ
2 , especially focusing on the dependence of these sum rules on the

photon mass parameters P 2 and Q2. In this talk we will report our result.

∗ Presented by K. Sasaki at the PLC2005 Workshop, 5–8 September 2005, Kazimierz,

Poland.
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Fig. 1. Deep inelastic scattering on a virtual photon in e+e− collision.

2. Sum rule of g
γ

1

The polarized structure function gγ
1 of the real photon satisfies a remark-

able sum rule [1–3]
1∫

0

dxgγ
1 (x,Q2) = 0 . (1)

Actually, applying the Drell–Hearn–Gerasimov sum rule to the case of vir-
tual photon target and using the fact that the photon has zero anomalous
magnetic moment, the authors of Ref. [3] showed that the first moment of
gγ
1 (x,Q2) vanishes independent of Q2 and that the sum rule holds to all

orders in perturbation theory in both QED and QCD.
When the target photon becomes off-shell, i.e., P 2 6= 0, the sum rule for

the corresponding photon structure function gγ
1 (x,Q2, P 2) does not vanish

any more. In fact, it has been calculated up to the next-to-leading order
(NLO) (O(ααs)) in QCD for the case Q2 ≫ P 2 ≫ Λ2, where Λ is the QCD
scale parameter [2, 4];

1∫

0

dxgγ
1 (x,Q2, P 2) = −

3α

π

[
nf〈e

4〉
(
1 −

αs(Q
2)

π

)

−
2

β0

(
nf〈e

2〉
)2

(αs(P
2)

π
−
αs(Q

2)

π

)]
+O(αα2

s ) , (2)

with β0 =11−2nf/3 being the one-loop QCD β function. Here α (αs(Q
2)) is

the QED (QCD running) coupling constant, nf〈e
4〉 =

∑nf

i=1 e
4
i and nf〈e

2〉 =∑nf

i=1 e
2
i with ei being the electric charge of the active quark and nf the

number of active quarks. The first term in the square brackets of the r.h.s.
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of Eq. (2) is coming from the QED axial anomaly while the second term is
from the QCD axial anomaly.

Now the question is how the sum rule of gγ
1 changes when the target

photon shifts from on-shell (P 2 = 0) to far off-shell (P 2 ≫ Λ2) [5]. Re-
call that for the operator product expansion (OPE) of two electromagnetic
(and thus gauge-invariant) currents, only gauge-invariant operators need to
be included with their renormalization basis [6]. Since there is no gauge-
invariant twist-two gluon and photon operators with spin one, we need to
consider only quark operators, i.e., the flavor singlet Rσ

S = ψγσγ51ψ and

nonsinglet Rσ
NS = ψγσγ5(Q

2
ch − 〈e2〉1)ψ axial currents, where 1 is an nf ×nf

unit matrix and Q2
ch is the square of the nf ×nf quark-charge matrix. Then

the first moment of gγ
1 is expressed as

1∫

0

dxgγ
1 (x,Q2, P 2) = CS

(
Q2

µ2
, ḡ(µ2), α

)
〈γ(p)|RS(µ2)|γ(p)〉

+CNS

(
Q2

µ2
, ḡ(µ2), α

)
〈γ(p)|RNS(µ2)|γ(p)〉 . (3)

Here CS and CNS are the coefficient functions corresponding to the axial
currents Rσ

S and Rσ
NS, respectively, and µ is the renormalization point.

Since we are interested in P 2-dependence of the sum rule and the range
of P 2 covers from the region P 2 ≫ Λ2 to the on-shell P 2 = 0, we take the
renormalization point at µ2 = Q2

0 ≫ Λ2. Then the photon matrix element
of the axial current Ri (i = S, NS) may be divided into two pieces:

〈γ(p)|Ri(µ
2 = Q2

0)|γ(p)〉

(α/4π)
= Ai(Q

2
0;P

2)

= Ãi(Q
2
0;P

2) + Âi . (4)

The second term Âi is the matrix element with the photon state taken to
be far off-shell P 2 = Q2

0 ≫ Λ2, and thus considered to be a point-like piece.
We can calculate it perturbatively and in the leading order (LO) we find

ÂS = −12nf〈e
2〉 ,

ÂNS = −12nf

(
〈e4〉 − 〈e2〉2

)
, (5)

which are related to the Adler–Bell–Jackiw anomaly. The first term Ãi(Q
2
0;P

2)
in Eq. (4) is the rest which contains a nonperturbative contribution. Since
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we have CS = 〈e2〉 and CNS = 1 in the LO, we obtain from Eqs. (3)–(5)

1∫

0

dxgγ
1 (x,Q2, P 2) = −

3α

π
nf〈e

4〉

+
α

4π

{
〈e2〉ÃS(Q2

0;P
2) + ÃNS(Q

2
0;P

2)
}
. (6)

The last two terms vanish as we go to higher P 2 ≫ Λ2. But for the real
photon target, these terms turn out to be the hadronic contributions which
cancel the first term arising from the pure QED point-like interaction.

In order to estimate the magnitude of these hadronic terms ÃS(Q2
0;P

2)

and ÃNS(Q2
0;P

2), we adopt the viewpoint of the Vector Dominance Model.
Using the current-field identity [7], Je.m.

µ = (m2
V /fV )Vµ, where Je.m.

