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This talk consists of two parts. In the first, the present experimental
bounds on the anomalous couplings of the gauge bosons, based mainly on
the LEP and Tevatron experiments, are reviewed. In the second part, the
theorem of helicity conservation (HC) is presented, which should be valid
in either the Standard Model (SM) or MSSM, for any two-body process
at high energies and fixed angles. The energy-range for the HC validity
is discussed and, under certain conditions, it should well be within the
LHC or ILC range. Since all known anomalous couplings violate HC, its
testing may provide a way for generically identifying the possible presence
of anomalous (non-renormalizable) contributions.

PACS numbers: 12.15.Lk, 12.60.Jv, 14.70.–e

1. Introduction

The description of particle physics through renormalizable SU(3)× SU(2)
×U(1) gauge invariant interactions, has been impressively successful, up to
now.

The keyword here is renormalizable, which imposes that only operators
of dimensions less than or equal to four, can appear in the Lagrangian. This
property, together with the group structure, determine the gauge and matter
interactions, leading e.g. to the most striking phenomenon of asymptotic

freedom which permeates contemporary particle and cosmology physics [1].
In order to thoroughly test experimentally these interactions, alternative

models are envisaged, which may be used as parameterizations of any pos-
sible violation of their validity. As such, in the present context we consider
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anomalous gauge couplings [2–4]. These anomalous couplings can always
be assumed to obey SU(3)× SU(2)×U(1) symmetry [5]; but, due to their
higher dimensionality, they violate renormalizability.

Extensive phenomenological studies have already been made in various
specific processes, comparing the signatures of such couplings, to those of
e.g. the Standard Model (SM). On the basis of these, experimental searches
have been performed at LEP, the Tevatron and elsewhere; which invariably
impose ever growing constraints on the magnitude of any conceivable anoma-
lous coupling. Thus, at present at least, SM (as well as its renormalizable
SUSY extensions), are fully consistent with Nature.

The strength of these constraints will most probably further increase
when LHC or ILC start operating, basically because the non-renormalizable
nature of the anomalous couplings bounds their effects to increase strongly
with energy. Such a strong increase is in fact a common feature of all effec-
tively non-renormalizable ways of going beyond SM or its SUSY analogs1.
In turn, this facilitates their exclusion, provided of course we adhere to the
usual practice of considering e.g. only a few anomalous couplings at a time.

As the energy increases reaching the LHC range though, it becomes in-
creasingly difficult to motivate the idea that the anomalous couplings may be
parameterized by a few dimension=6 operators only. Instead, higher dimen-
sional operators (as well as previously ignored dimension=6 ones) should be
considered together; particularly if the scale of new physics is reached there,
thereby seriously reducing the ability to constrain the anomalous couplings.

A partial solution to this difficulty is offered by the property called helic-
ity conservation (HC), which in SM and its renormalizable SUSY extensions,
greatly reduces the number of non-vanishing amplitudes at very high ener-
gies and fixed angles [6]. Combining this with the observation that all known
anomalous couplings violate HC, we obtain a generic test for all of them.

The importance of HC as a property of SM and MSSM, and in fact of
any renormalizable gauge theory, can hardly be overemphasized. Its valid-
ity, particularly for gauge amplitudes in SM, is only established after large
cancellation from different diagrams, which are only realized for renormal-
izable couplings [6]. Because of this, HC is not directly obvious from the
SM Lagrangian, and it must somehow be related to the twistor structure in
QCD [7]. The possible appearance of HC violation indicates the presence
of some non-renormalizable contributions, an example of which is of course
the anomalous couplings [6].

In the first part of this talk I review the present constraints on the
anomalous gauge couplings; while in the second part, HC is described.

1 Similar effects are observed e.g. in extra large dimension models determined by an
effectively non-renormalizable Lagrangian.
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2. Anomalous electroweak couplings

As is well known, anomalous electroweak couplings may be introduced in
SM or MSSM by including operators of higher than four dimension, which
preserve the SU(3)×SU(2)×U(1) gauge symmetry. These operators induce
anomalous couplings not only to the gauge bosons, but also to the Higgs
particles [8], and the quarks and leptons, particularly of the third family [9].
Since no Higgs particle has yet been discovered, and the top anomalies are
covered by Wudka [10], we will concentrate here on the purely gauge anoma-
lous couplings.

