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STIMULUS-INDUCED SYNCHRONIZATION
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Visual signals converge through the layers of the retinal circuitry from
the photoreceptor cells to the retinal ganglion cells such that nearby gan-
glion cells are driven by essentially the same visual stimulus. We use com-
putational modeling to address the question whether the experimentally
observed degree of synchrony in nearby ganglion cells is due to the com-
mon visual stimulus or whether active network circuitry is necessary.

PACS numbers: 89.19.La, 87.17.Nn, 05.45.–a, 05.40.Ca

1. Introduction

Visual signals are received by the photoreceptor cells, where they are con-
verted into electrical signals. The photoreceptor cells contact horizontal cells
that form a sheet of cells where inhibition spreads laterally to nearby pho-
toreceptor cells in response to visual stimuli. The spatial spread of the visual
signal generates stimuli to the bipolar cells that originate from a large num-
ber of photoreceptor cells, described by a receptive field. The convergence
of the visual signal continues downstream as a number of bipolar cells, with
similar inputs, output to the retinal ganglion cells and thus provide almost
identical input to two nearby retinal ganglion cells. A number of studies
in a variety of species have reported that these cells show spike synchro-
nization in their stimulus-induced responses [1–3]. This synchronization
exhibits various time scales and its role in visual information processing is
an unresolved issue of brain research. In this paper we study synchroniza-
tion in two retinal ganglion cells that are driven by the same visual stimulus
using computational modeling.
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2. Methods

Based on an earlier work on tiger salamander retina a Hodgkin–Huxley
type neuron model has been put forward for the cat retinal ganglion cells
[4,5]. Their model included four voltage-gated currents: Na+ current (INa),
Ca2+ current(ICa), delayed rectifier (non-inactivating) K+ current (IK),
A-type (inactivating) K+ current (IA), and one Ca2+-activated K+ cur-
rent (IKCa). In order to account for spontaneous activity, the equation for
the voltage is modified by including zero-mean, Gaussian white noise ξ(t)
that mimics synaptic noise. Furthermore, a nonspecific, voltage-independent
leak current, IL, is included in our model. The equation for the membrane
potential V (in units of mV) reads

C

(

dV

dt

)

= −(INa + IK + ICa + IA + IKCa + IL) − I(t) + ξ(t) , (1)

where C =1µF/cm2 denotes the specific membrane capacitance, I(t) is the
injected current density to the cell, and 〈ξ(t)ξ(t′)〉 = 2ǫδ(t−t′) with the noise
strength ǫ. The ionic currents densities are given by INa = ḡNahm3(V −VNa),
IK = ḡKn4(V − VK), ICa = ḡCac

3(V − VCa), IA = ḡAa3hA(V − VK), IKCa =
gKCa(V − VK), IL = gL(V − VL), where ḡj are the maximal conductances,
i.e. ḡNa = 60, ḡCa = 2.0, ḡK = 12.0, ḡA = 36.0, gL = 0.2 in units of
mS/cm2, and Vj the reversal potentials, i.e. VNa = 35 mV, VK = −75.0
mV, VL = −60.0 V and ǫ = 5.0µA2/cm2. The noise strength ǫ has been
adjusted to account for the experimentally observed spontaneous spiking
rate of about 25/s under dark conditions. The quantity gKCa denotes the
calcium-dependent potassium conductance, gKCa = ḡKCa[Ca]2i /(1 + [Ca]2i ),

where ḡKCa = 0.05mS/cm2. Here [Ca2+]i denotes intracellular calcium con-
centration, and ḡKCa the maximal conductance. The reversal potentials for
all ionic currents except for Ca2+ were kept fixed since for the small ca-
pacitance the change in ionic intracellular and extracellular concentration is
small. The reversal potential for Ca2+, VCa, was updated dynamically ac-
cording to the Nernst equation with the intracellular calcium concentration
governed by [4, 5]

d[Ca2+]i
dt

= −0.000015ICa − 0.02
(

[Ca2+]i − 0.0001
)

. (2)

The gating variables (m,h, c, n, a, and hA) satisfy first order kinetics with
the opening and closing rates

αm =
−0.05(V + 30)

exp(−0.1(V + 30)) − 1
, βm = 0.5 exp

(

−
V + 55

18

)

,
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αh = 0.0182 exp

(

−
V + 50

20

)

, βh =
0.35

exp(−0.1(V + 20)) + 1
,

αn =
−0.004(V + 40)

exp(−0.1(V + 40)) − 1
, βn = 0.025 exp

(

−
V + 50

80

)

,

αc =
−0.003(V + 13)

exp(−0.1(V + 13)) − 1
, βc = 0.0467 exp

(

−
V + 38

18

)

,

αA =
−0.0011(V + 90)

exp(−0.1(V + 90)) − 1
, βA = 6.6710−3 exp

(

−
V + 30

10

)

,

αhA
= 0.105 exp

(

−
V + 70

20

)

, βhA
=

0.1

exp(−0.1(V + 40)) + 1
. (3)

Numerical integration of Eq. (1), referred to as the model hereafter, has
been performed using a first order stochastic solver with integration time
step ∆t = 10−5. The firing threshold to detect action potentials was set
at −20 mV, and the spikes times {ti} were recorded every time membrane
potential crossed firing threshold with positive slope.

