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The same physical reality in Two Higgs doublet model (2HDM) can be
described by different Lagrangians. We study this property called by the
reparametrization invariance (in space of Lagrangians). We consider the
Z2-symmetry of the Lagrangian, which prevents a φ1 ↔ φ2 transitions, and
the different levels of its violation, soft and hard. We argue that softly Z2

violated 2HDM is a natural model in the description of EWSB. We consider
different vacua in the 2HDM. We find simple condition for a CP violation
in the Higgs sector. In the Model II for Yukawa interactions we obtain the
set of relations among the couplings to gauge bosons and to fermions which
allows one to analyse different physical situations (including CP violation)
in terms of these very couplings, instead of the parameters of Lagrangian.
We discuss possible interaction of Higgs fields of the SM or 2HDM with the
inflatory scalar field describing an exponential expansion of Universe after
Big Bang.

PACS numbers: 14.80.Cp, 12.60.Fr

1. Lagrangian

A spontaneous electroweak symmetry breaking (EWSB) via the Higgs
mechanism is described by the Lagrangian

L = LSM
gf + LH + LY with LH = T − V . (1a)

Here LSM
gf describes the SU(2)× U(1) Standard Model interaction of gauge

bosons and fermions, LY describes the Yukawa interactions of fermions with
Higgs scalars and LH is the Higgs scalar Lagrangian; T is the Higgs kinetic
term and V is the Higgs potential.

∗ Presented at the PLC2005 Workshop, 5–8 September 2005, Kazimierz, Poland.
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In the minimal Standard Model (SM) one scalar isodoublet with hyper-
charge Y = 1 is implemented, LH = (Dµφ)†Dµφ− V , V = λφ4/2−m2φ2/2
etc. In Ref. [1] we study in detail Two-Higgs-Doublet Model (2HDM) — the
simplest extension of the SM , with two scalar fields φi being weak isodou-
blets (T = 1/2) with hypercharges Y = 1 (see [2] for earlier references). The
kinetic term of the most general renormalizable Higgs Lagrangian is

T = (Dµφ1)
†(Dµφ1) + (Dµφ2)

†(Dµφ2) +
[

κ(Dµφ1)
†(Dµφ2) + h.c.

]

(1b)

and the Higgs potential, containing operators of dimension y2 (in mass term)
(1c) and of dimension 4 (1d), is

V = −
{

m2
11(φ

†
1φ1) + m2

22(φ
†
2φ2) +

[

m2
12(φ

†
1φ2) + h.c.

]}/

2 (1c)

+
λ1

2
(φ†

1φ1)
2 +

λ2

2
(φ†

2φ2)
2 + λ3(φ

†
1φ1)(φ

†
2φ2) + λ4(φ

†
1φ2)(φ

†
2φ1)

+
1

2

[

λ5(φ
†
1φ2)

2 + h.c.
]

+
{[

λ6(φ
†
1φ1)+λ7(φ

†
2φ2)

]

(φ†
1φ2)+h.c.

}

.(1d)

2. Reparametrization (RPa) invariance

Our model contains two fields with identical quantum numbers. There-
fore, it can be described in similar way both in terms of fields φk (k = 1, 2),
used in (1), and in terms of fields φ′

k obtained from φk by a global unitary

transformation F̂ of SU(2)× U(1) general reparametrization (RPa) group:

(

φ′
1

φ′
2

)

= F̂
(

φ1

φ2

)

, F̂ = e−iρ0

(

cos θ eiρ/2 sin θ ei(τ−ρ/2)

− sin θ e−i(τ−ρ/2) cos θ e−iρ/2

)

. (2)

This group splits into a proper SU(2) RPa group with parameters θ, ρ,
τ and U(1) group describing overall phase freedom, with parameter ρ0.

The transformation F induces the changes of coefficients of Lagrangian,
λi → λ′

i and m2
ij → (m′)2ij , κ → κ

′ with renormalization of fields φ′
i

(RPa transformation of parameters). The Lagrangian of the form (1) with

coefficients λi, m2
ij and that with new coefficients λ′

i, (m′)2ij describe the
same physical reality. We call this property a RPa invariance in a space of
Lagrangians (with coordinates given by its parameters).