2.1. W± anomalous couplings

The most general set of the anomalous triple gauge couplings (TGC)
describing all possible (W+W−Z) and (W+W−γ) vertices, is traditionally
parameterized as [2–4]

LTGC
NP = −iegV WW

{

(

1 + δgV
1

)

V µ(W−
µνW+ν − W+

µνW−ν)

+ (1 + δκV )V µνW+
µ W−

ν +
λV

m2
W

V µνW+ρ
ν W−

ρµ

+ igV
5 εµνρσ [(∂ρW−µ)W+ν − W−µ(∂ρW+ν)]V σ

+ igV
4 W−

µ W+
ν (∂µV ν + ∂νV µ) − κ̃V W−

µ W+
ν Ṽµν

− λ̃V

m2
W

W−
ρµW+µṼ νρ

}

, (1)

where

Ṽµν =
1

2
εµνρσV ρσ ,

V = γ , Z ↔ gγWW = 1 , gZWW =
cW

sW
. (2)

The anomalous couplings (δgV
1 , δκV , λV , gV

5 ) respect CP, while (gV
4 , κ̃V , λ̃V )

violate it. For the photon couplings in particular, Uem(1) gauge invariance
implies that

δgγ
1 ∼ q2

Λ2
, gγ

5 ∼ q2

Λ2
, gγ

4 ∼ q2

Λ2
,

as the off-shell photon approaches its mass shell value q2 = 0.
The phases in the effective Lagrangian (1) have been chosen so that all

couplings are real, in case the scale of the new physics (NP) inducing them is
very high. If the NP scale is low though, pole and branch-point singularities
develop.
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All anomalous TGC are consistent with SU(3) × SU(2) × U(1) gauge
invariance, provided they are combined with appropriate interactions in-
volving more gauge and/or physical Higgs particles. To achieve this for the
actual couplings in (1) though, operators of dimension up to 12 need be
considered [5].

Of course, if the NP scale is not very high, like e.g. in a SUSY case with
the new particles at the LHC range, operators of any dimension would be
allowed, seriously weakening our ability to constrain them.

If, on the contrary, the NP scale is high though, and the physical Higgs
particles are within the electroweak range, then the natural couplings of the
induced operators should be g0 ∼ 1/Λdim−4, allowing the contemplation that
dimension=6 operators2 could be sufficient in describing NP.

Disregarding all such operators which are strongly excluded due to their
tree-level contributions to physical observables, and assuming also that only
one SM-like light Higgs particle exists, we parameterize the anomalous con-
tribution to the effective Lagrangian describing the W± TGC as [12]

LTGC
NP (dim = 6) =

e

cW m2
W

αBφOBφ +
e

sW m2
W

αWφOWφ +
e

sW m2
W

αWOW

+
e2

2sW cW m2
W

α̃BW ÕBW +
e

sW m2
W

α̃W ÕW , (3)

with

OW =
1

3!
( ~Wµν × ~W νλ) · ~W µ

λ , OWφ = iDµφ†~τ ~W µνDνφ ,

OBφ = iDµφ†BµνDνφ ,

ÕW =
1

3!
( ~Wµν × ~W νλ) · ~̃W

µ

λ , ÕWφ =
i

2
φ†~τ ~̃W

µν

φBµν , (4)

where the first three operators conserve CP, while the rest two violate it.
The anomalous couplings defined in (1), are related to those in (3), by

δgZ
1 =

αWφ

c2
W

, λγ = λZ = αW , δκγ = − c2
W

s2
W

(

δκZ − δgZ
1

)

= αWφ + αBφ ,

κ̃γ = − c2
W

s2
W

κ̃Z = α̃BW , λ̃γ = λ̃Z = α̃W . (5)

Restricting to CP conserving couplings only, and using the definitions

κγ ≡ 1 + δκγ , κZ ≡ 1 + δκZ , gV
1 ≡ 1 + δgV

1 ,

2 Alternative ways of ordering the NP operators have been contemplated, in case no
light Higgs particles exist; see e.g. [11].



