
Vol. 37 (2006) ACTA PHYSICA POLONICA B No 5

HOW TO EVALUATE THE ELECTRIC NOISE

IN A CELL MEMBRANE?∗

Martin Bier

Dept. of Physics, East Carolina University
Greenville, NC 27858, USA

bierm@mail.ecu.edu

(Received February 21, 2006)

Dedicated to Professor Peter Talkner on the occasion of his 60th birthday

There has been considerable public anxiety about possible health effects
of electromagnetic radiation emitted by high voltage power lines. Power
frequencies (60 Hz in the US, 50 Hz in many other countries) are suffi-
ciently slow for the associated electric fields to distribute themselves across
the highly resistive cell membranes. To assess the ambient power frequency
fields, researchers have compared the voltage that these fields induce across
cell membranes to the strength of the electric noise that the membranes
generate themselves through Brownian motion. However, there has been
disagreement among researchers on how to evaluate this equilibrium mem-
brane electric noise. I will review the different approaches and present an
ab initio modeling of membrane electric fields. I will show that different
manifestations of Brownian noise lead to an electric noise intensity that is
many times larger than what conventional estimates have yielded. Next,
the legitimacy of gauging a nonequilibrium external signal against internal
equilibrium noise is questioned and a more meaningful criterion is proposed.
Finally, an estimate will be derived of the nonequilibrium noise intensity
due to the driven ion traffic through randomly opening and closing ion
channels.

PACS numbers: 05.40.Ca, 87.50.Jk

1. Introduction

Electrical appliances that are powered by an AC source all emit some
electromagnetic radiation of the frequency of the AC source. From everyday
gadgets like computers, electric blankets, electric razors, etc. a person can
be exposed to a field with an amplitude of about 500 V/m [1]. This should
be rather harmless. There is, for instance, already an electric field of about
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100 V/m between the earth and the sky [2]. The equipotential surfaces
associated with that field are generally not horizontal. So ever since the
dawn of human evolution, man has already been exposing himself to a slowly
fluctuating field of about 100 V/m as he is moving around objects.

With power lines, however, we are in a completely different ballpark. In
almost every country in the world a network of high voltage power lines,
suspended from imposing Eiffel Tower-like structures, crisscrosses the land-
scape. These lines can carry up to half a million Volt and when standing
right under a power line a person can be exposed to about 10 kV/m [1].

There has been a lot of debate and public anxiety about possible health
effects that the long term exposure to such fields may have. Epidemiological
studies have been somewhat inconclusive. Many data have been gathered,
analyzed, and reanalyzed over the last quarter century [1, 3]. One problem
is that the diseases that have raised the most concern are, fortunately, very
rare. Childhood leukemia, for instance, occurs on average in only one out
of every ten thousand children. Large populations are necessary in order to
measure a slightly enhanced rate of occurrence in an exposed population.
Because it is hard to accurately assess the exposure of each subject in a
survey to power frequency radiation and to other cancer causing factors, the
epidemiological studies have considerable margins of error.

The epidemiological inconclusiveness all the more justifies a biophysical
approach. Where and how does an power frequency field interact with a
living organism? Can we come up with some thresholds that have to be
exceeded before a physiological effect can occur? Below I will briefly review
some of the major results of the last few decades. I will propose some new
approaches and I will suggest some directions for future investigations.

Electromagnetic radiation has an electric and a magnetic component.
My focus will be on a possible physiological effect of the electric component.
It is for brevity’s sake and not for the lack of lively debate and remarkable
research results that I will exclude magnetoreception [4–10].

2. The distribution of an electric field inside an organism

The intracellular and extracellular medium are very ionic and conduct
well. So when an electric field is imposed on a piece of living tissue, the ions
move and, within a microsecond, compensate for the field inside the liquid.
The cell membrane is very resistive and this means that, once a steady state
is reached, all of the voltage drop occurs across the cell membranes. The
electromagnetic (EM) radiation frequency window between 0 and 300 Hz is
generally characterized as Extremely Low Frequency (ELF). In this regime
the field changes sufficiently slowly, relative to the aforementioned microsec-
ond, for the field to remain distributed over just the membranes.
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Two “conversions” occur when an ambient ELF field distributes itself
across cell membranes in living tissue. Living tissue, first of all, has an
average resistivity that is much smaller than that of the surrounding air.
Consequently, inside the organism an electric field is partly canceled out
by the compensating displacement of charged particles. The resulting field
attenuation is described by the following formula [7, 11]:

