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A novel physical mechanism is discussed for the processive propagation
of two-headed motor proteins such as kinesin along protein filaments. Our
model uses the fact that the binding of each head must be directionality
oriented to the protein filament. The binding sites are realized by a 2D
periodic potential due to the filament’s surface. The deviation of the ge-
ometry of the kinesin from the relaxed state to the state where both motor
domains are simultaneously bound to the filament results in an internal
stress of the molecule. Un-binding of one of the motor domains from the
filament, which is due to the release of chemical energy from ATP hydrol-
ysis, results in a mechanical movement until the relaxed state is reached
again. We develop a simple mathematical and mechanical model in which
directed binding of the heads to the filament results in a directed twist
away from its relaxed state of the molecule, occurring probably in the neck
linker region. Un-binding of the head from the filament relaxes the twist
and defines the propagation direction. We show that there must be at
least one torsional spring for every head to store elastic energy. It is the
internal structure both of the relaxed and tensed-up state that defines the
walking direction of kinesin. Calculations based on the model are in good
quantitative agreement with experimental observations.
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1. Introduction

Two-headed conventional kinesin (KN) molecule walks hundreds of steps
without dissociating along a microtubule (MT) before they completely dis-
sociate from an MT [9,12,18,23]. Both heads translocate by 16 nm steps [32]
and it was demonstrated that an 8 nm KN centre-of-mass movement is corre-
lated with an ATP hydrolysis event whose rate depends on the concentration
of ATP and magnesium. The maximum propagation velocity of conventional
KN ranges between 0.6mm/s and 2.0mm/s [10,36,38]. For the two-headed
processive KN motors, the essential force generation elements are located
within each of the two globular heads [Cole and Scholey(1995),16,17]. Young
et al., showed that one-headed KN is often non-processive with a different
mechanism of motion compared to the two-headed KN.

The movement of conventional KN along MT protofilaments could be
explained by different models such as the hand-over-hand or the inchworm
models [39]. Measuring stepwise motion shows that KN molecules “limp”
along MTs implying that kinesin alternates conformations during its walk.
The limping predicted for an asymmetric hand-over-hand mechanism is ex-
plained by axial misregistration between the α-helices of the KN neck or
also by over- and under-winding of this domain [2].

We broadly classify various models into: (a) chemically-based and (b)
mechanically-based ones. Especially lacking in the existing models is the
inclusion of spatial dimensionality to show hand-over-hand motion of the
two-headed KN since each KN head is an extended object comparable in
size to the tubulin dimer. The hand-over-hand mode of propagation cannot
be captured by 1D mechanical (ratchet) models which use an asymmetric
MT potential [30, 31] acting on a point mass which have not been directly
shown from either ab initio theory or direct experiment.

In reaction-based models chemical reactions are combined with confor-
mational changes of the entire motor that correspond to a mechanical step.
Such conformational changes represent a transition to a new relaxed state
of the motor. Therefore, tensions caused by chemical reactions are relieved
as driving forces for the motor. A particular type of chemical model is
called a power stroke model where the motor protein’s structure undergoes
a conformational change driven by ATP hydrolysis.

Two types of description are used to represent biased Brownian motion
in the presence of external potentials [6, 19, 20]: (a) The Langevin equation
with a randomly fluctuating force [14] due to finite temperature leads to
a fluctuating position behaviour. (b) The Fokker–Planck equation describes
the probability of finding the mass point at a particular position in space
and time. For a single mass point the Langevin equation in one dimension is
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γ
dx

dt
= −

dV (x)

dx
+ F (t) , (1)

where x is the co-ordinate along the MT axis, V (x) is the effective potential,
γ is the friction coefficient and F (t) the uncorrelated random force [5, 33],
with

〈F (t)〉 = 0 ,
〈

F (t)F (t′)
〉

= 2γkTδ(t − t′) , (2)

according to the fluctuation-dissipation theorem. The Fokker–Planck equa-
tion calculates the probability density P (x, t) as [7]

dP (x, t)

dt
= ∂x

((

1

γ
∂xV (x)