Contrasting the Anomalous and the SM–MSSM Couplings at . . . 1115

we end up in a situation where only the three independent couplings

gZ
1 , κγ , λγ , (6)

participate, whose standard values are (1,1,0), respectively. The fitted LEP
ranges for these parameters from [13] are indicated in Fig. 1 and Table I
obtained, respectively, by varying two or one parameter at a time.
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Fig. 1. The combined LEP2 results from [13]. In each case two of the parameters

in (6) are varied, while the third is fixed at its standard value.

The corresponding one-parameter Tevatron D0 fits from [14], are given
in Table II. Due to the large energy scale there, the anomalous couplings are
replaced by form factors as e.g. λZ → λZ/(1 + ŝ/Λ2), and the presented fits
correspond to Λ = 1 and 1.5TeV.

As usual, the W± TGC constraints become stronger with energy. Thus,
even stronger constrains are expected at LHC and ILC. One additional rea-
son for this, applying to the specific operators OW ,OWφ, ÕW in (4), is that
they also produce quartic couplings of the form WWγγ, WWZγ, WWZZ,
which may also be measured [15].
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TABLE I

The combined LEP2 results from [13]. In each case the listed parameter is varied
while the other two of (6) are fixed to their standard values.

Parameter 68% C.L. 95% C.L.

gZ
1 0.9910.022

0.021 [ 0.949, 1.034]

κγ 0.9840.042
0.047 [ 0.895, 1.069]

λγ −0.0160.021
0.023 [−0.059, 0.026]

TABLE II

One-parameter 95% C.L. fits from D0 [14].

Condition Λ = 1 TeV Λ = 1.5 TeV

∆gZ
1 = ∆κZ = 0 −0.53 < λZ < 0.56 −0.48 < λZ < 0.48

λZ = ∆κZ = 0 −0.57 < ∆gZ
1 < 0.76 −0.49 < ∆gZ

1 < 0.66

λZ = 0 −0.49 < ∆gZ
1 = ∆κZ < 0.66 −0.43 < ∆gZ

1 = ∆κZ < 0.57

λZ = ∆gZ
1 = 0 −2.0 < ∆κZ < 2.4 −

Eventually, these constraints will become so strong, particularly for ILC,
that 1-loop or higher SM results will be needed for correctly taking into
account the “SM-background”.

2.2. The on-shell anomalous triple neutral gauge couplings

Using Fig. 2 and [3, 16] the general triple neutral gauge vertex is writ-
ten as

Γαβµ
ZZV (q1, q2, P ) =

i(s − m2
V )

m2
Z

[

fV
4 (Pαgµβ +P βgµα)−fV

5 εµαβρ(q1−q2)ρ

]

, (7)

Γαβµ
ZγV (q1, q2, P ) =

i(s−m2
V )

m2
Z

{

hV
1 (qµ

2 gαβ−qα
2 gµβ)+

hV
2

m2
Z

Pα
[

(Pq2)g
µβ−qµ

2 P β
]

−hV
3 εµαβρq2ρ −

hV
4

m2
Z

PαεµβρσPρq2σ

}

, (8)

where (V3 = Z, γ) is generally off-shell, while the other two neutral gauge
bosons are always on-shell. If the NP scale is very high, all couplings in
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(7), (8) are real. Singularities develop only if the NP scale is nearby. The
couplings (fV

5 , hV
3 , hV

4 ) respect CP, while (fV
4 , hV

1 , hV
2 ) violate it. Finally, the

(hV
2 , hV

4 )-interactions may be relatively suppressed, since they are of higher
dimension.

�V3�(P ) V2�(q2)
V1�(q1) = ie ��;�;�V1V2V3(q1; q2; P )

Fig. 2. The definition of the general triple neutral gauge boson vertex, with V1, V2

taken on-shell, while V3 is generally off shell.

Based on [13], the fitted LEP ranges for the ZZ-production couplings
are indicated in Table III, for the cases that only one or only two anoma-
lous couplings are possibly non-vanishing. The corresponding results for Zγ
production at LEP are given in Table IV [13]; while the D0 results appear
in Table V 3.