Ei

E0

≈ ǫ0ωρ . (1)

Here ǫ0 is the dielectric permittivity of a vacuum (8.8 × 10−12 C2/N.m2),
ω is the angular frequency (ω = 2πf), and ρ represents the resistivity of the
tissue (1–2 Ωm at about 100 Hz). For living tissue in a power frequency field
this ratio is found to be at most 10−7. Reference [11] by Foster and Schwan
contains a rigorous derivation of Eq. (1). It is not hard, however, to intuit
this formula. When an organism is exposed to a field, charge relocation
takes place to compensate for this field. The slower the change of the field,
the easier it is for this internal compensation to keep up. This is how the
frequency dependence arises. Furthermore, for lower resistivity the internal
compensation will be easier.

Once inside the tissue, the field is effectively amplified as all of the poten-
tial difference along the diameter of a cell (about d = 10µm) gets focused on
the width of the cell membrane (about h = 5 nm). With Emem/Ei ≈ d/h we
find an amplification of about 103. For a longer cell, however, this number
may be larger. For the net conversion factor we thus derive a factor of about
10−4. For an external field of E0 ≈ 10 kV/m, the membrane field is found
to be a Volt per meter. This leads to about 5 nanovolt across a membrane
of 5 nm width.

The 5 nanovolt may seem negligibly small relative to, for instance, the
physiological transmembrane potential of about 100 millivolt. If the ELF
field is to have an effect it is through interference with the catalytic cycle of
membrane proteins. Proteins are generally very polar molecules and external
electric fields can affect energy levels of conformational states and activation
barriers.

3. The membrane as a Johnson–Nyquist resistor

The significance of an added nanovolt-order ELF oscillation across a cell
membrane was first approached with rigorous quantitative physics in 1990
by Weaver and Astumian (WA). In a Science paper they compared the ELF
voltage to the voltage due to thermal noise [12]. Because of the Brownian
motion of the charge carriers, there is always a small fluctuating voltage
between the two ends of a resistor. This voltage was first measured [13] and
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then explained [14] in 1928. The so-called Johnson–Nyquist (JN) noise is
white and in a frequency window ∆f the average square voltage is expressed
as

〈∆V 2〉 = 4kBTR(∆f). (2)

Here kB is the Boltzmann constant, T is the absolute temperature, and
R is the resistance. The cell membrane can be conceived of as a resistor.
The interfaces of the membrane with the intracellular and extracellular fluid
effectively act like capacitor plates that are 5 nm apart. In the WA view the
transmembrane noise can be evaluated as the noise between the capacitor
plates in an RC circuit (Fig. 1). The AC response of an RC circuit is
part of any basic physics textbook. For the high frequencies there is not
enough time for the voltage to build up across the capacitor. For the low
frequencies there is enough time. So in the WA picture only low frequency
JN noise manifests itself across the membrane. The cutoff between the low
and high frequency regime is the RC time of the membrane. This RC time
is independent of size and shape of the membrane and amounts to about
a millisecond for a living cell. The 50 or 60 Hz power frequencies are thus
well within the low frequency regime. Upon quantitative assessment Weaver
and Astumian find a noise intensity that far overwhelms the signal due to
a 10 kV/m ELF field. They then point out that, because of the noise, a
membrane protein would never even be able to detect such an ELF field, let
alone that the ELF field could have a physiological effect.

(a) (b)

Fig. 1. The electrical structure of the cell membrane is shown in (a). The interior

of the membrane operates as a resistor with a high resistance. In our context the

resistor is also a white noise generator that follows Eq. (2). On both sides of the

membrane the interface with the ionic solution acts like a capacitor plate. In the

WA model [12] the electric potential between the two solutions is evaluated. This is

equivalent to the potential between the capacitor plates in (b). Later models [15,16]

focused on the electric field inside the resistor. Because of the sheet-like nature of

the membrane the resistor R should then actually be conceived of as N parallel

resistors that each have a resistance NR, where N is a very large number.
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In 2002, W.T. Kaune put forward that, as a membrane protein is embed-
ded in the cell membrane, it should, in the context of Fig. 1(b), be imagined
to be inside the resistor [15]. Inside the resistor a protein should be sub-
ject to the electric fields that presumably cause the JN-voltage of Eq. (2).
Moving the protein from between the capacitor plates to inside the resistor
in Fig. 1(b) effectively inverts the WA picture. As was mentioned before,
at low frequency the voltage on the capacitor follows and equals the voltage
generated by the resistor. This means that at low frequency the field inside
the resistor gets balanced out by the countervoltage from the capacitor. At
high frequency the capacitor cannot follow. So eventually the protein will
only “feel” the fast oscillations with periods below the RC time. In such a
model there would be a possibility for the power frequency radiation to be
“stick out” above the noise spectrum.