The set of RPa transformations for parameters of Lagrangian forms rep-
resentation of RPa group in the 16-dimensional space of Lagrangians with
coordinates given by λ1−4, Reλ5−7, Imλ5−7, m2

11,22, Re(m2
12), Im(m2

12), Reκ,
Imκ . The parameters of Lagrangian can be determined from measurements
in principle only with accuracy up to the RPa freedom.
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All observable quantities are invariants of the RPa group (IRPa). These
are, for example, masses of observable Higgs bosons, related to the eigenval-
ues of the mass-squared matrix (20) and (17), and eigenvalues of Higgs–Higgs
scattering matrices [13].

By writing the Higgs potential as a sum of terms such as Yab(φ
†
aφb) +

Zabcd(φ
†
aφb)(φ

†
cφd), with a, b = 1, 2, one can construct IRPa’s at κ = 0 as

combinations of products of Y and Z summed over a, b. In this way large
series of (generally not independent) IRPa’s was obtained [3]. The group–
theoretical analysis of RPa group gives the complete set of 11 independent
IRPa’s [4].

3. Rephasing (RPh) invariance

It is useful to consider a particular case of the transformations (2) with
θ = 0 — a global rephasing (RPh) transformation of the fields:

φk → e−iρiφk, ρ1 = ρ0 − ρ/2 , ρ2 = ρ0 + ρ/2 , ρ = ρ2 − ρ1 . (3a)

This transformation leads to a RPh transformation of the Lagrangian:

λ1−4 → λ1−4 , m2
11 → m2

11 , m2
22 → m2

22 ,

λ5 → λ5 e−2iρ , λ6,7 → λ6,7 e−iρ , m2
12 → m2

12e
−iρ , κ → κ e−iρ . (3b)

The Lagrangian of the form (1) with coefficients λi, m2
ij and that with

coefficients given by Eq. (3) describe the same physical reality. We call this
property a RPh invariance. The transformations (3) represent U(1) RPh
transformation group being a subgroup of the SU(2) RPa group.

4. Lagrangian and Z2 symmetry

The CP violation and the flavour changing neutral currents (FCNC) can
be naturally suppressed by imposing a Z2 symmetry on the Lagrangian [5].
This symmetry inhibits the φ1 ↔ φ2 transitions, and therefore it leads to
the invariance under the interchange

φ1 ↔ φ1, φ2 ↔ −φ2 or φ1 ↔ −φ1, φ2 ↔ φ2 . (4)

• The case of exact Z2 symmetry is described by the Lagrangian
LH (1) with λ6 = λ7 = κ = m2

12 = 0; only one parameter λ5 can be
complex. The RPh transformation (3) with a suitable phase ρ allows one to
get Lagrangian with a real λ5, within the RPh invariant space.

• In case of soft violation of Z2 symmetry one adds to the Z2

symmetric Lagrangian the term of operator dimension 2, m2
12(φ

†
1φ2)+h.c.
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This type of violation respects the Z2 symmetry at small distances (much
smaller than 1/M) in all orders of perturbative series, i.e. the amplitudes
for φ1 ↔ φ2 transitions disappear at virtuality k2 ∼ M2 → ∞.

The general RPa transformation converts the Lagrangian with exact or
softly violated Z2 symmetry Ls to a hidden soft Z2 violation form, Lhs, with
λ6, λ7 6= 0, κ = 0. 14 parameters of Lhs are constrained since they can be
obtained from 9 independent parameters of an initial Lagrangian Ls plus 3
RPa group parameters (nondiagonal κ kinetic term does not arise from loop
corrections). For such physical system Ls is a preferable RPa representation.

• In general case the terms of the operator dimension 4, with generally
complex parameters λ6, λ7 and κ, are added to the Lagrangian with a
softly violated Z2 symmetry. In the case of the true hard violation of
Z2 symmetry this Lagrangian cannot be transformed to the exact or softly
violated Z2 symmetry form by any RPa transformation, the Z2 symmetry
is broken at both large and small distances in any scalar basis.