TABLE III

The fitted parameters for the anomalous neutral TGC from the LEP ZZ production
[13]. Only the listed parameters are varied in each case; one in the left panel and
two in the right one. In each case, the non-listed parameters are vanishing.

Param. 95% C.L.

fγ
4 [−0.17, + 0.19]

fZ
4 [−0.30, + 0.30]

fγ
5 [−0.32, + 0.36]

fZ
5 [−0.34, + 0.38]

Param. 95% C.L. Correlations

fγ
4 [−0.17, + 0.19] 1.00 0.07

fZ
4 [−0.30, + 0.29] 0.07 1.00

fγ
5 [−0.34, + 0.38] 1.00 −0.17

fZ
5 [−0.38, + 0.36] −0.17 1.00

The overall conclusion on the basis of Fig. 1 and Tables I–V, is that
no indication for any anomalous TGC exists at present.

3 As in Table II, the anomalous couplings are replaced in [17] by form factors as hV
i →

hV
i0/(1 + ŝ/Λ2)n with n = 3 for (i = 1, 3) and with n = 4 for (i = 2, 4).
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TABLE IV

The fitted parameters for the anomalous neutral TGC from the LEP Zγ production
[13]. Only the listed parameters are varied in each case; one in the left panel and
two in the right one. In each case, the non-listed parameters are vanishing.

Param. 95% C.L.

hγ
1 [−0.056, + 0.055]

hγ
2 [−0.045, + 0.025]

hγ
3 [−0.049, − 0.008]

hγ
4 [−0.002, + 0.034]

hZ
1 [−0.13, + 0.13]

hZ
2 [−0.078, + 0.071]

hZ
3 [−0.20, + 0.07]

hZ
4 [−0.05, + 0.12]

Param. 95% C.L. Correlations

hγ
1 [−0.16, + 0.05] 1.00 +0.79

hγ
2 [−0.11, + 0.02] +0.79 1.00

hγ
3 [−0.08, + 0.14] 1.00 +0.97

hγ
4 [−0.04, + 0.11] +0.97 1.00

hZ
1 [−0.35, + 0.28] 1.00 +0.77

hZ
2 [−0.21, + 0.17] +0.77 1.00

hZ
3 [−0.37, + 0.29] 1.00 +0.76

hZ
4 [−0.19, + 0.21] +0.76 1.00

TABLE V

The fitted parameters for the anomalous neutral TGC from the D0 Zγ production
[17]. Only the listed parameters are varied in each case, which are taken to be
either purely real or purely imaginary. In each case, the non-listed parameters are
vanishing.

Coupling Λ = 750 GeV Λ = 1 TeV

|ℜe(hZ
10,30)|, |ℑm(hZ

10,30)| 0.24 0.23

|ℜe(hZ
20,40)|, |ℑm(hZ

20,40)| 0.027 0.020

|ℜe(hγ
10,30)|, |ℑm(hγ

10,30)| 0.29 0.23

|ℜe(hγ
20,40)|, |ℑm(hγ

20,40)| 0.030 0.019

3. Helicity Conservation and its possible violation

We next turn to the Helicity Conservation (HC) property, restricting
to processes of even order in the Yukawa couplings [6]. Simple rules are
then obtained, that generically test the presence of anomalous couplings for
any two-body process at high energies and fixed angles [6]. Thus, denot-
ing its helicity amplitudes by F (aλ1

bλ2
→ cλ3

dλ4
), the allowed helicities at

asymptotic (s, |t|, |u|)-values are constrained as

λ1 + λ2 = λ3 + λ4 , (9)

unless the two initial (or final) particles are fermions and the other two
bosons, where the stronger relation
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λ1 + λ2 = λ3 + λ4 = 0 (10)

is imposed. For the validity of (10) it is important that we restrict to pro-
cesses of even order in the Yukawa couplings, as stated at the beginning of
this section.