However, if we are imagining the membrane protein to be inside the re-
sistor, Fig. 1 is no longer the appropriate setup for calculations. A real cell
membrane is about 5 nm thick and many billions of square nanometers in
surface area. So the resistor in Fig. 1 is actually a very thin sheet. As the
lateral conductivity of a membrane is small, the sheet should be modeled as
an array of many parallel resistors. Taking, in that case, N parallel resis-
tors of resistance NR leads to the same net resistance R. The amount of
noise, however, increases very fast with N . And not only does the number of
“noise making resistors” increase when N is increased, the amount of noise
per resistor also grows with N as each individual resistors generates a voltage
that follows 〈∆V 2〉 = 4kBTNR(∆f). At each frequency in the spectrum the
resistors oscillate incoherently, i.e. the oscillations have random phase dif-
ferences relative to each other. This being out of phase leads to the resistors
pushing and pulling current in and out of each other. The capacitor is not
involved in this “pulling and pushing”. This “pulling and pushing” of current
constitutes the intramembrane noise. It can be easily intuited that the in-
tramembrane noise increases with N and that, for large N , the effect of the
capacitor becomes more and more negligible. A exact mathematical solution
for any value of N was first formulated by Vincze, Szasz, and Szasz [16]. A
simpler derivation of the same result is found in [17]. When cutting up the
membrane into the aforementioned individual resistors, a logical choice is
taking the elementary resistor as a cube of 5 nm × 5 nm × 5 nm [7]. For an
ordinary cell this leads to a value of N of the order of millions. The noise
that a membrane protein “feels” in this case is almost all intramembrane,
it is many times larger than what WA would predict, and the spectrum is
effectively white [16, 17].
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4. The membrane as a barrier to ions

The results from the previous section were rigorously derived. However,
it makes sense to step back and reexamine the legitimacy of some of the
basic premises. The basic idea behind Nyquist’s 〈∆V 2〉 = 4kBTR(∆f)
is in the Brownian motion of the charge carriers inside the resistor. A
cell membrane, however, consists for the most part of a lipid bilayer with
no mobile charges inside. The transmembrane voltage emerges because of
penetrations of the membrane by ions from the aqueous solution on either
side of the membrane. These penetrations are random and left-to-right
penetrations are not necessarily balanced out by right-to-left penetrations.
At equilibrium a transmembrane potential thus arises as a consequence of
2-sided shot noise.

It is easy and straightforward to take a membrane separating two identi-
cal ionic solutions. Given the membrane’s permeability and the ionic concen-
trations, the penetration rates can be evaluated. The voltage that develops
between the two sides is essentially an effect of the elementary charge be-
ing finite. It is through Fick’s Law and Nernst’s Law [18] that one can go
from concentrations and permeabilities to currents, voltages and resistances.
Remarkably, one then arrives again at Nyquist’s 〈∆V 2〉 = 4kBTR(∆f) [17].

The result appears surprising as nothing in Nyquist’s original 1928 proof
seems to suggest that the case of 2-sided shot noise is included. Nyquist’s
proof is a proof from the absurd that involves resistors, capacitors, and
inductors and it uses the Equipartition Theorem (which says that at equi-
librium every degree of freedom takes on 1

2
kBT of thermal energy) as a

starting point. A simpler form of Nyquist’s proof is found in the reference
by Feynman, Leighton, and Sands [2]. The peculiarity was also noticed by
Sarpeshkar, Delbrück, and Mead [19]. In their 1993 paper these authors
eventually argue that the 2-sided shot is the basic phenomenon that under-
lies JN noise.