µ is the
electromagnetic current, Vµ and mV are the field and mass of the relevant
vector boson1, we obtain

ÃS(Q
2
0;P

2) = 〈e2〉
(m2

V

fV

)2( 1

m2
V + P 2

)2
〈V |J5|V 〉 , (7)

ÃNS(Q
2
0;P

2) =
(
〈e4〉 − 〈e2〉2

)(m2
V

fV

)2( 1

m2
V + P 2

)2
〈V |J5|V 〉 . (8)

The condition that the sum rule should vanish at P 2 = 0 (see Eq. (1)) leads
to 〈V |J5|V 〉 = 12nff

2
V .

Putting all together, we finally obtain the LO expression for the sum
rule of gγ

1 whose target photon mass squared ranges from P 2 = 0 (on-shell)
to the region Λ2 ≪ P 2 ≪ Q2:

1∫

0

dxgγ
1 (x,Q2, P 2) = −

3α

π
nf〈e

4〉

{
1 −

( m2
V

m2
V + P 2

)2
}
. (9)

The extension of the formula to the NLO (to the order O(ααs)) is straight-
forward. In Fig. 2 we plot the first moment of gγ

1 as a function of P 2. We
have taken mV = 0.7GeV. We see that the first moment quickly approaches
the value −3αnf〈e

4〉/π as P 2 goes to 1GeV2.

1 For simplicity, we consider here the contribution of only one vector boson. Refinement

of the analysis introducing more vector bosons is straightforward.
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Fig. 2. The first moment of gγ

1 as a function of P 2.

3. Sum rule of g
γ

2

It is known that the nucleon structure function gnucl
2 satisfies the

Burkhardt–Cottingham (BC) sum rule [8]

1∫

0

dx gnucl
2 (x,Q2) = 0 . (10)

Its derivation relies on the assumption of the Regge theory. As for the virtual
photon structure function gγ

2 , the general OPE analysis leads to the moment
sum rule

1∫

0

dxxn−1gγ
2 (x,Q2, P 2) =

n− 1

n

{
−

∑

i

an
(2)iE

n
(2)i(Q

2) +
∑

i

an
(3)iE

n
(3)i(Q

2)

}

which holds in the kinematical region Q2 ≫ P 2. The first and second terms
in the curly brackets are the twist two and three contributions, respectively.
Thus the BC sum rule also holds for gγ

2 :

1∫

0

dx gγ
2 (x,Q2, P 2) = 0, for Q2 ≫ P 2 . (11)

Does gγ
2 satisfy the BC sum rule for other kinematical region? To answer

this question, we analyze the sum rule of gγ
2 in the Parton Model (PM) for

arbitrary Q2 and P 2, and a quark mass m. Actually, we have the PM result
for gγ

2 at hand [9–11], which was obtained from evaluating the box diagrams
for γγ → qq in Fig. 3
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gγ
2 (x,Q2, P 2)

∣∣∣
PM

= −
α

π
δγ

{
L

β̃5

[
x(3 − β̃2)

P 2

Q2
+ β̃2(2 − x) + 3(x− 1)

]

+
β

β̃2(1 − β2β̃2)

[
4x
m2

Q2
+

3x{(β2 + 1)β̃2 − 2}

β̃2

P 2

Q2

+
(β̃2 + 3x− 3){(β2 + 1)β̃2 − 2}

β̃2

]}
, (12)

where

β̃ =

√
1 −

p2q2

(p · q)2
, β =

√
1 −

4m2

(p+ q)2
, L = ln

1 + ββ̃

1 − ββ̃
. (13)

The BC sum rule of gγ
2 (x,Q2, P 2)

∣∣∣
PM

has been analyzed for the limiting case

Q2 → ∞ with the ratio r = P 2/m2 fixed in Ref. [10]. It was found that the
BC sum rule is satisfied in this limit with all values of r.

q

k

p

q

k

p

+

Fig. 3. The box diagrams contributing to gγ

2 .

We pursue further to see if the PM result (12) still satisfies the sum rule
for arbitrary Q2, P 2 and m2. Now Q2 is finite, the maximal value of the
Bjorken variable x is not 1 but xmax = 1/(1+P 2/Q2 +4m2/Q2). Using the
expression given in Eq. (12) we perform the integration and find

xmax∫

0

dx gγ
2 (x,Q2, P 2)

∣∣∣
PM

= 0, for arbitrary Q2, P 2,m2 . (14)

Thus the first moment of the box graph contribution to gγ
2 vanishes inde-

pendent of the virtuality of both the probe and target photons and also
irrespective of the produced quark mass. It is an unexpected result at least

to the present authors. It may be due to superconvergence or to some sym-
metry. We need a simple explanation. Recalling the fact that the PM also
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gives the sum rule
∫ xmax

0 dxgγ
1 (x,Q2)|PM = 0 for the real photon target, and

that we actually have the sum rule Eq. (1), it is well expected that the BC
sum rule indeed holds for the actual structure function gγ

2 (x,Q2, P 2) with
arbitrary Q2 and P 2.

4. Summary

The sum rules for the polarized photon structure functions gγ
1 and gγ

2 are
studied. The first moment of gγ

1 is predicted to change quickly from null to
the value −3αnf〈e

4〉/π as P 2 goes from 0 to 1 GeV2. Also it is found that
the first moment of the box graph contribution to gγ

2 vanishes independent
of Q2, P 2 and the produced quark mass.
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