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Ralf Eichhorn, Peter Reimann

Universität Bielefeld, Fakultät für Physik, 33615 Bielefeld, Germany

(Received January 9, 2006)

Dedicated to Professor Peter Talkner on the occasion of his 60th birthday

We theoretically discuss and analyze the design of a microfluidic de-
vice which has recently been demonstrated experimentally to exhibit the
phenomenon of absolute negative mobility (i.e. net motion into the direc-
tion opposite to a net acting force) for non-interacting Brownian particles.
Based on a model for the motion of a colloidal particle in a structured mi-
crofluidic system, that includes electroosmotic and electrophoretic effects
as well as thermal fluctuations, we derive an analytic approximation for
the average particle velocity, comparing very well with data of numerical
simulations and experimental measurements.

PACS numbers: 85.85.+j, 05.40.–a, 05.60.–k, 82.70.Dd

1. Introduction

Peter Talkner continuously delivered outstanding contributions to the
topics of stochastic modeling and escape rate theory since his early years
[1–7], while microfluidics represents a more recent one among his manifold
fields of interest [8,9]. To a large extent, our own steps in these two directions
can be ultimately traced back to him and are combined here for the pur-
pose of deriving an approximate analytical theory for the recently reported
phenomenon of absolute negative mobility in a structured microfluidic de-
vice [10].

The second law of thermodynamics imposes strong restrictions on the
possible response behavior of equilibrium systems to external perturbations.
For instance, when applying a static force on a particle which is in equi-
librium with its thermal environment (heat bath), the particle has to move
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in the direction of that force; any other behavior, such as a motion in the
opposite direction, is ruled out, since it could be exploited to extract useful
work from a single heat bath.

However, there are no such a priori restrictions for non-equilibrium sys-
tems. Accordingly, their response to external perturbations may be quite
intriguing or even paradoxical. Indeed, for a thermally disequilibrated Brow-
nian particle net transport in the direction opposite to the static external
force independently of the sign of the force (so-called absolute negative mo-

bility or, briefly, ANM) has been predicted theoretically in various idealized
model systems [11–13], and has recently been demonstrated experimentally
in a microfluidic device [10]. A related but different non-equilibrium phe-
nomenon is the prominent ratchet effect [14], characterized by directed par-
ticle motion without systematic force.

In the present contribution, we discuss the theoretical challenges when
stepping beyond the idealized model systems of Refs. [11–13] towards re-
alistic experimental set-ups. For the design of such realistic set-ups, the
findings from the idealized models serve as a valuable guide. In particular,
one can identify the crucial ingredients for the occurrence of ANM, namely:
thermal noise, causing diffusive motion of the particle, and force-dependent
particle traps, typically realized by “dead-ends” or “corners” in a periodic
two-dimensional potential landscape into which the particle is pressed by
external forces [12, 13]. As a specific experimental system, we consider the
set-up of [10], and derive a quantitative analytical theory that is in good
agreement with numerical simulations and with the experimental measure-
ments.

2. Experimental framework and the problem with the traps

A microfluidic device (“lab-on-a-chip”) naturally equips us with what we
need for the experimental realization of ANM: Due to the smallness of the
device thermal noise plays a considerable role. Colloidal particles or bi-
ological constituents (cells, organelles, etc.) of micrometer size which are
suspended in low concentration in an aqueous buffer solution thus represent
non-interacting Brownian particles. In an aqueous environment, such par-
ticles typically acquire surface charges so that non-equilibrium drivings as
well as external forces on the particles can be readily imposed by electric
fields. Moreover, a two-dimensional potential landscape can be built with
topographical structures, using standard micro-structuring techniques such
as soft lithography [16].

With this experimental framework in mind, the theoretical studies [12,13]
suggest several possibilities for periodically structured “micro-channels” with
“dead-ends” or “corners” as particle traps that are known to supply ANM.
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Fig. 1. (a) Schematical top view (x–y plane, not to scale) of the experimental set-

up reported in [10]: The microfluidic device consists of a microstructured central

part connected to two inlet/outlet channels with fluid reservoirs at their ends.

Via electrodes that are immersed into the reservoirs electric potential differences

can be applied along the x-direction. The system is driven away from thermal

equilibrium by a time-dependent signal UAC(t) that jumps periodically between

±U0 (U0 > 0) with period 2τ ; the static perturbation is realized by a static voltage

UDC. (b) Enlargement of the structured part of the microfluidic device: Rows of

rectangular posts (“obstacles”) with alternately small and large gaps between the

post are arranged periodically in x-direction such that the gaps are in line and again

alternate between small and large. The microdevice is specified by the widths w

and W of the small and large gaps, respectively, the size b × B of the posts, the

distance d between subsequent rows, and the particle radius r, where w < r < W

is required. The spatial period in x-direction is 2L = 2(b + d). The dashed lines

illustrate the border of the deterministic attraction basin of a small gap (a “trap”,

see Sec. 4 of the main text and Fig. 2 for a detailed explanation); its location is

characterized by the quantities s and S with 2(s + S) = w + W + 2B.