A real membrane is also a capacitor. So any charge imbalance leads
to a finite ∆V and a force, proportional to ∆V , that drives ∆V back to
zero. This leads to an Ornstein–Uhlenbeck process (i.e. a random walk
in a parabolic potential, see, for instance, the textbook by Van Kampen
[20]) for the variations over time of ∆V . Substituting the ionic strengths
of physiological solutions (which is about the same as that of sea water)
and the cell membrane’s RC time one derives a 〈|∆V |〉 that corresponds
to about 3 monovalent ions per square micrometer [17]. These ions are not
fixed at one position on the membrane-liquid interface. They move over the
surface with a speed that can be estimated from 1

2
mv2 ≈ kBT and comes

out to be between 102 and 103 m/s. The dimensions that we took in the
previous section for an elementary resistor (5 nm × 5 nm × 5nm) are also
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realistic for a membrane protein. Whenever an ion, on its trajectory on the
membrane, crosses over such a protein, the protein feels a delta function-like
electric pulse. Given the 3 ions per square micrometer and the speed of these
ions, the noise intensity that a membrane protein is subjected to due to the
membrane-parallel random trajectories can be evaluated [17]. This noise
comes out be be many orders of magnitude larger that the noise intensity
due to the membrane transverse penetrations.

Early in this section we noticed that the random membrane penetrations,
i.e. 2-sided shot noise instead of JN noise, brings us back to the same old
Nyquist formula and the ensuing WA estimate. It is tempting to hypothesize
that the membrane parallel trajectories are equivalent to the intramembrane
noise that we discussed in the previous section in the context of JN resistors.
The numbers appear to correspond. But a rigorous proof to that effect is
not available.

5. A criterion for possible physiological effects

In this section we again start out with stepping back and reexamining
the basic premises of what we have done. In the previous two sections we
evaluated the strength of equilibrium noise and compared it against the
strength of an ELF field. Ultimately this may be like comparing apples and
oranges. An external field can do work. That is how an electromotor works.
Equilibrium noise cannot do work. A rock at the bottom of a lake cannot
take the energy from Brownian motion of water molecules and propel itself
out of the water as the lake cools down. The Second Law of Thermodynamics
does not allow it.

To clarify these matters further, consider the example in Fig. 2. A trans-
porter enzyme is able to take a molecule S and carry it to the other side
of the membrane. We can imagine the transport cycle as a two step pro-
cess. As the enzyme goes from state E to state E∗S, it picks up an S. As
it drops off the molecule S, it goes back to E. A cycle with net transport
occurs when the pick-up and the drop-off are on different sides of the mem-
brane. With the reaction Sin ⇋ Sout at equilibrium, no energy input into
the enzyme, a zero transmembrane voltage, and the two baths on either
side of the membrane being of identical composition, there will be no net
transport. This is most easily concluded by invoking the so-called Principle
of Detailed Balance. This principle is a consequence of the Second Law of
Thermodynamics [21,22] and states: No system in thermal equilibrium in an

environment at constant temperature spontaneously and of itself arrives in

such a condition that any of the processes taking place in the system by which

energy may be extracted, run in a preferred direction, without a compensat-

ing reverse process. In the context of Fig. 2(b), Detailed Balance asserts
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(a) (b)

(c)

Fig. 2. An enzyme E operates as a transmembrane carrier for a molecule S (a).

No net transport occurs when concentrations of S are the same on each side. In

the context of the kinetic scheme in (b), this means equal traffic along the top two

transitions (Sout binding and Sout release) and equal traffic along the bottom two

transitions (Sin binding and Sin release). With an imposed AC electric field (c) it

is possible to modulate energy levels such that net cycling in (b) can occur. Such

net cycling results in net crossmembrane transport of S.

that, for both the Sout reaction and the Sin reaction, the forward and the
backward arrow will carry an equal amount of traffic. So, on average, no net
cycling and no ensuing net transport of S will occur.