The mixed kinetic terms (1b) can be eliminated by the nonunitary trans-
formation (rotation + renormalization), e.g.

(φ ′
1, φ

′
2) →

(√
κ
∗φ1 +

√
κφ2

2
√

|κ|(1 + |κ|)
±

√
κ
∗φ1 −

√
κφ2

2
√

|κ|(1 − |κ|)

)

. (5)

However, in presence of the λ6 and λ7 terms, the renormalization of quadrat-
ically divergent, non-diagonal two-point functions leads anyway to the mixed
kinetic terms (e.g. from loops with λ∗

6λ1,3−5 and λ∗
7λ2−5). It means that κ

becomes nonzero at the higher orders of perturbative theory (and vice versa
a mixed kinetic term generates counter-terms with λ6,7). Therefore all of
these terms should be included in Lagrangian (1a) on the same footing, i.e.
the treatment of the true hard violation of Z2 symmetry without κ terms
is inconsistent. The parameter κ is running like λ’s. (This term does not
appear if parameters λi are constrained by relations of hidden soft viola-
tion of Z2 symmetry.) Therefore, the diagonalization (5) is scale dependent,
and the Lagrangian remains off-diagonal in fields φ1,2 even at very small
distances in any RPa representation. Such theory seems to be unnatural.

Although in [1] and in this paper we present relations for the case of
hard violation of Z2 symmetry at κ = 0, the loop corrections can change
results significantly. Such treatment of the case with true hard violation of
Z2 symmetry is as incomplete as in most of the papers considering this “most
general 2HDM potential”.
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5. Vacua

The extremes of the potential define the vacuum expectation values
(v.e.v.’s) 〈φ1,2〉 of the fields φ1,2 via equations:

∂V/∂φi|φi=〈φi〉 = 0 . (6)

These equations have trivial electroweak symmetry conserving solution
〈φi〉 = 0 and electroweak symmetry violating solutions, discussed below.
With accuracy to the choice of z axis in the weak isospin space, and using
the overall phase freedom of the Lagrangian to choose one v.e.v. real, in the

minimal SM such equation has a single EWSB solution: 〈φ〉 =
1√
2

(

0
v

)

,

v = m/
√

2λ . With the same choice the most general electroweak symmetry
violating solution of (6) can be written in a form

〈φ1〉 =
1√
2

(

0
v1

)

, 〈φ2〉 =
1√
2

(

u
v2e

iξ

)

. (7)

To describe these extremes it is useful to denote

x1 = (φ†
1φ1) , x2 = (φ†

2φ2) , x3 = (φ†
1φ2) , yi = 〈xi〉 . (8)

It is easy to check that ∂x1/∂φ2 = ∂x2/∂φ1 = 0 and

x3

(

∂x1

∂φ1
φ1

)

− x1

(

∂x1

∂φ1
φ2

)

= x∗
3

(

∂x∗
3

∂φ1
φ2

)

− x2

(

∂x∗
3

∂φ1
φ1

)

= 0 ,

x3

(

∂x∗
3

∂φ1
φ1

)

−x1

(

∂x∗
3

∂φ1
φ2

)

= x∗
3

(

∂x1

∂φ1
φ2

)

−x2

(

∂x1

∂φ1
φ1

)

= x3x
∗
3 − x1x2 .

Now, introducing Z = y∗3y3 − y1y2, the extremum condition (6) can be
rewritten as
〈

x3

(

∂V

∂φ1
φ1

)

−x1

(

∂V

∂φ1
φ2

)〉

= Z

(

λ4y3+λ∗
5y

∗
3+λ∗

6y1+λ∗
7y2−

m∗2
12

2

)

=0,

〈

x∗
3

(

∂V

∂φ1
φ2

)

−x2

(

∂V

∂φ1
φ1

)〉

= Z

(

λ1y1+λ3y2+λ∗
6y

∗
3+λ6y3−

m2
11

2

)