)

P (x, t) + D∂xP (x, t)

)

, (3)

where V (x) is the potential and D is the diffusion coefficient D = kT/γ.
Conventional KN’s directionality is mainly determined by the neck region

which is also essential for processivity and regulation of ATP hydrolysis [15].
The free unattached heads for processive plus-end oriented KNs point in the
walking direction [1, 21]. Thus the internal structure of the KN molecule
in its relaxed state, and not an asymmetry of the binding potential of the
heads, determines the KN walking direction. Since KN and other motors like
Ncd have virtually the same motor domains, the differences in the walking
direction between KN and Ncd appear to require a formalism that is not
based on ratchet potentials.

2. Assumptions for the new model

The following considerations exclude inchworm models for movement of
double-headed processive kinesin even though it is not completely excluded
experimentally (for discussion see [13]). Unidirectional rotation of kinesin
during movement along MTs has never been shown. Asymmetric hand over
hand walking with pairs of torsion that eliminate each other after every step
were found by [25]. [8] found experimental evidence that the primary working
stroke of KN is closely aligned with the microtubule axis. By applying
sideways loads they have shown a left/right asymmetry.

X-ray diffraction for crystallised KN shows a rotational symmetric form
with a relative angle between the two heads of 120◦ for the “relaxed” state
of the KN molecule, in the absence of MT binding or other forces acting on
it [27]. By reducing the angle between the heads from 120◦ to zero the two
heads would become collocated and co-oriented. A simultaneous binding of
both heads to the same protofilament of a MT results in a tense form for
the molecule as defined by probably the neck linker, a strand between core
heads and the dimerisation domain that should act like a torsion spring. [1]
as well as Kozielski et al. [28] have shown by MT decoration experiments
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for a variety of KN’s that the free head points into the walking direction by
angles near 120◦ relative to the other, filament-bound, head.

However, binding of a head to the MT is only possible for a special
position and direction of the head relative to the MT. Thus, we assume that
each KN head exists in one of the following three chemical states:

(a) A nucleotide-free (empty) state for which a head can bind to the MT.

(b) An ATP/ATP: P state for which a head remains bound to the MT.

(c) An ADP state formed after release of Pi from ATP hydrolysis. A KN
head in an ADP-state binds weakly. It is either free, or in the process
of detachment from a MT; an intermediate weakly bound state can
also appear.

During the mechano–chemical cycle each KN–MT complex can be found
in several distinct chemical states [3], see Fig. 1:

Fig. 1. The reaction cycle. Shown is the MT as square and the two heads of KN

shown as arrows. Starting point is the free KN in the middle (state 0). Steps 2

and 4 are the swing out steps, where most of the movement is done.

1. Head B bound, which we assume to be in state (a), and head A, which
we assume to be in state (c), pointing in the walking direction at an
angle φ (we assume to be near 120◦) to the plus direction along the
MT axis.

2. Head A is in state (a), it lost ADP, and head B is in state (b); it
bound ATP and possible hydrolysed it without releasing Pi, resulting
in a tensed KN form. Head A is leading, head B trailing.

3. Head A bound, which we assume to be in state (a), and head B, which
we assume to be, after releasing Pi in state (c), pointing in the walking
direction (the plus end of MT) at an angle of φ to the MT axis.

4. The state is analogous to 2 with the head A in the state (b) and head
B in state (a), also in a tensed KN form. Head B is leading, head A
trailing.
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Of cardinal importance is that chemical binding of large molecules hap-
pens only in a very precise steric position (directed binding) which means
the KN/MT binding states during movement are not mirror images of each
other but spatial translations. This is quite different to the human walking
process, where the steps together with the feet are mirror images of each
other. In our model we do not use the left-right asymmetry, but we use the
forward-backward asymmetry.

It is also a model requiring twisting (torsional) degrees of freedom.