It is possible to drive transport of S by subjecting the transporter to
a zero-average, oscillating or fluctuating electric field. If E, E∗S, and the
transition states have different dipoles, than the energy levels of these states,
and thus the transition rates between these states will vary as the field varies.
Imagine a situation where a positive-direction electric field (see Fig. 2(c))
lowers the energy level of E∗S and the energy level of the transition state
for S binding on the outside. Next an electric field in the negative direction
lowers the energy level of E and the energy level of the activation barrier for
S release on the inside. The oscillation in time as depicted in Fig. 2(c) will
entrain the chemical kinetics and bring about a net cycling in the clockwise
direction in Fig. 2(b). Such cycling will result in net transport of S. This
AC powering has actually been shown to work for Na,K-ATPase. Under
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physiological conditions Na,K-ATPase takes its energy from the hydrolysis
of ATP (adenosine triphosphate) and uses that energy to pump three sodium
ions to outside the cell and bring two potassium ions to inside the cell [23].
In vivo the reaction ATP → ADP + P (where ADP stands for adenosine
diphosphate and P represents an inorganic phosphate) releases about 22 kBT
units of energy. In the absence of an ATP–ADP chemical gradient, but
subjected to an oscillating electric field, this ion pump has been shown to
operate [24]. Straightforward chemical kinetics is able to accurately account
for the frequency dependence of the transport rate [25].

At equilibrium there will be no net cycling on average. However, the
transitions are random events. If there are N transitions between E and
E∗S, then there will be an average number of net cycles that is proportional
to

√
N . This is for the same reason that after N coin tosses, there is an

average difference between the number of heads and the number of tails that
is proportional to

√
N . Technically, it is only in the thermodynamic limit,

i.e. N → ∞, that
√

N becomes negligible relative to N and that Detailed
Balance applies. So as time evolves, (Sin–Sout) performs a random walk.
At equilibrium and in the course of a time t, a net number of S molecules
of ∆Seq ∝

√
t is thus carried across the membrane. This is like a diffusive

effect, as also for a diffusing particle we find an average displacement due
to diffusion that is proportional to

√
t [20]. The AC field induced transport

that we discussed in the previous paragraph is obviously proportional to t,
i.e. ∆SAC ∝ t.

It is obvious that at t → 0, we have ∆Seq ≫ ∆SAC and diffusive effects
that overwhelm the AC pumping. However, there will always come a time
t = t∗ at which ∆Seq = ∆SAC. Only when t > t∗ will the pumping effect
start to “stick out” above the diffusive effects and will it, in principle, become
detectable. A common approach has been to take the power in an ELF signal
and compare it to the power of the equilibrium membrane electric noise in
a certain bandwidth around that ELF frequency. But, as was mentioned at
the beginning of this section, this is not a meaningful comparison since the
power in equilibrium noise, unlike, the power in an ELF signal, is not able
to do work. A better criterion is the time t∗ after which detectable molecular

change can occur [26]. It is only for t > t∗ that an ELF signal can have a
physiological effect. I am aware of only one instance in the literature where
a t∗ has been estimated: in 1995 Astumian, Weaver, and Adair derived a
nice and simple formula for the relation between t∗ and the external field.
It is easy to check that according to their formulae measurable effects of
10 kV/m ELF exposure will arise at time scales larger than a human life
span [27].
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6. Nonequilibrium noise

Detailed Balance is obviously broken when an external source radiates
an ELF signal into an organism. There is, after all, no feedback from the
organism back to the ELF source. So the source brings energy into the
organism. Inside the organism this energy is, subsequently, partly converted
and partly dissipated.

Imagine that, in the close proximity of the enzyme E that we discussed
in the previous section, there is another enzyme E′. Imagine next that E′

is changing its dipole as it is going through its ATP driven catalytic cycle.
The flipping dipole will create a fluctuating electric field around E′. The
enzyme E will “feel” this fluctuating field. The fluctuating electric field can,
in principle, drive transport cycles in the enzyme E.

The situation with the enzymes E and E′ is similar to the one with an
external ELF source. Detailed Balance is obviously broken when E′ is driven
through its catalytic cycle by the hydrolysis of ATP. Eventually, the chemical
energy in ATP is, via the nonequilibrium fluctuations that constitute the
signal from E′ to E, partly converted into a chemical potential between Sin

and Sout.

When describing equilibrium noise, the analysis is greatly aided by the
Equipartition Theorem and by Detailed Balance. The analysis of nonequi-
librium noise is much harder. In vivo, an enzyme like the one in Fig. 2
is subject to many nonequilibrium fluctuations. Not just fluctuating elec-
tric fields, but also incoming light, temperature variations in space and in
time [28], nonequilibrium fluctuations in space and in time of concentrations
of chemicals, etc. can do work on the enzyme E and can, in principle, drive
transport of S.