=0,

〈

x3

(

∂V

∂φ2
φ1

)

−x1

(

∂V

∂φ2
φ2

)〉

= Z

(

λ2y2+λ3y1+λ∗
7y

∗
3+λ7y3−

m2
22

2

)

=0.(9)

Therefore, two opportunities can be realized, for zero and nonzero value
of Z = y∗3y3 − y1y2. Depending on the parameters of potential, these so-
lutions describe either saddle point or a minimum of the potential. The
condition for minimum is that all eigenvalues of Higgs mass matrix are pos-
itive, and vacuum energy of one of these states is smaller than of the other
one.
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5.1. u 6= 0 solution, charged vacuum

We denote by charged vacuum a solution which appears for

Z = y∗3y3 − y1y2 6= 0 ⇒ u 6= 0 . (10)

In this case the v.e.v.’s are given by equations followed directly from (9),
namely

λ1y1 + λ3y2 + λ∗
6y

∗
3 + λ6y3 = m2

11/2 ,

λ2y2 + λ3y1+λ∗
7y

∗
3 + λ7y3 = m2

22/2 ,

λ4y
∗
3 + λ5y3 + λ6y1 + λ7y2 = m2

12/2 . (11)

With these yi the Higgs potential (1) can be written using x̄i = xi − yi as
(Ec

vac is a vacuum energy)

V = λ1x̄
2
1/2 + λ2x̄

2
2/2 + λ3x̄1x̄2 + λ4x̄

∗
3x̄3

+
[

λ5x̄
2
3/2 + (λ6x̄1 + λ7x̄2)x̄3 + h.c.

]

+ Ec
vac . (12)

In this case it is not possible to split the gauge boson mass matrix into
a neutral and charged sector, the interaction of gauge bosons with fermions
will not preserve electric charge, photon become massive, etc. [6]. Certainly,
this case is not realized in our World.

5.2. u = 0 solution, physical (neutral) vacuum

We consider below (except for a final section) only solution of extremum
condition (6), obeying a condition for U(1) symmetry of electromagnetism,

Z = y∗3y3 − y1y2 = 0 ⇒ 〈φ1〉=
1√
2

(

0
v1

)

, 〈φ2〉=
1√
2

(

0
v2e

iξ

)

. (13)

There is other standard notations: v1 = v cos β, v2 = v sin β, with SM
constraint v = (

√
2GF)−1/2 = 246GeV.

The rephasing of fields (3a) shifts the phase difference ξ as ξ → ξ − ρ.
Let us take some Lagrangian describing our model and calculate v.e.v.’s.

Then, by making the RPh transformation with ρ = ξ, we get the real vacuum
Lagrangian with real v2 and with parameters, given by (3) with ρ = ξ
(supplied for a moment by subscript rv).

The following combinations of parameters and new quantities are useful:

λ3,rv + λ4,rv + Reλ5,rv = λ345,rv ,
v1

v2
λ6,rv ±

v2

v1
λ7,rv = λ±

67,rv ,

m2
12,rv = 2v1v2(ν + iδ) . (14)
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The minimum conditions (8) for this form of Lagrangian are written as

(m2
11 − Rem2

12v2/v1)/2 − λ1v
2
1 + λ345v

2
2 + Re

(

3λ6v1v2 + λ7v
3
2/v1

)

= 0 ,

(m2
22 − Rem2

12v2/v1)/2−λ2v
2
2+λ345v

2
1+Re

(

3λ7v1v2+λ6v
3
1/v2

)

=0,

Im (m2
12) ≡ 2v1v2δ = v1v2Im

(

λ5 + λ+
67

)

. (15)

Below we perform calculations for a real vacuum potential, describing it
in terms of v1, v2, ν instead of three parameters m2

11,22, Re(m2
12), which are

coefficients of the quadratic terms. In this way δ ∝ Im m2
12,rv is expressed

via Im(λ5−7,rv) (15).