Particularly for transverse gauge bosons, the structure for the asymptot-
ically non-vanishing two-body helicity amplitudes implied by HC is

F (fλf
f ′

λ−f
→ VλV

V ′
λ−V

) , F (VλV
V ′

λ−V
→ fλf

f ′
λ−f

) , (11)

F (VλV
V ′

λ−V
→ φφ′) , F (φφ′ → VλV

V ′
λ−V

) , (12)

F (VλV
fλf

→ V ′
λV

f ′
λf

) , F (VλV
φ → V ′

λV
φ′) , (13)

where by f, φ, V we denote fermion, scalar or vector particles, respectively.
Eqs. (9), (10) remain of course true even in the presence of longitudinal

vector bosons4. For the vector boson amplitudes denoted as F (V 1
λ1

V 2
λ2

→
V 3

λ3
V 4

λ4
) ≡ Fλ1λ2λ3λ4

, they also imply relations like

F+++− = F++−+ = F+−++ = F−+++ = F−−−+

= F++LL = F−+−L = F+−−L = F++L− ≃ 0 , (14)

since all HC-violating amplitudes should necessarily vanish at high (s, |t|, |u|).
The most important ingredient for the validity of HC in either SM or

MSSM, is renormalizability [6].
For processes involving fermions or scalars only, HC holds at a diagram-

by-diagram basis. For gauge involving amplitudes though, the situation is
more subtle. Large cancellations among the various diagrams are needed
in order to achieve HC. This way, HC is established at the Born level in
both SM and MSSM. When going beyond this though, intriguing differences
between SM and MSSM appear, which we summarize below.

In SM, HC is only valid up to the ln2 and ln terms of the 1-loop cor-
rections, provided (s, |t|, |u|) ≫ (m2

W ,m2
H). The theorem is easier to be

established for processes driven by a non-vanishing Born contribution. In
any case, it has been checked explicitly to the leading log accuracy, for
(e−e+ → γγ, ZZ, γZ, W−W+) using [18], and (γγ → ZZ, γZ, ZZ)
using [19–21]. Constant high energy contributions in SM though, usually
violate HC.

In MSSM, HC is valid to all orders in the gauge and Yukawa couplings, for
any two-body process, at (s, |t|, |u|) ≫ M2

SUSY
[6]. Constant contributions

respect it also!

4 Obviously, the helicities of a fermion are ±1/2, of a vector boson (±1, 0), while
they are vanishing for a scalar particle. The longitudinal vector boson helicity is also
denoted below by L.
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SUSY somehow knows of the cancellations among the various diagrams
describing the gauge boson involving processes. The reason for this is that,
at high energies SUSY associates each gauge boson of a definite helicity, to
a corresponding gaugino carrying a helicity of the same sign. Since, HC
is valid for fermions at a diagram-by-diagram basis; it should be valid for
gauge bosons also. In the general proof, masses have been neglected [6].

The validity of HC, even for the constant asymptotic contributions in
MSSM, has also been observed in γγ → ZZ, γZ, ZZ, for which the exact
1-loop results are known [6, 20, 21].

We next turn to the anomalous contributions to the asymptotic two-
body amplitudes. Since the most we can expect about such couplings is
that they are very small, we always calculated their contribution at the
Born level. For F (e−λ e+

−λ → W−
τ W+

τ ′ ), the complete asymptotic anomalous
contributions to the helicity amplitudes are given in Table VI [22], where
(1) and the definitions

a =
−1 + 4s2

W

4sW cW

, b =
−1

4sW cW

, δZ =
cW

sW

δgZ
1 ,

xγ = δκγ , xZ = (δκZ − δgZ
1 )

cW

sW
, yγ = λγ , yZ = λZ

cW

sW
(15)

are used. The CP violating couplings (z′1, z
′
2, z

′
3) in the last three rows of

Table VI, are linear combinations of the couplings (gZ
4 , κ̃Z , λ̃Z) defined in

(1) [22].
As seen from Table VI, none of the TGC in (1), respects HC. Thus,

bounds on the ratios

|F (e−λ e+

−λ → W−
0 W+

±1)|
|F (e−λ e+

−λ → W−
±1W

+
∓1)|

,
|F (e−λ e+

−λ → W−
±1W

+
0 )|

|F (e−λ e+

−λ → W−
±1W

+
∓1)|

,

|F (e−λ e+
−λ → W−

±1W
+
±1)|

|F (e−λ e+

−λ → W−
±1W

+
∓1)|

,
|F (e−λ e+

−λ → W−
0 W+

0 )|
|F (e−λ e+

−λ → W−
±1W

+
∓1)|

,

measured at the high energy part of Linear Collider (ILC), could constrain
all anomalous couplings.