Living systems operate far from equilibrium and many energy conver-
sions are taking place all the time. The organized maintenance of the far-
from-equilibrium condition and the continuous transduction and dissipation
of energy are some of the main characteristics of being “alive”. Enzymes are
the most prominent conduits for this dissipation and conversion of energy.

A complete accounting of all the energy transduction in a cell and the
ensuing nonequilibrium noise is beyond our present means. However, the
driven transmembrane electric currents [29] and the associated noise [30,31]
have been measured. This is a part of the nonequilibrium picture that we
can actually quantitatively assess.

We saw earlier that the transmembrane voltage fluctuations due to
2-sided shot noise at equilibrium were given by Eq. (2). This leads to a cur-
rent power spectral density of Seq

I
= 4kBT/R [32]. The current power spec-

tral density gives the mean square current per unit of bandwidth
(i.e. Hz). The noise power in a certain frequency window is obtained by mul-
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tiplying the power spectral density with the resistance and integrating over
the frequency window. The intensity of equilibrium noise is generally taken
to be frequency independent. This “white noise” assumption is reasonable
when working in a sub-MHz regime [17, 32]. The flat frequency spectrum
makes for a straightforward and easy analysis of equilibrium noise.

The nonequilibrium noise that “streams” from E′ to E is able to do work
just like an external ELF signal can do work. Therefore the comparison
between the power spectral density of nonequilibrium noise and the power
of an ELF signal is actually fair and meaningful.

We will not look at the intramembrane noise. We will simply, as in
the WA model, look at the electric fluctuations between the reservoirs on
either side of the membrane. In previous sections we studied the equilibrium
fluctuations. Below we will evaluate the nonequilibrium fluctuations.

For a living cell there is a continuous cycling of ions across the membrane.
For each type of ion at steady state the same current I goes in-to-out as well
as out-to-in (see Fig. 3). Pumps drive ions through the membrane against
the electrochemical gradient. This active transport requires energy and is
commonly powered by the hydrolysis of ATP. Ion channels allow ions to flow
with the electrochemical gradient.

Pumps transport ions one-by-one. When the actual membrane passage
time of an ion is negligible compared to the time between subsequent pas-
sages, we can think of these passages as delta function-like pulses. We then

Fig. 3. A living cell maintains electric currents across its membrane. Pumps drive

ions against the electrochemical potential and channels let ions flow back. Trans-

port through pumps is active and one-by-one. Channels let about 104 ions pass

during an average channel opening. The randomness of the channel openings is the

main contributor to nonequilibrium noise.
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face ordinary shot noise. The noise is white and the current power spectral
density is easily evaluated as Spump

I
= 2eI [32]. Here I represents the current

referred to in the last paragraph and e is the elementary charge.
For a channel the equivalent of the pump’s elementary charge is the

amount of charge that passes during a channel opening. For a sodium chan-
nel, for instance, the average channel open time is about τopen = 10−3 s. The
current that flows during an average channel opening is of picoampere mag-
nitude. A picoampere current corresponds to about 107 elementary charges
per second. So during an average channel opening about N = 104 ions flow.
We thus find Schan

I
≈ 4NeI for the current power spectral density due to

channel activity. There is a prefactor 4 instead of a prefactor 2 because the
open time of a millisecond is an average of an exponential distribution. The
extra stochasticity about doubles the current power spectral density [33]. It
is obvious that the channel noise is larger than the pump noise by a factor
of about ten thousand. This is basically because pumps transport charge in
larger units. So we have Snoneq ≈ Schan.

Fig. 4. The measured power spectral density of noise across a cell membrane be-

haves like 1/f between about 10 Hz and about 104 Hz. Above 104 Hz the level of the

white equilibrium noise starts to exceed the nonequilibrium noise. The measured

plateau where f is smaller than about 10 Hz corresponds well with our estimate

from Eq. (3). At the power frequencies the nonequilibrium noise is about 100 times

as intense as the equilibrium noise.