6. Physical Higgs representation

A standard decomposition of the fields φ1,2 in the component fields is

φ1 =

(

ϕ+
1

(v1 + η1 + iχ1)/
√

2

)

, φ2 =

(

ϕ+
2

(v2 + η2 + iχ2)/
√

2

)

. (16)

At κ = 0 such decomposition preserves a diagonal form of kinetic terms
for fields ϕ+

i , χi, ηi. The mass-squared matrix is transformed to the block
diagonal form by a separation of the massless Goldstone boson fields, G0 =
cos β χ1 + sin β χ2 and G± = cos β ϕ±

1 + sinβ ϕ±
2 , and the charged Higgs

boson fields H± with mass MH± ,

H±=−sinβ ϕ±
1 +cos β ϕ±

2 , M2
H± =

[

2ν−λ4−Reλ5−Reλ+
67

]

v2/2. (17)

6.1. Neutral Higgs sector

By definition η1,2 are the standard C- and P-even (scalar) fields. The
field

A = − sin β χ1 + cos β χ2 , (18)

is C-odd (which in the interactions with fermions behaves as a P-odd particle,
i.e. a pseudoscalar). In other words, the η1,2 and A are fields with opposite
CP parities (see e.g. [2] for details).

The decomposition (16) results in the symmetric mass-squared matrix
M in the η1, η2, A basis

M =





M11 M12 M13

M12 M22 M23

M13 M23 M33



 , (19)
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M11 =
[

c2
β λ1 + s2

β ν + s2
βRe (λ+

67/2 + λ−
67)
]

v2 ,

M22 =
[

s2
β λ2 + c2

β ν + c2
βRe (λ+

67/2 − λ−
67)
]

v2 ,

M33 =
[

ν − Re (λ5 − λ+
67/2)

]

v2 ≡ M2
A ,

M12 = −
[

ν − λ345 − Re3λ+
67/2

]

cβsβv2 ,

M13 = −
[

δ + Imλ−
67/2

]

sβv2 ,

M23 = −
[

δ − Imλ−
67/2

]

cβv2 , (20)

where cβ = cos β, sβ = sin β. Note that M33 is equal to the mass squared
of the CP-odd Higgs boson in the CP conserving case M2

A.
The masses squared M2

i of the physical neutral states h1−3 are eigenval-
ues of the matrix M. These states are obtained from fields η1, η2, A by a
unitary transformation R which diagonalizes the matrix M:





h1

h2

h3



 = R





η1

η2

A



 , R =





R11 R12 R13

R21 R22 R23

R31 R32 R33



 , (21)

with RMRT = diag(M2
1 , M2

2 , M2
3 ). All observable Higgs fields hi, H±,

their masses and couplings are RPa independent, in contrast to the original
fields φ1,2. The useful 2-step diagonalization procedure is described in [1].

Criterium for CP violation. In general, the Higgs eigenstates hi (21)
have no definite CP parity since they are mixtures of fields η1,2 and A hav-
ing opposite CP parities. Just this mixing provides a CP nonconservation
within the Higgs sector since the interaction of these Higgs bosons with mat-
ter explicitly violates the CP-symmetry.

Eq. (20) shows that such mixing is absent and the CP is not violated if
and only if M13 = M23 = 0. The explicit form for these terms (20) shows
that these two conditions can be valid if and only if λ−

67 and m2
12 are real.

In accordance with (14) it means that the CP violation is absent if all
coefficients in potential of a real vacuum form are real. Vice versa,
the complexity of some parameters of the potential in a real vacuum form is
a sufficient condition for CP violation in the Higgs sector. For an arbitrary
form of Lagrangian the sufficient condition for CP violation in the
Higgs sector can be written as complexity at least one of combinations

λ∗
5(m

2
12)

2 , (λ∗
6 + λ∗

7)m
2
12 , λ∗

6λ7 . (22)

Each quantity written above is not RPa invariant one, however these con-
ditions are very simple. (For the soft Z2 violated potential the condition is
simply Im λ∗

5(m
2
12)

2 6= 0 — cf. [7].) The RPa invariant conditions for CP
violation [3, 8] are more complex.
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7. Couplings to gauge bosons and fermions