However, as it turns out, these structures are not suitable to generate ANM
in a microfluidic device for the following reason. Since the buffer solution is
in good approximation an ideal conductor, whereas the structured material
is an insulator, the electric field at the border between fluid and microstruc-
ture has no component perpendicular to the walls of the microstructure.
As a consequence, “dead-ends” or “corners” do not act as particle traps; the
field lines just follow the outline of the structure instead of pressing the
charged particle into the “dead-ends” or “corners”. Moreover, it is also not
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possible to generate traps with static electric fields in the field region away
from the walls (which is free of space-charges) due to Earnshaw’s Theo-
rem [17]; a trapping region would have an electric field very similar to that
of a space-charge, i.e. it would be a sink (or source) of electric field lines.
Similarly, a force field that is imposed on the particle by a streaming fluid
(e.g. electroosmotically or pressure driven) is not suitable to generate par-
ticle traps for the same reasons: the flow can not penetrate through the
structured material, and there are no fluid sinks (or sources) within the
device.

The solution to this problem is shown in Fig. 1. Instead of “dead-ends”
or “corners”, the traps are realized by tiny gaps in the microstructure, that
are smaller than the size of the colloidal particles, so that the electric (or
streaming) field lines can pass through them but the particle cannot. Indeed,
this structure has been used for the experimental realization of ANM in [10];
a sketch of the complete experimental set-up is shown in Fig. 1. As a side
remark we mention that a very similar microstructure has been considered
theoretically in [18], however in a different physical context.

3. Model

We model the motion of a colloidal particle (“bead”) in the microstructure
with coordinates ~r=(x, y, z) by the stochastic dynamics [4, 19]

γ~̇r = F (~r) + q ~E∗(~r)
UAC(t) + UDC

U∗

+ ~ξ(t) , (1)

where ~r =~r(t), inertia effects are neglected (overdamped dynamics), and γ

denotes the viscous friction coefficient [11–14]. The force field ~F (~r) derives
from an effective hard-wall potential of the microstructure (incorporating

the finite particle radius), while q ~E∗(~r) is the effective force on the bead
generated by a constant reference voltage U∗ = 1V applied to the elec-
trodes in Fig. 1(a). Thermal fluctuations are modeled as usual [4, 14] by
~ξ(t) = (ξx(t), ξy(t), ξz(t)), where ξα(t), α ∈ {x, y, z} are independent, unbi-
ased Gaussian noise sources, satisfying the fluctuation dissipation relation [2]
〈ξα(t) ξα(t′)〉 = 2γ kTδ(t − t′), with Boltzmann’s constant k and room tem-
perature T ≈ 290K.

In Eq. (1) q quantifies the effective force on the charged particle due
to the applied electric field, which contains two dominating electrokinetic
effects: The force on the charged bead due to the applied electric field (elec-
trophoresis), and the force on the particle due to the streaming buffer solu-
tion, being set in motion by electroosmosis [15]. That also the latter effect
can be described by a force field proportional to the electric field under
quite general conditions can be shown by exploiting a remarkable similitude
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between electrophoresis and electroosmosis recently unraveled in [20]. The
coupling q to the electric field thus represents an effective charge only in
a very loose sense [21]. Much like the effective coupling γ to the thermal
environment, it depends in a very complex way on the geometry and the
chemical surface properties of microstructure and bead, as well as on the
electrohydrodynamic buffer properties. Therefore, to quantitatively adapt
the model (1) to a given experimental situation, the model parameters q
and γ have to be determined experimentally, e.g. by measuring the diffusion
coefficient

D0 =
kT

γ
, (2)

and the (voltage-dependent) free velocity

v0 = µ0U , (3)

of the particle with µ0 = (q/γ) ~E∗(~r)/U∗ within an unstructured region of
the device [10,19]. In the following, we adopt the sign-convention for q such
that a positive voltage applied to the electrodes in Fig. 1 generates a positive
force on the particle along the x-axis, and analogously for a negative voltage.

