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In order to document and discuss the widespread presence in nature
of the stochastic resonance phenomenon (SR), we investigate the generic
double-well potential model perturbed by the α-stable Lévy type noises.
Despite possible infinite variance characteristics of the noise term, the SR
effect still occurs and can be detected by common quantifiers used in the
studies of the phenomenon. The robustness of the SR is examined by use
of standard measures within a continuous and a two-state description of
the system. Since the α-stable noises are characterized by a whole set of
parameters, our research focuses on the analysis of the influence of noise
parameters on a shape of the signal-to-noise ratio and spectral power am-
plification curves, revealing presence of the SR in the system at hand.
Examination of the driving noise asymmetry indicates that the resonant
response weakens when the symmetric noises with a decreasing value of
the stability index α are applied.

PACS numbers: 05.90.–m, 05.40.–a, 02.50.–r, 82.20.–w

1. Introduction

Stochastic resonance [1–7] is one of the phenomena manifesting a counter-
intuitive, constructive role of noises in nonequilibrium physical systems. In
particular, in the regime commonly named as stochastic resonant response
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of a system when appropriately tuning the intensity of a superimposed noise,
the amplification and the improvement of an input, information signal are
detected. The effect can be determined by use of various system perfor-
mance measures, such as the signal-to-noise ratio (SNR), the spectral power
amplification (SPA) or input/output cross-correlation measures. All these
parameters, at a certain optimal noise level, exhibit a marked maximum.
Likewise, an entropy-based measure of disorder attains a minimum thus
providing a further proof for the noise-induced ordering.

The term “stochastic resonance” was introduced in the early papers ad-
dressing periodic recurrences of the Earth’s ice ages for which a bistable oscil-
lator model was proposed [8,9]. Besides, the SR phenomenon was experimen-
tally observed in digital devices such as Schmitt triggers [10,11] and physical
systems such as ring lasers [12], vertical cavity, surface emitting lasers [13]
or colloidal systems [14]. Characteristic features of the SR-type response
were also found in chemical reactions [15] and biological systems [16–19].

Almost all research studies devoted to the SR phenomenon were treating
the input noise processes as solely Gaussian and hence, had finite variance.
Instead, in this article we focus on the theoretical examination of the SR in
a generic double-well potential system subjected to more general stochastic
drivings: The common additive Gaussian fluctuations are replaced with an
α-stable white noise, which for certain sets of parameters is equivalent to
its standard, Gaussian white-noise analogue. In this respect, studies of the
system perturbed by α-stable white noises reproduce the results of Gaussian
models as a special case. In overall, our simulations prove that the SR effect
can be observable also in systems driven by a feedback resulting from the
infinite-variance noises.

2. Model

As a starting point for the examination of the influence of Lévy sta-
ble noises on the character of the SR, we chose an (overdamped) Langevin
equation

dx(t)

dt
= −V ′(x, t) + ζ(t) = f(x) + i(t) + ζ(t) , (1)

where V (x, t) is a double-well potential with a periodically changing relative
depth of its minima (cf. Fig. 1)

V (x, t) = −a

2
x2 +

b

4
x4 − A0x cos Ωt , (2)

with b = 512, a = 128, A0 = 8. Such a choice of the potential parameters
results in a sufficiently high potential barrier. Here ζ(t) stands for a white
Lévy process [20]. In the above formulation i(t) = A0 cos Ωt represents the
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signal process forcing the dynamical system ẋ(t) = f(x) perturbed by a noise
term ζ(t). The proposed model is studied via the Monte Carlo simulation
of the discretised Langevin dynamics [21]. The integration of Eq. (1) is
performed with respect to the Lévy stable motion [21, 22] according to the
recipe given by Eq. (5).
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Fig. 1. The generic double-well potential (left panel) V (x, t) = −a
2
x2 + b

4
x4 −

A0x cosΩt with a = 512, b = 128, A0 = 8 for t = {0, π/2, 3π/2}. Note that location

of the top of the potential barrier (right panel) is a function of the cosΩt. The

preferable direction of the motion in the presence of a non-biased (symmetric) noise

is from a shallower — to a deeper minimum. The position of the top of the barrier

is used to discriminate between “left” and “right” states of the process, i.e. the

continuous trajectory of a “test” particle is mapped onto a two state process.