Snoneq
I

≈ 4NeI is a valid approximation as long as one looks at frequen-
cies smaller than the channel’s inverse average open time. At frequencies
higher than 1/τopen, the correlations on timescales shorter than τopen make
for a smaller noise amplitude. When one type of channel is involved, the
eventual spectrum Snoneq

I
(ω) is a sigmoid; a so-called Lorentzian spectrum

that drops down from 4NeI to zero at about ω = 1/τopen.
The power spectral density of actual cell membranes was first recorded

in the 1960s by Verveen and Derksen [30, 34]. More accuarate recordings
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have been made since [31]. Fig. 3 depicts the general shape of such spectra.
The plateau that runs from zero Hz to somewhere between 1 and 10 Hz
represents the level Snoneq

I
≈ 4NeI that we just calculated. Verveen and

Derksen already noticed that this level was many times larger than what
just equilibrium noise would predict. For the dimensionless ratio between
nonequilibrium and equilibrium noise we derive

θ =
Snoneq

Seq
≈ 4NeI

4kBT/R
= N

e

kBT
IR . (3)

For the current power spectral density of the equilibrium noise we ignore the
intramembrane noise and took the WA estimate. Substituting realistic val-
ues for the resistance of a cell membrane (about 103 Ωcm2, see, for instance,

page 254 of [35]) and transmembrane currents (10 µA/cm2, [29]) we find
for θ a value of about 1000. To the right of the plateau the power spectral
density drops off roughly like 1/ω. The apparent 1/f -noise can be explained
by the fact that, in a real cell membrane, there are many types of channels
with different τopen’s and different ensuing values of N . The 1/f pattern
can thus emerge as a superposition of a number of Lorentzians. It has been
argued that channels may exhibit 1/f noise in and of themselves [36], but
these ideas are still controversial.

At the power frequency we still have a ratio Snoneq/Seq of about one hun-
dred. Experimental observations affirm this [30,31]. As the Seq according to
the WA model already overwhelms the possible response to a 10 kV/m sig-
nal from a power line, including the nonequilibrium noise in the description
only renders ambient ELF radiation more inconsequential.

7. Conclusions and discussion

The very end of this paper is an appropriate place to again step back
and reconsider the basic premises and the results. As was shown with the
E–E∗S example and its interaction with the enzyme E′, nonequilibrium noise
can be an agent in the conversion of energy. So some nonequilibrium noise
may not just be noise, but actually a signal. This is most obvious with a
signal going through a nerve cell. In that case a signal propagates as the
opening of sodium channels triggers the opening of nearby sodium channels.
These channel openings are regulated and no longer random; they no longer
constitute noise, but, instead, make up a signal that moves information.
Much of what we take for nonequilibrium noise may therefore actually be
signal. It would be wrong to take all of the Schan that we evaluated and put
it in the denominator of a signal-to-noise ratio. With nonequilibrium noise
in living systems we face a gray area between signal and noise.
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For living systems there is evolutionary pressure towards sensitive and
efficient signal detection. Sharks, skates, and rays, for instance, are able
to detect microvolt-per-meter magnitude electric fields in seawater. Pick-
ing up such fields is easier in seawater than it is in air as the attenuation
ratio of Eq. (1) becomes about one. Sharks, skates, and rays use their
electric sense to pinpoint their prey when they move in closely and smell
becomes inaccurate. The electric field-sensing organs have been thoroughly
researched [37–41] and it appears that the equilibrium kBT -limit accounts
for the noise in signal-to-noise ratios. Nonequilibrium contributions to the
noise have apparently been almost eliminated in this case. One should re-
alize, however, that these electric field-sensing organs are highly specialized
multicellular structures that have evolved over hundreds of millions of years
in response to conditions that existed for hundreds of millions of years. ELF
radiation, on the other hand, is a fairly new phenomenon in the environ-
ment. There is, furthermore, no obvious selective advantage for an organ-
ism in picking up such fields and, even if it were so, specialized detection
structures are unlikely to evolve in just decades.

All in all, from a biophysical perspective it seems very unlikely that any
land based organism could pick up the electric component of a 10 kV/m
ELF field. Noise levels appear prohibitively large.

This is an outline of a lecture given at the 18th Marian Smoluchowski
Symposium in Zakopane, Poland on September 5. I wish to thank my many
colleagues for numerous discussions. Due to space limitations I have been
able to cite only some of many of their published contributions.

REFERENCES

[1] NIEHS (National Institute of Environmental Health Sciences), NIH Publica-
tion No 99-4493, 1999.

[2] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics,
Addison-Wesley, Reading MA 1966.

[3] IARC (International Agency for Research on Cancer), IARC Monographs,
http://www.iarc.fr/IARCPress/, 2002.