To determine the electric field ~E∗(~r) in (1), the Laplace equation is solved
within the microstructured region, where its periodicity in x- and y-direction
(see Fig. 1) is taken into account with the choice of the boundary conditions:
Along the y-axis, periodic boundary conditions are used; along the x-axis,
a preset potential difference over several spatial periods is imposed and the
resulting “central unit cell” periodically continued. Moreover, assuming that
the buffer solution is a perfect (electric) conductor and the microstructure
is a perfect insulator, Neumann boundary conditions are adopted at the
borders between microstructure and buffer. Typical results for the resulting
force field q ~E∗(~r) in (1) are illustrated by the grey arrows in Fig. 2.
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Fig. 2. Schematic illustration of the particle motion in the microstructure from

Fig. 1 for UDC > 0, UDC < U0. The probabilities for several traveling routes are

indicated. For more details see main text, Sec. 4. (a) Motion during a half-period

of duration τ with total voltage UDC − U0 < 0. (b) Motion during a subsequent

half-period of duration τ with total voltage UDC + U0 > 0.
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4. Physical mechanism for ANM

Based on the model (1) we can now discuss qualitatively the dynam-
ical behavior of the particle in the microfluidic set-up of Fig. 1 [10, 19].
Specifically, we are interested in the response of the non-equilibrium system
in Fig. 1(a) when it is perturbed by a static voltage UDC. Since the non-
equilibrium situation is established by a time-dependent voltage UAC(t) that
jumps periodically between ±U0 (U0 > 0) with period 2τ , the total applied
voltage UAC(t)+UDC periodically adopts the values UDC±U0. For symmetry
reasons it is sufficient to consider the case UDC > 0; moreover, we restrict
ourselves to the most interesting response regime with UDC < U0. In addi-
tion to the thermal fluctuations, the particle motion in the microstructure
is thus subjected to a deterministic force due to the applied electric field,
which switches between the two states illustrated with Fig. 2(a) and (b)
(the arrows indicate direction and magnitude of the force field).

Fig. 2(a) sketches the motion of a bead while the total voltage UDC−U0 <0
is acting. Though the field is spatially inhomogeneous, the x-component of
the force always points in the same (negative) direction as the total voltage.
As already mentioned, the small gaps between the posts act as deterministic
“traps”, because the field lines can pass through them, but the bead can
not. For one of them, the border of the attraction basin is indicated by
the dashed lines in Fig. 2(a). Once the bead is trapped by a small gap,
the probability to escape by thermal noise is negligible. In order to avoid
such a trap, the particle has to pass by thermal diffusion over the dashed
basin-boundary during its traveling time from one row of posts to the next.
The probability of doing so is indicated in Fig. 2(a) by the filled tails of
the distribution of an ensemble of beads which started out in the adjacent
large gap to the right. Once the particle has succeeded in avoiding the trap,
it is either caught by the next trap (dashed arrow in Fig. 2(a)) to the left
or it again succeeds in avoiding it (solid arrow in Fig. 2(a)), and so on. If
the half-period τ with constant total voltage UDC − U0 < 0 is sufficiently
long, the particle is finally caught by some trap and remains there for the
rest of the time τ . Subsequently, the voltage changes its sign and takes the
constant value UDC + U0 > 0 for the next half-period τ , as illustrated by
Fig. 2(b). Assuming UDC > 0, the total voltage and hence the forces are
larger in modulus and of opposite sign compared to Fig. 2(a). Accordingly,
the traveling time from one row of posts to the next is shorter and the
diffusive dispersion narrower. Likewise, the probability to avoid a trap is
smaller in Fig. 2(b) than in Fig. 2(a) and hence the average traveling distance
smaller. Finally, the particle is again caught by some trap, remains there for
the rest of the second half-period τ , and the cycle restarts with Fig. 2(a).
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The overall result is a net motion in the negative x-direction, i.e. opposite
to the assumed positive static DC-voltage UDC > 0. Obviously, things are
analogous for UDC < 0.

In other words, we expect to observe ANM in the set-up of Fig. 1 generi-
cally, provided that the driving period 2τ is large enough such that the par-
ticle can at least travel one spatial period from its initial small gap through
a large gap to the next small gap during each half-period τ . This prediction
is nicely confirmed by the response curves in Fig. 3, showing the distinct
and unambiguous signature of ANM: a negative slope symmetrically around
the origin. (The detailed discussion of the sign change of v for large static
perturbations UDC in Fig. 3 is beyond the scope of our present paper.)
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Fig. 3. Absolute negative mobility for two different species of Brownian particles

in the microfluidic device from Fig. 1 with w = 1.7 µm, W = 3.1 µm, b = 3.1 µm,

B = 6.1 µm, and d = 22.5 µm. Solid curves: Response characteristics obtained by

numerical simulations of (1). Dashed curves: Theoretical approximation of the av-

erage particle velocity according to (5)–(10a). Dots with error bars: Experimentally

measured average velocity from [10, 19]. (a) Colloidal particles with r = 1.0 µm,

µ0 = 0.23 µm/(Vs), D0 = 0.063 µm2/s [10, 19] in the presence of a driving UAC(t)

with amplitude U0 = 30 V and switching time τ = 25 s. (b) Colloidal particles

with r = 0.95 µm, µ0 = 0.28 µm/(Vs), D0 = 0.131 µm2/s [19] in the presence of

a driving UAC(t) with amplitude U0 = 6 V and switching time τ = 70 s. For more

details about the experimental determination of µ0 and D0 see [19].