3. Solution and results

The α-stable variables are random variables for which the sum of random
variables is distributed according to the same distribution as each variable
[23], i.e.

aX1 + bX2
d
= cX + d . (3)

The equality
d
= reads “equality in distribution”, i.e. it indicates that char-

acteristic functions of LHS and RHS of Eq. (3) are the same for a given set
a, b, c, d of real numbers.
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Fig. 2. Probability density functions for the symmetric (β = 0) stable random

variables with an index α = 2.0, 1.5, 1.0, 0.5 (from bottom to top). With the

decreasing stability index α distributions’ tails become heavier.

Accordingly, the noise term in Eq. (1) is composed of independent differ-
ential increments that follow the stable density with the index α, Lα,β(ζ;σ, µ).
Throughout the paper we adhere to one of possible parameterizations of
α-stable distributions [22, 24] which allows to write down the characteristic
function of an appropriate probability distribution

φ(k) =

∞
∫

−∞

e−ikζLα,β(ζ;σ, µ)dζ

in the form of

φ(k) = exp
[

−σα|k|α
(

1 − iβsign(k) tan
πα

2

)

+ iµk
]

,

φ(k) = exp

[

−σ|k|
(

1 + iβ
2

π
sign(k) ln |k|

)

+ iµk

]

, (4)

for α 6= 1 (upper line) and α = 1 (bottom line), respectively. Here α
stands for the stability index that describes an asymptotic power law of
the ζ-distribution, Lα,β(ζ) ∼ |ζ|−(α+1) and covers the regime α ∈ (0, 2].
The parameter β represents skewness of the distribution (β ∈ [−1, 1]), σ
characterizes a scale and µ denotes the location parameter [22, 24]. Closed,
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analytical forms of the probability density function (PDF) for stable vari-
ables are known only in few cases. In particular, for α = 2, β = 0, ζ is a
Gaussian variable, whereas α = 1, β = 0 and α = 1

2 , β = 1 yield Cauchy
and Lévy–Smirnoff (ζ > µ) distributions, respectively. Exemplary stable
probability density functions are presented in Figs. 2 and 3.

The position of a “test” particle, moving according to Eq. (1) can be
obtained by direct integration [22, 25–27] yielding

x(t) = −
t

∫

t0

V ′(x(s), s)ds +

t
∫

t0

dLα,β(s)

d
= −

t
∫

t0

V ′((x(s), s))ds +
N−1
∑

i=0

(∆s)1/αςi . (5)

where ςi are independent identically distributed random variables distributed
according to Lα,β(ς;σ, µ = 0) and N∆s = t − t0.
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Fig. 3. Asymmetric stable probability density functions for β = −1.0, − 0.5, 0.0,

0.5, 1.0 with α = 1.5 (left panel) and α = 0.9 (right panel). Note the differences in

the position of the maxima for α < 1 and α > 1. The support of the densities for

the fully asymmetric cases with β = ±1 and α < 1 assumes only negative values

for β = −1 and only positive values for β = +1.
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Random variables ς corresponding to the characteristic function (4) can
be generated using the Janicki–Weron algorithm [22]. For α 6= 1 their rep-
resentation is

ς = Dα,β,σ
sin(α(V + Cα,β))

(cos(V ))1/α

[

cos(V − α(V + Cα,β))

W

](1−α)/α

+ µ, (6)

with constants C,D given by

Cα,β =
arctan

(

β tan
(

πα
2

))

α
, Dα,β,σ = σ

[

cos
(

arctan
(

β tan
(πα

2

)))]

−1/α

. (7)

For α = 1, ς can be obtained from the formula

ς =
2σ

π

[

(π

2
+ βV

)

tan(V ) − β ln

( π
2 W cos(V )

π
2 + βV

)]

+ µ. (8)

V is a random variable uniformly distributed over (−π
2 , π

2 ), W is a random
variable exponentially distributed with a unit mean; V and W are statisti-
cally independent [22, 28–30].