3. Description of the model

Our model employs a two-dimensional (directed) binding potential which
is periodic along the MT axis. The KN motor consists of two heads and
a neck/stalk. The binding of both KN heads to the MT filament must be
identical in terms of both geometry and energy. The transitions between the
states (steps) are described as follows:

Initially, KN is in a relaxed state unbound to a MT(with ADP in both
heads).
Step 0: In the initial step one of the two heads, say head B, binds to the MT
(and releases its ADP immediately). Head A is unbound (and nucleotide
free), pointing in the walking direction at an angle φ to head B and KN ends
up in state 1.

• Step 1 involves the binding of head A. Since head B remains bound the
angle between the heads is 0◦ which requires that the KN molecule be
twisted compared to its relaxed position. KN is then in state 2, with
spring A loaded, spring B unloaded. (Head B binds ATP).

• In Step 2 the energy for ATP hydrolysis is used to release head B from
the filament resulting in mechanical movement towards an equilibrium
position state 3 which is a relaxed state for KN. This mechanical step
is a swing of head B around the still bound head A. Here, the centre of
mass moves by one unit of lattice periodicity, i.e. 8 nm for the KN–MT
system (state 3).

• In Step 3 head B binds to a MT loading spring B, since head B turns
counter-clockwise with respect to the correct binding direction. There-
fore, KN ends up in state 4. Now spring B is loaded and spring A is
unloaded.

• In Step 4, if head A is released, the mechanical step results in a swing-
ing movement of head A around the still bound head B.

• Step 5 is identical to Step 1 and it starts a new walking cycle.
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These reactions also can go backwards with reduced probability.
There must exist at least two springs, each connected to one of the two

heads for this model to apply. To load the spring located at head A, with
KN initially in state 1, head A turns in a clockwise direction to bind to the
MT (Step 1). To load the spring located at head B, starting with state 3,
head B is turned in a counter-clockwise direction to bind to the MT (Step 3).

Note that between states 1 and 3 in the cycle the neck region turns by
an angle which is approximately equal to the angle between the heads in
a relaxed state and a tensed state. For simplicity we choose φ = 120◦, the
same angle between the heads in the unbound state. We further assume,
and the simulation shows it, that the unbound head turns in such a way
as to traverse the least path in the binding process. The ATP hydrolysis
energy must exceed the binding energy, which itself must exceed the elastic
spring energy.

Our model requires the use of at least eight degrees of freedom (8 posi-
tion co-ordinates). The two heads have to be described by at least two mass
points in order to account for directed binding. We use two spatial dimen-
sions to see the hand-over-hand swinging motion of the two heads. Hence,
we have to calculate the stochastic, two-dimensional movement of four mass
points. Most of the potentials are necessary to maintain the shape of the KN
molecule. Only two potentials are essential for the mechanical steps: one
for the spring, which determines the swinging step and one for the binding
potential to determine the binding step. These potentials specify the rate of
the two reactions: binding and swinging. The corresponding energy barriers
lead to the Arrhenius temperature dependence of the reaction rates.

To maintain the internal form of each head, we assume a stiff interaction
between its two masses, represented by the potential functions Vh(~r1 − ~r2)
and Vh(~r3−~r4) for the two heads, respectively. Then Vd(~r1+~r2−~r3−~r4) is a
distance dependent potential between the two centres of mass for each of the
two heads. Vh and Vd are normal harmonic spring potentials with suitably
chosen rest lengths. Two torsional springs are located at head A and B,
respectively. When either of the heads binds to the MT with the other head
already bound to it, the torsional springs in the neck linker region become
loaded. There is also a binding potential between each head and a MT,
denoted Vbind(~r1, ~r2) and Vbind(~r3, ~r4), respectively. Binding of KN to a MT
is orientationally directed.