Below we use in principle measurable relative couplings — ratios of the
couplings of each neutral Higgs boson hi to the corresponding SM couplings

χ
(i)
j = g

(i)
j /gSM

j , (23)

for the gauge bosons W or Z and the quarks or leptons (j = W,Z, u, d, ℓ...).
• The gauge bosons V (W and Z) couple only to the CP-even fields η1,

η2. For the physical Higgs bosons hi (21) one obtains

χ
(i)
V =cos β Ri1+sinβ Ri2, V = W or Z. (24)

• Yukawa interaction
The general form of Yukawa interaction couples 3-family vector of the

left-handed quark isodoublets QL with 3-family vectors of the right-handed
field singlets dR and uR and Higgs fields φi. It allows large FCNC effects
and leads to true hard violation of Z2 symmetry via loop effect (see [1] for
details).

To have only the soft violation of Z2 symmetry, each right-handed fermion
should couple to only one scalar field, either φ1 or φ2 [5, 9].

7.1. Model II

We consider first most popular opportunity (realized also in the MSSM)
called Model II. In this Model the physical reality allows the description in
which the fundamental scalar field φ1 couples to d-type quarks and charged
leptons ℓ, while φ2 couples to u-type quarks, and this interaction is diagonal
(or almost diagonal) in family index k:

−LII
Y =

∑

gdkQ̄Lkφ1dRk +
∑

gukQ̄Lkφ̃2uRk +
∑

gℓk ℓ̄Lkφ1ℓRk + h.c. (25)

The suitable choice of phases in the RPh transformations makes all
Yukawa parameters real. The RPa transformation makes Model II property
of Lagrangian hidden and changes tan β. For the Lagrangian with explicit
Model II property we supply quantity β by a subscript II, β → βII.

The relative Yukawa couplings of the physical neutral Higgs bosons hi

(23) are identical for all u-type and for all d-type quarks (and charged lep-
tons). They are expressed via elements of the rotation matrix R (21) as

(MII) : χ(i)
u =

Ri2 − i cos βII Ri3

sin βII
, χ

(i)
d =

Ri1 − i sin βII Ri3

cos βII
. (26)

The unitarity of the mixing matrix R allows one to obtain a number of
relations between the relative couplings of neutral Higgs particles.
These relations, listed below, are very useful in phenomenological analyses.
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First, the quantity tan βII (coincident with the ratio v2/v1 only in a
Model II form of Lagrangian) is described via the basic couplings to hi as

cot2 βII =
(χ

(i)
V −χ

(i)
u )

(

χ
(i)
d −χ

(i)
V

)∗ =
1−|χ(i)

u |2

|χ(i)
d |2−1

=
Imχ

(i)
u

Imχ
(i)
d

=
∑

i

(Imχ(i)
u )2. (27)

1. The pattern relation for each neutral Higgs particle hi (for CP con-
serving case see [10]):

(χ(i)
u + χ

(i)
d )χ

(i)
V = 1 + χ(i)

u χ
(i)
d . (28)

2. A vertical sum rule for all three neutral Higgs bosons hi [11]:
3
∑

i=1

(χ
(i)
j )2 = 1 (j = V, d, u) . (29)

3. A horizontal sum rule [11] for each neutral Higgs boson hi:

|χ(i)
u |2 sin2 βII + |χ(i)

d |2 cos2 βII = 1 . (30)

4. Besides, the linear relation follows directly from Eqs. (21), (26):

Re
(

cos2 βIIχ
(i)
d +sin2 βIIχ

(i)
u

)

=χ
(i)
V ,

Im
(

cos2 βIIχ
(i)
d − sin2 βIIχ

(i)
u

)

= 0 .
(31)

5. The relation between CP violated parts of Yukawa couplings is obtained
by exclusion of βII from the equations (30), (31)

(1 − |χ(i)
d |2) Imχ(i)

u + (1 − |χ(i)
u |2) Imχ

(i)
d = 0 . (32)

7.2. Model I

In this model all right handed fermions are coupled to one scalar field φ1.
The corresponding Yukawa Lagrangian is similar to that given by (25) with
only change φ2 → φ1. We supply the parameter β for the explicit Model I

case by subscript I. In this case χ
(i)
u = χ

(i)
d ≡ χ

(i)
f = [Ri2−i cos βI Ri3]/ sin βI .