[4] R.K. Adair, Bioelectromagnetics 14, 1 (1993).

[5] C. Polk, Bioelectromagnetics 15, 261 (1994).

[6] J.L. Kirschvink, M.M. Walker, C.E. Diebel, Curr. Opin. Neurobiol. 11, 462
(2001).

[7] R.K. Adair, Phys. Rev. A43, 1039 (1991).



How to Evaluate the Electric Noise in a Cell Membrane? 1423

[8] J.L. Kirschvink, Phys. Rev. A46, 2178 (1992).

[9] T. Ritz, P. Thalau, J.B. Phillips, R. Wiltschko, W. Wiltschko, Nature 429,
177 (2004).

[10] J.C. Weaver, T.E. Vaughan, R.D. Astumian, Nature 405, 707 (2000).

[11] K.R. Foster, H.P. Schwan, CRC Critical Reviews in Bioengineering, 17, 25
(1989).

[12] J.C. Weaver, R.D. Astumian, Science 247, 459 (1990).

[13] J.B. Johnson, Phys. Rev. 32, 97 (1928).

[14] H. Nyquist, Phys. Rev. 32, 110 (1928).

[15] W.T. Kaune, Bioelectromagnetics 23, 622 (2002).

[16] G. Vincze, N. Szasz, A. Szasz, Bioelectromagnetics 26, 28 (2005).

[17] M. Bier, Bioelectromagnetics 26, 595 (2005).

[18] W.J. Moore, Physical Chemistry, Longman, London 1972.

[19] R. Sarpeshkar, T. Delbrück, C.A. Mead, IEEE Circuits and Devices, Novem-
ber 23, 1993.

[20] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier,
Amsterdam 1992.

[21] P.W. Bridgman, Phys. Rev. 31, 101 (1928).

[22] R.C. Tolman, Proc. Natl. Acad. Sci. 11, 436 (1925).

[23] P. Läuger, Electrogenic Ion Pumps, Sinauer, Sunderland, MA 1991.

[24] D.S. Liu, R.D. Astumian, T.Y. Tsong, J. Biol. Chem. 265, 2760 (1990).

[25] B. Robertson, R.D. Astumian, J. Chem. Phys. 94, 7414 (1991).

[26] T.E. Vaughan, J.C. Weaver, Bioelectromagnetics 26, 305 (2005).

[27] R.D. Astumian, J.C. Weaver, R.K. Adair, Proc. Nat. Acad. Sci. 92, 3740
(1995).

[28] J.C. Weaver, T.E. Vaughan, G.T. Martin, Biophys. J. 76, 3026 (1999).

[29] O.M. Sejersted, Prog. Clin. Biol. Res. 268B, 195 (1988).

[30] H.E. Derksen, A.A. Verveen, Science 151, 1388 (1966).

[31] K. Diba, H.A. Lester, C. Koch, J. Neuroscience 24, 9723 (2004).

[32] L.J. DeFelice, Introduction to Membrane Noise, Plenum Press, New York 1981.

[33] J.C. Weaver, M. Bier, CRC Handbook on Bioelectromagnetics, eds.
F.S. Barnes, B. Greenebaum, CRC Press, Boca Raton, FL 2006, to appear.

[34] H.E. Derksen, Acta Physiol. Pharmacol. Neerl. 13, 373 (1965).

[35] J.P. Keener, J. Sneyd, Mathematical Physiology, Springer Verlag, New York
1998.

[36] J.B. Bassingthwaighte, L.S. Liebovitch, B.J. West, Fractal Physiology, Oxford
University Press, New York 1994.

[37] A.J. Kalmijn, Nature 212, 1232 (1966).

[38] A.J. Kalmijn, Science 218, 916 (1982).



1424 M. Bier

[39] A.J. Kalmijn, Unsolved Problems of Noise and Fluctuations: UPoN 2002:
Third International Conference, ed. S.M. Bezrukov, Vol. 665, AIP, Melville
NY 2003, pp. 133-141.

[40] R.K. Adair, R.D. Astumian, J.C. Weaver, Chaos, 8, 576 (1998).

[41] S.M. Bezrukov, Unsolved Problems of Noise and Fluctuations: UPoN 2002:
Third International Conference, ed. S.M. Bezrukov, Vol. 665, AIP, Melville
NY 2003, pp. 142-149.