The total potential for the four mass points representing the two heads is:

V (~r1, ~r2, ~r3, ~r4,bind1,bind2, load) = Vh(~r1 − ~r2) + Vh(~r3 − ~r4)

+ Vd((~r1 + ~r2 − ~r3 − ~r4)/2) + Vload(~r1, ~r2, ~r3, ~r4, load)

+ VsA(~r1, ~r2, ~r3, ~r4) + VsB(~r1, ~r2, ~r3, ~r4)

+ bind1 Vbind(~r1, ~r2) + bind2Vbind(~r3, ~r4) , (4)
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where Vh(~r) and Vd(~r) are harmonic spring potentials given by

Vh(~r) = Chid(|~r| − Rhid)
2 (5)

and
Vd(~r) = Chhd(|~r| − Rhid)

2 (6)

with the following parameters used:

Chid = 10 kT/nm2 , Rhid = 3.6nm ,

Chhd = 10 kT/nm2 , Rhhd = 7nm .
(7)

The twisting spring potentials VsA(~r1, ~r2, ~r3, ~r4) and VsB(~r1, ~r2, ~r3, ~r4) only
depend on the unit vectors, n̂A giving the direction of head A, n̂B giving
the direction of head B, and n̂AB giving the direction between the centre of
mass of head A and the centre of mass of head B. Hence

VsA(~r1, ~r2, ~r3, ~r4) =
Chhα

2
(n̂AB · M(α) · n̂A) (8)

and

VsB(~r1, ~r2, ~r3, ~r4) =
Chhα

2
(n̂AB · M(π − α) · n̂B) , (9)

with

n̂AB = −
~r1 + ~r2 − ~r3 − ~r4

|~r1 + ~r2 − ~r3 − ~r4|
, n̂A =

~r1 − ~r2

|~r1 − ~r2|
, n̂B =

~r3 − ~r4

|~r3 − ~r4|
. (10)

M(α) and M(π − α) are rotational matrices, turning n̂A counter-clockwise
and n̂B clockwise at an angle of 30◦, respectively. Vload produces a force on
the centre of mass ~rs of the whole molecule applied in the x-direction

Vload(~r1, ~r2, ~r3, ~r4, load) = −Cload n̂x · ~rs , (11)

where

~rs =
(~r1 + ~r2 + ~r3 + ~r4)

4
, n̂x = {1, 0} , Cload = 10−21 J/nm . (12)

The binding potential has preferred directionality such that KN–MT binding
is only possible in the correct direction and is given by a potential acting on
the centre of mass of the head and an angle-dependent potential producing
a force on the head applied in the correct direction

VbindA(~r1, ~r2) = ChMtVbindm

(

~r1 + ~r2

2

)(

1 +
n̂x · n̂A

2

)

, (13)
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VbindB(~r3, ~r4) = ChMtVbindm

(

~r3 + ~r4

2

)(

1 +
n̂x · n̂B

2

)

, (14)

ChMt = 25 kT . (15)

Here Vbindm is a potential with a period of 8 nm and a depth of one energy
unit. It is a periodic continuation (period 8 nm) of the function

f(x, y) = −1 +
1

8

(

4 +
√

x2 + y2 −

√

0.01 +
(

√

x2 + y2 − 4
)2
)

. (16)

4. The Langevin equation formalism

We now define the individual position co-ordinates of the masses in-
volved:

~ri = {xi, yi} . (17)

Then the 8 coupled Langevin equations for these co-ordinates of the four
masses representing the two heads can be written as

γ∂txi =−∇xi
V (x1, x2, x3, x4, y1, y2, y3, y4,bind1,bind2, load)+Fxi

(t) , (18)

γ∂tyi =−∇yi
V (x1, x2, x3, x4, y1, y2, y3, y4,bind1,bind2, load) + Fyi

(t) , (19)

where γ is the friction constant which is judiciously chosen as γ = 6 ×
10−11kg/s. Here, Fxi

(t) and Fyi
(t) define random forces satisfying the usual

conditions:

〈Fxi
(t)〉 = 0 ,

〈Fyi
(t)〉 = 0 ,

〈

Fxi
(t)Fyj

(t′)
〉

= 0 ,
〈

Fxi
(t)Fxj

(t′)
〉

= 2γkTδi,jδ(t − t′) ,
〈

Fyi
(t)Fyj

(t′)
〉

= 2γkTδi,jδ(t − t′) . (20)

The above coupled Langevin equations were solved numerically. The me-
chanical steps described above arise naturally if we switch the binding of
head A and B on and off, given by m = {bind1,bind2}. For state 1 we
have: m = {0, 1}. Independently of the initial condition, we find head B
bound and head A unbound. Note that head A does not show the exact
angle of 120◦ with respect to head B because of thermal fluctuations. The
following three figures describe the centre of mass of the KN, the centres of
mass of the two heads and the position of one head, resulting from the same
calculation, showing the first 6 steps of the molecule’s motion. Fig. 2 shows
the calculated position of the total centre of mass of the two heads in the
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Fig. 2. A time series diagram representing the calculated position versus time

function of the centre of mass of KN.

x-direction, which is the direction along the MT for the first 6 steps of the
movement. Unless binding occurs for a given head, the fluctuations of the
head position are fairly large. Fig. 3 shows the calculated positions of the
centres of mass of the two heads in the x-direction, which is the direction
along the MT. It is clear that hand-over-hand movement takes place in the
direction from the −end to the +end of the MT.
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Fig. 3. A time series diagram representing the calculated position versus time

function of the two heads comprising a KN molecule.

In Fig. 4 we show the calculated x co-ordinates of the two mass points of
head A. In these graphs the load force is assumed to be zero. Fig. 5 shows
the same calculated walking cycle in two dimensions. We see the alternating
twists of head A and B first shown in [11]. Individual computations produce
somewhat different graphs, because the random force is different in every
run.

The Langevin approach presented above has two major shortcomings.
The binding parameters bind1, bind2 follow the following simple rules. First,
we switch the binding force in a regular fashion. We start with (a) m =
{0, 1}, i.e. head B binds, this automatically means that head A is leading
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Fig. 4. The calculated position co-ordinates of head A: x1 and x2 as a function of

time.
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Fig. 5. A schematic drawing of the KN walking cycle in two dimensions.

for the moment. Then (b) m = {1, 1}, i.e. both heads bind with head A
leading with its spring loaded. We assume that only the head with an empty
spring can unbind which is the trailing head. This gives (c) m = {1, 0}.
The unrealistic aspect in this case is that we switch from (a) to (b) to
(c) in an orderly way at fixed time intervals. The second shortcoming of
this Langevin calculation is that the energy barriers for the binding and
unbinding processes are not included in this simulation.

5. A combination of the Fokker–Planck equation

and the rate equation

The Langevin approach shows the geometry of the walking process, but
does not include the transition rates for hydrolysis events during which the
KN heads lose ADP. The chemical processes of binding and unbinding were
included by simply switching a attractive binding potential on and off. Most
importantly for binding, the two complicated surfaces must fit into each
other in a specific relative steric configuration. This requires a complicated
path which the head must traverse before it can bind to MT. The end of this
path will be on the binding site, but before binding occurs, the head will
be effected by repulsive forces resulting in the presence of effective energy
barriers.
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To illustrate this idea Fig. 6 shows a molecules, assumed to be a point
mass, while a second (larger) molecule’s surface is shown as a complicated
curve. The particle has to search its way through the labyrinth of the surface
area of the large molecule before it can find a binding site. Only with
help of thermal fluctuations can the particle reach the desired binding site.
These effects affect the temperature dependence of the chemical reaction in
a characteristic way.

incoming mass to bind outside

binding site

surface with
long range forces

Fig. 6. A small molecule, coming from the outside has to find its way through the

surface area of a large molecule until it finds the binding site.