Besides, cot2 βI =
∑

i(Imχ
(i)
u )2 and vertical sum rules (29) are valid. Other

relations written for Model II do not apply.

8. Possible relation to an evolution of Universe

Scalar, Higgs–like field φ plays cardinal role in the wide-spread descrip-
tion of an early Universe. While primitive medium is hot, the mass term in
effective potential for φ is equal to the sum of standard term −m2φ2/2 and
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the temperature dependent term cT 2φ2/2. Immediately after Big Bang tem-
perature T is very high, so that effective potential has minimum at 〈φ〉 = 0.
In this period Universe expands very fast (inflation). At the temperature

Tc ≈ m/
√

c phase transition occurs, v.e.v. of Higgs field 〈φ〉 ∝
√

m2 − cT 2

appears, inflation stops, the expansion of Universe becomes slower. The
v.e.v. 〈φ〉 increases with time simultaneously with cooling of Universe. If
this Higgs field is that of SM, during inflation EW symmetry is not broken,
all particles are massless. After phase transition (at T < Tc) EW symmetry
becomes broken, particles acquire masses growing with time ∝ 〈φ〉, nonzero
vacuum energy Evac arises.

If 2HDM is realized, possible existence of two vacua opens new opportu-
nities in the evolution of Universe. We discuss briefly some possible features
of this evolution for two distinct interrelations of inflatory Higgs field and
those, responsible for EWSB.

• If inflation is caused by Higgs field, responsible for EWSB, the
mass term of effective potential (1c) is enlarged in the hot primitive medium
by terms

[

c11(φ
†
1φ1)+c12(φ

†
1φ2)+c∗12(φ

†
2φ1)+c22(φ

†
2φ2)

] T 2

2
. (33)

With this new mass term immediately after Big Bang the Universe expands
inflatory, with 〈φ1〉 = 〈φ2〉 = 0, in the same manner as in the minimal SM.
At some critical temperature Tc the EW symmetry breaks and the inflation
stops. The subsequent fate of Universe depends on values of parameters.

In one case, at decreasing of temperature below Tc the neutral vacuum
(13) appears. In this case evolution of Universe is similar to that as in the
minimal SM, with possible dependence of the parameter tan βII on time.

The other possibility is that phase transition at T = Tc transforms Uni-
verse in the state with the charged vacuum (10) for Higgs subsystem and
only later, at some temperature Tc1 < Tc, the charged vacuum is trans-
formed to well known neutral vacuum (13). The properties of Universe in
the period when Tc1 < T < Tc are quite unusual. In this stage the medium
is non-transparent for light (photon is massive), the interactions of particles
differ from modern ones, the C violation for particles interaction (vacuum is
charged) can remain after second phase transition, track in a form of resid-
ual CP violation, baryon asymmetry, etc. Besides, some small domains of
charged phase arisen from fluctuations in one of phase transitions can leave
long at T < Tc1, influencing modern observations. Some of these opportu-
nities can be excluded immediately, others must be studied in detail.

• If inflation is caused by a specific inflanton Higgs field φ0

with v.e.v. 〈φ0〉 = U0(t) varying in time, this field interacts with
Higgs field responsible for EWSB like (1d). In the mean field approximation
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the effective Higgs potential is enlarged by both terms (33) and terms

[

a11(φ
†
1φ1)+a12(φ

†
1φ2)+a∗12(φ

†
2φ1)+a22(φ

†
2φ2)

] U2
0 (t)

2
. (34)

Therefore, during inflation effective mass term of the EWSB Higgs field
varies with time as m2

ij → m2
ij − cijT

2−aijU
2
0 (t). It can result in even more

complex sequence of phase transitions than that discussed above (e.g., with
restoration of SU(2)× U(1) symmetry in some intermediate period).

Both these opportunities should be analysed in future.
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