As further examples of anomalous HC violations in other 2-body pro-
cesses, we give in (16)–(21), the SM and OW contributions to the high
energy helicity amplitudes5 [23]; compare (3), (4). In all cases, the HC vio-
lating amplitudes, indicated through a double arrow in the left hand sides of
(16)–(21), are determined by the anomalous interactions. These are:

5 In (16)–(21), s denotes the subprocess c.m. squared energy.
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TABLE VI

The leading large-s anomalous contribution to F (e−λ e+
−λ → W−

τ W+
τ ′ ) [22]. The helicity amplitudes are obtained from each

column by multiplying the factor on top, with the sum of all its elements. The first column indicates the anomalous couplings
contributing. The amplitudes for τ = ±1, τ ′ = 0 are obtained from the last column by substituting there τ ′ → −τ and
ε = −1.

τ = τ ′ = ±1 τ = −τ ′ = ±1 τ = τ ′ = 0 τ = 0, τ ′ = ±1, ε = 1

− e2

2 λ sin θ − e2

2 λ sin θ − e2

2 λ sin θ −e2λ (τ ′ cos θ−2λ)

2
√

2

δZ −2δZ(a − 2bλ) 0 − s
m2

W

δZ(a − 2bλ) −
√

s

mW

2δZ(a − 2bλ)

xγ , xZ 0 0 s
m2

W

[xγ − xZ(a − 2bλ)]
√

s

mW

[xγ − xZ(a − 2bλ)]

yγ , yZ
s

m2

W

[yγ − yZ(a − 2bλ)] 0 0
√

s

mW
[yγ − yZ(a − 2bλ)]

zZ 0 0 0 −
( √

s

mW

)3

zZ(a − 2bλ)τ ′

z′1 0 0 0 −i
√

s

mW

z′1(a − 2bλ)ε

z′2 iz′22τ(a − 2bλ) 0 0 i
√

s

mW

z′2τ
′(a − 2bλ)ε

z′3 −iz′32τ(a − 2bλ) s
m2

W

0 0 0
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dd̄, uū → W−W+

⇒ FL
++ = FL

−− = τ3

e2

4s2
W

(

αW s

mW

)

sin θ

FL
+− = − e2

2s2
W

sin θ
(1 − τ3 cos θ)

1 + cos θ

FL
−+ =

e2

2s2
W

sin θ
(1 − τ3 cos θ)

1 − cos θ

FL
LL = τ3

e2

2c2
W

sin θ

(

|Q| − 1 +
1

2s2
W

)

FR
LL = Q

e2

2c2
W

sin θ , (16)

where Q is the quark charge

dū → W−Z

⇒ FL
++ = FL

−− = − e2

2
√

2

cW

s2
W

(

αW s

mW

)

sin θ

FL
+− = − e2

√
2cW s2

W

sin θ

1 + cos θ

(

c2
W cos θ − s2

W

3

)

FL
−+ =

e2

√
2cW s2

W

sin θ

1 − cos θ

(

c2
W cos θ − s2

W

3

)

FL
LL = − e2

2
√

2 s2
W

sin θ , (17)

dū → W−γ

⇒ FL
++ = FL

−− = − e2

2
√

2 sW

sin θ

(

αW s

mW

)

FL
+− = − e2

√
2 sW

sin θ

1 + cos θ

(

cos θ +
1

3

)

FL
−+ =

e2

√
2 sW

sin θ

1 − cos θ

(

cos θ +
1

3

)

, (18)

γγ → WW

F++++ = F−−−− =
8e2

sin2 θ
⇒ F+++− = F++−+ = F+−++ = F−+++ =
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⇒ F−−−+ = F−−+− = F−+−− = F+−−− = −e2