To mimic visual input I(t) to the ganglion cells the model neurons are
driven with stimulus of the form I(t) = I0+y(t), where I0 is a constant back-
ground current and y(t) denotes Gaussian, exponentially correlated noise
with correlation time τ (in ms) and variance D (in µA2/cm4). The stationary
correlation function K(t− t′) and power spectrum S(ω) of y(t) are given by

K(t − t′) = D exp

(

− |t − t′|

τ

)

, S(ω) =
2Dτ

(1 + ω2τ2)
. (4)

The power spectrum decays proportional to ω−2 for ω ≫ 1/τ . Hence 1/τ
characterizes the frequency content of the visual signal y(t). The total power,
i.e. the integral over the power spectrum is given by 2πD and is indepen-
dent of τ . The white noise limit τ → 0 at fixed finite variance D is thus
characterized by a uniform power spectrum with amplitude approaching
zero everywhere. In the limit τ → ∞ the power becomes concentrated at
low-frequencies generating slow random changes with finite variance.

The instantaneous phase Φ(t) is defined as (for a detailed discussion see
in [6])

Φ(t) = 2πi + 2π
(t − ti)

(ti+1 − ti)
, ti ≤ t < ti+1 , (5)

where ti denote the times at which action potentials occur. The phase
increases by 2π every time the neuron fires. In between two subsequent firing
events at times ti and ti+1 the phase is determined by linear interpolation
between the phases at times ti + ε and ti+1 − ε.
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The probability density P (φ) of the phase difference Φ1(t) − Φ2(t) col-
lapsed to the interval [0,2π] is the simplest measure of synchronization. In
the case of perfect synchronization P (φ) is given by a δ-function, P (φ) =
δ(φ − φ0), where φ0 is a constant phase shift. In the opposite limit of no
synchronization, the probability density P (φ) is uniform. Between these
limiting cases the existence of a well expressed peak in the P (φ) signifies
stochastic synchronization. The existence of this peak can be characterized
by single numbers, called synchronization indices. We use here two indices.
First is the intensity of the first Fourier mode of the probability density P (φ)
calculated as [6]

γ2 = 〈cos φ(t)〉2 + 〈sin φ(t)〉2 , (6)

where 〈. . .〉 denotes temporal averaging. The index γ assumes values between
0 (no synchronization) and 1 (perfect phase locking for noise free case). The
second index is based on the Shannon entropy of P (φ) normalized to its
maximal value for the uniform distribution, Smax = ln(2π) [6], i.e.

ρ =
Smax − S

Smax

, where S = −

2π
∫

0

P (φ) ln P (φ)dφ . (7)

3. Results

First we consider the bifurcations in the deterministic model. We used
the AUTO software package to perform the bifurcation analysis of the model.
Fig. 1 shows the bifurcation diagram of the model for the bifurcation pa-
rameter I(t) = Idc. The system exhibits saddle-node bifurcations at SN1,
SN2 and SN3 for the approximate bifurcation parameter values of
0.2517 µA/cm2, 0.2515 µA/cm2 and 0.2501 µA/cm2, respectively. A pair
of stable and unstable periodic orbits are bifurcated through the saddle-
node bifurcation of periodic orbits at point SN3. The unstable part vanishes
through a subcritical Hopf bifurcation at point HB1 for Idc ≈ 0.622µA/cm2

making the fixed point unstable. At point HB2, the system undergoes a
supercritical Hopf bifurcation and the fixed point loses its stability giving
birth to a stable periodic orbit.

Next we study the firing characteristics of the excitable model neuron
when stimulated with the random visual signal y(t) in terms of the firing
rate and coefficient of variation (CV), i.e. the ratio of the variance of the
interspike intervals and the mean interspike interval. For the rest of the
discussion, the background current I0 and synaptic noise intensity are kept
fixed at 0.15µA/cm2 and 5.0µA2/cm4, respectively. Fig. 2(a) shows the fir-
ing rate whereas Fig. 2(b) shows the CV as a function of the correlation time
τ of the visual stimulus. In the limit τ → 0, the power spectrum of the visual
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Fig. 1. Bifurcation diagram: The maximal value of the membrane potential as

a function of bifurcation parameter Idc is shown. Solid (dotted) line denotes stable

(unstable) fixed points whereas filled (empty) circles denote stable (unstable) pe-

riodic orbits. SN and HB denote saddle-node and Hopf bifurcations, respectively.

The inset shows an enlarged section.