For the stability index α = 2, the problem described by Eq. (1) and
its equivalent integral Eq. (5) correspond to the Gaussian white noise [31]
scenario. In fact, numerical integration of Eq. (1) with α = 2 reconstructed
all well known results for formerly solved Gaussian cases [2, 32, 33]. Within
these studies, we use instead a class of strictly stable distributions of sym-
metric (β = 0) and asymmetric (β 6= 0) α-stable noises for which the value
of the location parameter µ was set to 0.

To quantify the SR phenomenon we use the signal-to-noise ratio SNR
and the spectral power amplification SPA. The SNR measure is defined as
a ratio of a spectral content of the signal i(t) in the forced system to the
spectral content of the noise ζ(t):

SNR = 2



 lim
∆ω→0

Ω+∆ω
∫

Ω−∆ω

S(ω)dω





/

SN(Ω). (9)

Here
Ω+∆ω
∫

Ω−∆ω

S(ω)dω (10)

represents the power carried by the signal, while SN (Ω) estimates the back-
ground noise level. In turn, the spectral power amplification (SPA) is given
by the ratio of the power of the driven oscillations to that of the driving
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Fig. 4. Trajectories of an exemplary α-stable processes constructed by use of Eq. (1)

for a two-state approximation and for the full, continuous case. The two-state

process takes values ±1. The time step of the integration is set to ∆t = 10−5,

the scale parameter σ =
√

2. The frequency of a cycling voltage Ω = 1. Noise

parameters were chosen to examine possible effects coming from a skewness (bias)

of the noise (see the text and cf. Fig. 3).

signal at the driving frequencies ±Ω . Closer examination of the resonant
quantifiers reveals that both SPA and SNR behave in a typical way for the
continuous cf. Fig. 5 and for the two-state model representations cf. Fig. 6.
The two state approximation, cf. Fig. 4, is obtained from a continuous tra-
jectory x(t) by means of digital filtering, i.e. the actual location of the top
of the potential barrier is used to discriminate between left and right states
of the process marked as ±1. The spectral amplification displays a typical
bell-shaped form indicating presence of the stochastic resonance in a partic-
ular regime of the “noise intensity” σ2. For a stability index α = 1.9, and
relatively small noise intensity (i.e. small scale parameter σ) the signal is not
well separated from the noisy background and consequently the SNR mea-
sure is negative. With an increasing noise intensity SNR becomes positive,
thus indicating separation of the signal from the noise. Figs. 5 and 6 display
results of the SPA and SNR estimations in case of α-stable drivings with
α = 1.9. Results are presented for a continuous- and a two-state model. For
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Fig. 5. SPA in arbitrary units (left panel) and SNR (right panel) for the generic

potential model driven by the additive Lévy noise with α = 1.9 and various β in

the continuous approximation. The time step of the integration ∆t = 10−5, results

were averaged over 50 realizations, Ω = 1. Parameters of the potential like in

Fig. 1. Lines are drawn to guide the eye only.

a given value of the stability index α the power spectra for ±β are the same.
Therefore, stochastic resonance quantifiers derived from the power spectra
are identical for ±β with a fixed stability index α. Exemplary trajectories
of α-stable processes, corresponding to SPA and SNR from Figs. 5 and 6,
are depicted in Fig. 4.