A crude approach to deal with these effects is the introduction of an
energy barrier, resulting in the famous Arrhenius temperature dependence
of transition rates for chemical processes

k = A exp

(

−
Eb

kT

)

. (21)

We can now calculate the probability of finding the system in a particular
state. A state is defined by the continuous 8 co-ordinates of the four mass
points R and the discrete binding parameters m

R = {x1, x2, x3, x4, y1, y2, y3, y4} , m = {bind1,bind2} , (22)

where m has the three possible values

m = {1, 1}, {1, 0}, or {0, 1} . (23)

W (R,m, t) is the probability density for a certain time t that the co-ordinates
have the value R, and the binding parameters are m. The equation of motion
for W (R,m, t) is the extended Fokker–Planck equation,

∂tW (R,m, t) = ∇ · ((∇V (R,m)W (R,m, t) + D∇W (R,m, t)) (24)

+
∑

n(n 6=m)

(−Ωmn(R)W (R,m, t) + Ωnm(R)W (R,n, t)) .
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Here D is the diffusion coefficient D = kT/γ. ∇ is the 8 dimensional gradient
operator. Ωmn(R) are the transition probabilities for the different binding
parameters. V (R,m) is the effective potential, which also depends on the
load plus a barrier potential

V (R,m) = V (x1, x2, x3, x4, y1, y2, y3, y4,bind1,bind2, load)

+ Vbarrier(x1, x2, x3, x4, y1, y2, y3, y4,bind1,bind2) . (25)

There appears to be no mathematical method (analytical or numerical) of
solving this Fokker–Planck rate equation for our model, even if we only need
the stationary solution since it is a system of 8-dimensional PDE. In the one-
dimensional case, a similar equation with some further simplifications was
solved by [29].

To calculate the velocity of KN within our model we divide the whole
reaction cycle into individual steps and calculate their transition rates. This
calculation is too complicated in general due to the high dimensionality of
the system. But there is one exception when we focus only on the most
important mechanical step. The swinging step starts with state 4, in which
both heads are bound m = {1, 1} and spring B is loaded. When head A is
released, it swings around head B until an angle of approximately 120◦ is
reached. This, however, is a quasi-one-dimensional movement for the centre
of mass of head A, the path of which is a circle around head B. Perpendicular
fluctuations are now neglected, since we chose the distance potential Vd as
very stiff. A similar idea of neglecting non-essential degrees of freedom can
be found in [26]. The effective time-dependent co-ordinate is the arc length
of the circle, s.

The Fokker–Planck equation for this one-dimensional movement of head
A then reads:

∂tW (s, t) = ∂s((∂sV1(s))W [s, t] + D∂sW (s, t)) . (26)

Here, the one-dimensional potential V1(s) contains three separate potential
terms: the spring potential of head B, the load potential and the energy
barrier term. The spring potential as a function of s is:

VsB(s) = −
1

2
cos

(

s − s0

Rhhd

)

Chhα . (27)

The load potential in terms of its dependence on s reads

V1(s, load) =

[

1 − cos

(

s

Rhhd

)]

CloadRhhd . (28)

The swinging motion is combined with a chemical reaction, i.e. the release
of head A, which is sensitive to its potential energy barrier, so we have to
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add a chemical reaction potential VR(s), i.e. the barrier potential, which we
define as

VR(s) = EB exp

(

−

[

(s − s1)

2

]2
)

(29)

to obtain
V1(s) = VsB(s) + V1(s) + VR(s) . (30)

The barrier energy EsB and the location co-ordinate s1 of the barrier are
essential. Only with VsB the total potential V (s) has two minima corre-
sponding to the initial state and the final state. Fig. 7 shows V (s) with and
without VsB. The constants are chosen as EsB = 10 kT and s1 = 7 .

Fig. 7. The one-dimensional “swing out” potential Vs with and without the energy

barrier.