Fig. 2. Firing rate (a) and CV (b) as a function of correlation time τ , of the visual

signal y(t) for D = 30µA2/cm4 (circles) and D = 40µA2/cm4 (squares).

signal y(t) (see Eq. (4)) becomes flat with vanishing amplitude — hence the
firing rate is solely determined by synaptic noise ξ(t). For increasing τ , the
firing rate reaches a maximum and then decreases to zero for τ → ∞ since
y(t) slowly modulates the excitation threshold giving rise to infinitely long
periods of large thresholds during which the synaptic noise cannot generate
action potentials. The firing rate increases and the maximum shifts to larger
τ for increasing D. The monotonously increasing CV indicates that the fir-
ing becomes more irregular as the correlation time τ is increased and hence
that the maximum of the firing rate is not due to a dynamic resonance.
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Fig. 3. Probability densities of phase difference of two non-coupled model neurons,

stimulated with common visual noise at D = 30µA2/cm4 for τ = 0.01 ms (a) and

τ = 2 ms (b).

To investigate synchronization in two model cells caused by common
random visual stimuli with varying frequency contents, we stimulate two
non-coupled neurons with the same visual random input y(t). Both neurons
are in excitable regime which is different from the studies on synchronization
of limit cycle oscillators by common noise [7, 8]. For the small correlation
time τ = 0.01ms the probability density of the phase differences is almost
uniform as shown in Fig. 3(a), indicating a small degree of synchronization.
For τ = 2ms, a pronounced peak can be seen in the probability density
(Fig. 3(b)) indicating a preferred value of the phase difference. The two
synchronization indices are plotted in Fig. 4 as a function of the correlation
time τ of the common visual input signal y(t). The two non-coupled cells
show almost no synchronization for small correlation times. But as the

Fig. 4. Synchronization indices for two non-coupled model neurons versus cut-

off frequency when stimulated with common visual noise with D = 30µA2/cm4

(circles) and D = 40µA2/cm4 (squares).
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correlation time increases the degree of synchrony of the firing of the two
cells increases, approaches a maximum and then decreases to zero. The
maximum synchrony appears at τ = 2 ms, independent of the noise variance.
Since the correlation time τ determines the frequency content of the visual
signal, our findings above indicate that stimulus-induced synchrony in the
visual system can occur for selective visual signals with proper frequency
content.

Fig. 5. Left panel: Cross-correlation histogram for two non-coupled model cells,

stimulated with colored visual noise with D = 30µA2/cm4 and τ = 2 ms. Right

panel:Synchronization index for two model cells coupled through gap junction ver-

sus gap junction conductance.

Typically, interactions between pairs of neurons are assessed by con-
structing cross-correlation histograms (CCH) [9,10], which quantify the rel-
ative timing of spikes in one spike train with respect two a second spike
train. A sharp peak around zero delay in CCH reflects spike synchroniza-
tion between the two cells, and the width of the peak serves as a measure
of the time scale of these interactions. Let us consider the CCH for a case
where the two non-coupled model cells are stimulated with the common vi-
sual noise y(t) of variance D = 30µA2/cm4 and correlation time τ = 2 ms.
The narrow peak in Fig. 5 represents precise synchronization within a few
ms. The synchronization index in this case is γ = 0.53. Such a CCH is
similar to a typical experimental CCH.

The standard deviation of the input signal to produce such a tight syn-
chrony is in the range of currents received typically by the ganglion cells
(5–10 µA/cm2) [11], corresponding to a rather strong stimulation. However,
weak stimuli, which are physiologically interesting, fail to synchronize un-
coupled noisy cells. In particular, when the model cells are driven with the
common visual noise y(t) with a standard deviation of ≤ 0.5µA/cm2, their
responses show no synchronization (data not shown). Thus, common weak
random stimuli fail to account for the tight synchrony and thus additional
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mechanisms should be employed to enable weak stimulus synchronization.
One possibility is to use gap junctions as suggested by many experimental
studies [3, 12, 13]. We thus couple the model cells through a gap junction,
that is a term Igap = ggap(V − Vpre), where ggap is the gap junction conduc-
tance and Vpre is the presynaptic membrane potential, is added to Eq. (1)
of the model. The dependence of the synchronization index γ on the gap
junction conductance ggap, when the two coupled model cells are stimulated
with weak visual noise of variance D = 0.25µA2/cm4 and correlation time
τ = 2 ms, is shown in the right panel of Fig. 5. For ggap ≥ 0.4 mS/cm2, the
cells exhibit almost perfect synchronization. From the right panel of Fig. 5
it is clear that in order to obtain synchronization for the pair of model cells
with an index of γ = 0.53 which corresponds to a typical experimental CCH
gap junction conductance of ggap ≈ 0.08 mS/cm2 is required.

4. Summary

In this work, we investigated synchronization of cat retinal ganglion cells
facilitated by common visual stimulus with variable frequency content. We
find that the model cells optimally synchronize for input signals with appro-
priate strength and frequency content. Other studies have shown resonance-
type dependence of the information gain [14] and of the spike time reliabil-
ity [15] on the frequency content of noisy stimuli. Our study suggests that
for weak stimuli tight spike synchrony requires coupling of model cells trough
gap junction with an estimated 0.08 mS/cm2 gap junction conductance.
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