Fig. 7 reproduces trajectories of the processes driven by stable noises of
higher impulsiveness, i.e. with the jump-length distributions characterized
by progressively heavier tails (α < 2). Note that in all these cases, the forcing
noise produces jump length increments of infinite variance. Further analysis
of the time-series in Fig. 7 implies that the resonant response depends on
the stability index α. First of all, the decrease of α results in much larger
variations and irregularity of the trajectories. Moreover, for a symmetric
driving noise (left panel of Fig. 7), the decrease of α does not influence the
population of the states. The latter is altered, however, by a change of the
skewness parameter β (right panel of Fig. 7). The nonzero β introduces
a bias, causing one of the states to be more frequently visited than the
other one. This asymmetry becomes progressively stronger with a decreasing
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Fig. 6. The same as in Fig. 5 for the two-state model.

stability index α. Finally, for a decreasing α with |β| = 1, barrier crossing
events become very rare and eventually disappear (α < 1) due to the total
skewness of the noise.

In overall, the numerical analysis presented in this work suggests that
the decrease of the system performance is better visible for symmetric noises
than for asymmetric ones. This effect is caused by the fact that for symmet-
ric noises with decreasing value of the stability index α, random contribution
to the particle’s displacement are unbiased and increasing. Consequently, for
lower value of the index α the periodic modulation of the potential barrier
becomes less important for the passage problem: due to irregular random
interactions of high intensity, the test particle can easily jump from one
potential well to the other. Different scenario occurs, however, for skewed
noises (nonzero β). The skewness of the noise favors transitions in one direc-
tion. Transitions in the opposite direction are most likely to happen when
the separating potential barrier attains its minimum. Therefore, the peri-
odicity of the signal is less disturbed by the stochastic driving with nonzero
value of the skewness parameter, left versus right panel of Fig. 7. Moreover,
the SNR measure was observed to be less sensitive to changes of the noise
parameters, whereas SPA was exhibiting a pronounced decrease with lower
α values (data not shown). This decrease of SPA indicates that the input
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Fig. 7. Trajectories of the α-stable processes for the two-state and the continuous

model constructed by use of Eq. (1). The two state process takes values ±1. The

time step of the integration ∆t = 10−5, the scale parameter σ =
√

2. The frequency

of the cycling voltage Ω = 1. Noise parameters as indicated in figures.

signal becomes worse reproduced by the output signal, when the stability
index is decreasing.

Similar studies were performed by other authors [34]. However, in [34]
not fully correct approximation scheme to Eq. (1) was considered. Instead
of ∆t1/α in the approximation scheme ∆t1/2 was taken. Nevertheless, this
problem can be eliminated by proper rescaling of the parameter σ to σ′ such
that

∆t1/ασ′ = ∆t1/2σ . (11)

Moreover, in the work [34] an artificial constraint on allowed values of the
process was imposed, i.e. if |x| > 10 then x = 10 sign x. This constraint
eliminates the problem of numerical escapes of trajectories to infinity and
allows integration of Eq. (1) with any time step of the integration [35].



Stochastic Resonance: the Role of α-Stable Noises 1489

4. Summary and conclusions

We addressed the problem of the stochastic resonance occurring in a
nonlinear system coupled to a non-Gaussian noise source. The performance
of the generic model based on a quartic bistable potential perturbed by a
cycling, periodic forcing was examined under the influence of various types
of stochastic α-stable drivings.

The system response was measured by inspection of the signal-to-noise
ratio SNR and the spectral power amplification SPA. Behavior of the SR
quantifiers was typical, i.e. it was possible to find such a value of the noise
intensity, σ, for which the SR phenomenon was observed. Decrease in sta-
bility index α resulted in larger fluctuation of the output signal process x(t)
and consequently, caused weakening of SR. The SPA measure was detected
to be more sensitive to changes in α than SNR. The larger decrease in sys-
tem response was observed for symmetric, non-biased noises. In case of
asymmetric noise perturbations, the SR phenomenon was more robust to
decreasing values of α. Due to symmetry of the system, results constructed
for given value of the stability index α were the same for ±β. The asymme-
try of the driving noise was shown to influence the population of left/right
states. In conclusion, the SR effect was shown to be a robust phenomenon
emerging even for the infinite-variance noise sources. More detailed analysis
of the phenomenon will be presented elsewhere [36].
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