To calculate the corresponding reaction rates we use Kramer’s escape
rate, where

kswing =
kT

γ









∫

int1

exp(−V (s)kT )ds





∫

int2

exp

(

V (s)

kT

)

ds





−1

. (31)

Here, the first integral (int1) has to be calculated around the starting mini-
mum of V (s) (the initial state), the second integral (int2) around the max-
imum of V (s) (the energy barrier). We then calculated kswing in both di-
rections and combined it with the other reaction rates of the chemical cycle
used.

For the other steps we use the reaction cycle given by Howard [22] and
Hirose et al. [21] consisting of three different reactions. We start with head
A in an ADP state unbound from a MT and head B in an empty state bound
to the MT. In reaction 1 head B binds an ATP complex. In reaction 2 head
A loses the ADP and binds also to the MT. In reaction 3 head B hydrolyses
ATP, unbinds and makes the swing.
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Reactions 1 and 2 have the rates k+
1 (F ), k−

1 (F ), and k2(F ), respectively.
Reaction 3 can go in both directions, which we calculated as k+swing(F ) and
k−swing(F ) using the Kramers escape method. For the first reaction (binding
of ATP with rates k+

1 (F ), k−
1 (F )) and the second reaction (double binding

to MT, with rate k2(F )), we use similar rate constants as in Howard [22].
The stationary reaction equations for this reaction cycle read

P2k
−
1 − P1k

−
swing − [ATP]P1k

+
1 + P3k

+
swing = 0 , (32)

−P2k2 − P2k
−
1 + [ATP]P1k

+
1 = 0 , (33)

P2k2 + P1k
−
swing − P3k

+
swing = 0 , (34)

where P1, P2, P3 are the probabilities to find the system in states 1, 2, 3 and
[ATP] is the concentration of ATP. Only two of these equations are linearly
independent and we have the normalisation condition

P1 + P2 + P3 = 1 . (35)

We then calculate the current j

j = k2P2 (36)

and multiplying j by the step-length of 8 nm we obtain the velocity v as

v =
8[ATP]k2k

+
1 k+

swing

[ATP]k+
1 k+

swing+k−
1 (k−

swing+k+
swing)+k2(k

−
swing+[ATP]k+

1 +k+
swing)

.

(37)
After one of the heads unbinds, the forces on the head are working only on

its centre of mass. Therefore, the Fokker–Planck equation for this process is
that of a two-dimensional particle in a given potential. We used our potential
and solved the equation numerically starting with a Gaussian distribution
for the density distribution. Some steps in the time development are shown
in Fig. 8.

Fig. 8. The time development of the probability distribution, the time is going from

left to right.
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To test our model we have calculated the force-velocity relationship for
a number of ATP concentrations corresponding to several experimental data
sets. We use Eq. (39) together with k−

swing(F ) and k+
swing(F ) calculated with

the help of Eq. (33)

k+
1 (F ) = 100e−1.120716F ,

k−
1 (F ) = 3000 e1.120716F ,

k2(F ) = 100 e−0.241432F . (38)

We show the comparison in Figs. 9–11. Our results are given by the solid
black line, while those calculated by [22] are shown as a dashed line. Figs.
9 and 10 compare with experiments done by Visscher et al. [37]. Fig. 11
compares our results with an experiment by [35]. The agreement achieved
between our model and experiment especially for low ATP concentrations
is very good. While our simulations resulted in a mode of propagation
that is reminiscent of the hand-over-hand motion, it has not required a
pronounced rotation of the stalk region as has been recently reported based
on experiments [24].

Fig. 9. The force-velocity curve for kinesin at the concentration of [ATP] = 600 µM.

Fig. 10. The force-velocity curve for kinesin at the concentration of [ATP] = 1.5 µM.
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Fig. 11. The force-velocity curve for kinesin at the concentration of [ATP] ≫ 90 µM.

Many papers using ratchet models and Brownian motors [4, 19, 20, 34],
to explain the behaviour of molecular motors like kinesin resulted in a di-
rectional motion of the motor. In the usual ratchet models this is explained
with an asymmetry of the ratchet potential. Our model stresses that the
binding of the heads to MT must be directed. This together with the fact
that the geometric form of the relaxed kinesin is symmetric, makes our model
directional.