(

αW s

mW

)

F+−−+ = F−++− = e2(1−cos θ)

{

2

1+cos θ
+

3+cos θ

16

(

αW s

mW

)2}

⇒ F++−− = F−−++ = e2

(

αW s

mW

){

−2 +
3 − cos2 θ

8

(

αW s

mW

)}

F+−+− = F−+−+ = −e2 (1+cos θ)

{

2

cos θ − 1
+

(cos θ−3)

16

(

αW s

mW

)2}

F+−LL = F−+LL = 2e2 , (19)

γW → γW

F++++ = F−−−− = − e2

{

4

1 + cos θ
+

(

αW s

mW

)2 cos θ

4

}

⇒ F+++− = F++−+ = F+−++ = F−+++ =

⇒ F−−−+ = F−−+− = F−+−− = F+−−− = e2 (1 − cos θ)

2

(

αW s

mW

)

F+−−+ = F−++− = − e2 (1 − cos θ)2

1 + cos θ

F+−+− = F−+−+ = − e2 (1 + cos θ)

{

1 +
3 − cos θ

16

(

αW s

mW

)2}

⇒ F++−− = F−−++ = e2

(

αW s

mW

)

×
{

1−cos θ− (3+6 cos θ−cos2 θ)

16

(

αW s

mW

)}

F+L+L = F−L−L = −2e2 . (20)

γW → ZW

The purely transverse amplitudes are identical to those for γW → γW
in (20), provided we replace e2 → e2cW /sW . The amplitudes involving
longitudinal bosons are

⇒ F++LL = F−−LL =
e2

4sW

cos θ

(

αW s

mW

)

F+−LL = F−+LL = − e2

2sW
(1 − cos θ)

⇒ F+LL− = F−LL+ =
e2

8sW
(cos θ − 3)

(

αW s

mW

)
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F+LL+ = F−LL− = − e2

sW

(cos θ − 1)

cos θ + 1
. (21)

Eqs. (16)–(21) also indicate that the OW contributions to the helic-
ity conserving amplitudes are always quadratic in αW and, therefore, sup-
pressed. Thus, measurements of HC violations should be very sensitive to
OW . Similar results apply also to any other anomalous interaction.

4. Conclusions

There is no real indication at present that any anomalous couplings exist.
This is supported also by the LEP [13] and Tevatron [14,17] results already
available. At the high energies accessible to LHC and ILC, we would expect
these constraints to become stronger.

Since the energies available at LHC and ILC are very high, the subpro-
cess conditions (s, |t|, |u|) ≫ (m2

W ,m2
H) should be satisfiable, so that HC is

respected by the electroweak sector of SM to a high accuracy6. In any case,
we would expect HC to be respected to the 1-loop leading (ln2, ln) terms in

qq̄ → gg , gγ , gZ , gW , γγ , γZ , ZZ , W+W−, γW , ZW ,

gq → gq , γq , Zq , Wq ,

gg → gg , qq̄ ,

e+e− → γγ , γZ , ZZ ,W+W−,

γe → γe , Ze , Wν ,

γγ → f f̄ , γγ , γZ , ZZ , W+W−. (22)

If SUSY is realized in Nature and (s, |t|, |u|) ≫ M2
SUSY

is also satisfied
within the LHC or ILC range, then HC should be valid for all processes in
(22), as well as in

gg → g̃g̃ , q̃¯̃q ,

e−e+ → f̃ ¯̃f , χ̃+χ̃− ,H+H−, H0H ′0 ,

γγ → f̃ ¯̃f , χ̃+χ̃− ,H+H−, H0H ′0 , (23)

where H0 denotes any of the neutral Higgs particles in MSSM.
In either case, detail studies may identify those of the above processes,

which are the most suitable for excluding the anomalous contributions vi-
olating HC. Thus, searching for HC violations may be a useful way for
constraining the anomalous couplings, and at the same time, any effectively
non-renormalizable way of going beyond the standard model. Some realiza-
tions of extra large dimensions may fall in this later category.

6 At least if no top contributions are important.
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