To make it clear that our model does not describe a Brownian motor
we take away any thermal fluctuation (T = 0), which means we solve the
Langevin equation without any random force, so it cannot violate the second
law of thermodynamics. The unbinding of one of the two heads happens
after certain fixed intervals, the time in which the ATP complex binds to
the head and ATP hydrolysis occurs. The unbinding of one of the two heads
occurs in this calculation with an equal probability. After a head unbinds,
it can bind again after a characteristic time, this is just the time it takes the
head to lose its ADP and become an empty head again. The result of this
simplified calculations is shown in Fig. 12. If the leading head (the wrong
head) unbinds, it binds again later at the same spot as before. If the trailing

Fig. 12. A simplified calculation without temperature, but with equal probabilities

for both heads to unbind.



A Directed Binding Mechanism of Processive Motion for . . . 1441

head (the right head) unbinds, it swings around and binds again later at
a new spot 16 nm away from the old one. Note that “wrong steps” can be
seen for this example around t = 0.0006.

6. Discussion

We developed a theoretical model for kinesin using the geometrical struc-
ture of the molecule. It is a mechanical model, since we use the difference
between relaxed and tensed states and describe them by springs. We show
that there must exist at least two springs. The movement of kinesin is
stochastic, but kinesin is a chemically reactive molecule. A chemical bind-
ing of extended molecules must be directed and from this, we can explain
quite naturally, the loading and reloading of the two springs, which results
in an asymmetric hand-over-hand movement described by experiments. Fur-
thermore, for chemical binding processes energy barriers are required. The
well known Arrhenius equation, describing the temperature dependence of
chemical reaction rates, is a typical result of energy barriers. We solved
the requisite Langevin equations to show the geometrical hand-over-hand
movement. We estimated the transition rate for the swing out step, which
we used to solve a system of rate equations and calculated the velocity de-
pending on the load, which was compared with experimental data given by
literature.

In summary, our model is not a model of a Brownian motor since it is not
using ratchet potentials. The directionality is given by the internal structure
of the kinesin molecule. The angle φ determines the direction of the walk
and we predict that changing φ would change the direction of the walk. The
energy flow is clearly defined in our model: for the second head to bind, if
the first is already bound, it has to turn around, loading its spring, which
means positive potential spring energy is stored together with the negative
binding energy, then ATP hydrolysis and release of Pi at the trailing head
pumps energy into the system, the energy used to break the binding of
this head from the MT; the remaining spring energy of the leading head is
free to cause the “hand-over-hand” swing-out process as a biased random
walk. This storing of potential energy seems to be very important. The
binding forces are short range, hence they cannot cause the walking over
such distances directly. The system is over-damped so molecules must be
propelled ballistically. Instead, ATP hydrolysis causes unbinding; in other
words there is an increase of potential energy. The system always tends
to go in the direction to reach the minimum of the potential energy. The
walking direction is given by the internal structure of KN.

Finally, we make several predictions regarding the outcome of future
experiments when the angle φ could be controlled by experimenting with
the structure of the neck linker region. The case when φ is approximately
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120◦ was discussed in this paper. For φ = 180◦ (both heads are oriented
anti-parallel outwards) there is no change in the walking direction but the
alternating swinging direction can be distorted. If we reduce φ to 0◦ (both
heads are oriented parallel) the movement is expected to be similar to a
random walk, there is no symmetry breaking and, therefore, no preferred
walking direction. If φ is further reduced to negative values (both heads are
oriented inwards instead of outwards), we have the same scenario as before,
except the direction of walking is now reversed. We conclude that our model
could also be a starting point for the description of Ncd.

We believe that the model presented here for the directed walk of double-
headed processive kinesins, could also be used for description of processive
myosin walks, which will be part of our future work.
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