5. Average particle velocity

In order to quantify the above qualitative insights, we now derive an
analytical approximation for the average particle velocity in x-direction,

v := lim
t→∞

x(t)

t
. (4)
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The first step consists in a similar line of reasoning as in [12]: Based on the
observation that the particle starts out from a small gap at the beginning
of each half-period of the driving (see Fig. 2 and discussion in the preceding
section), (4) can be rewritten as

v =
∆x(τ, U0 + UDC) − ∆x(τ, U0 − UDC)

2τ
, (5)

where ∆x(τ, U) is the average traveling distance of the particle along the
x-direction within a half-period τ when a constant voltage U is applied.
In (5), we exploited that ∆x(τ,−U)=−∆x(τ, U) due to the symmetry prop-
erties of our system (see Fig. 1). The average traveling distance ∆x(τ, U)
results from the above described behavior of the bead that during each half-
period τ it first travels the “basic” distance of approximately 2L from its
initial small gap to the first trap, and that it then can proceed further for
an additional distance L whenever it succeeded in avoiding a trap, until it is
finally caught in some trap (see also Fig. 2). Assuming that the probability
p for avoiding a trap is approximately the same for all traps independently
of the pre-history of the particle motion and adopting a maximal traveling
distance (avoiding all traps) of the form L(2+N) (with N ∈ N), the average
traveling distance ∆x(τ, U) follows as L(2+p+p2+ . . .+pN ) (cf. Fig. 2(a)).
With the free particle velocity v0 from (3) we obtain L(2 + N) = µ0Uτ and
hence

∆x(τ, U) = L

(

1 +
1 − [p(U)]

µ0τU

L
−1

1 − p(U)

)

. (6)

This expression remains a reasonable interpolation even if µ0Uτ is not pre-
cisely of the form L(2 + N) with N ∈ N.

The probability p for avoiding a trap is identical to the probability that
the particle diffuses beyond the attraction basin of the trap during its motion
in x-direction from the preceding large gap towards that trap (see Fig. 2).
To calculate p we first observe that the force field between two row of posts
is practically homogeneous except for small regions in the vicinity of the
gaps, where the field either “extends” from its restriction to the gap, or
else is “squeezed” into the gap, see Fig. 2. The sizes of these regions in
y-direction are determined by the borders of the deterministic attraction
basins of the gaps; we denote them by s and S for the small and the large
gaps, respectively (see Fig. 1(b)). Their extensions in x-direction can be
estimated as s − w/2 at the small and S − W/2 at the large gaps, so that
the homogeneous field region extends over approximately dD = d − s − S +
(W + w)/2 in x-direction, where d > s + S − (W + w)/2 is tacitly assumed.
Within the inhomogeneous field regions s and S, the y-component of the
bead motion is dominated by the deterministic force field, whereas it is
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dominated by diffusion in the homogeneous field region dD between two
rows of posts. Hence, an ensemble of particles starting in a large gap is
first “broadened” deterministically in y-direction by a factor α = 2S/W (see
Fig. 1(b)), and then freely diffuses with the diffusion coefficient D0 from (2)
in y-direction while traveling with constant velocity v0 according to (3) over
a distance dD in x-direction, until it is split within the inhomogeneous field
region into a part that is trapped in the small gap and two parts that avoid
the trap and instead are attracted to one of the two adjacent large gaps in
the same row of posts (see also Fig. 2). Assuming a starting ensemble of
particles that is uniformly distributed over the “accessible” width W − 2r of
the large gap (r is the particle radius), the y-dependent particle density just
before that splitting reads

ρU (y) =
1

α(W − 2r)

α(W−2r)/2
∫

−α(W−2r)/2

dy0
e−(y−y0)2/[4D0dD/(µ0U)]

√

4πD0dD/(µ0U)

=
1

2α(W − 2r)

(

erf

[

(y + α
2 (W − 2r))

√
µ0U

√

4D0(d − B)

]

− erf

[

(y − α
2 (W − 2r))

√
µ0U

√

4D0(d − B)

])

, (7)

where the origin of the y-axis is located at the center of the (small) gap,

erf(z) := 2π−1/2
∫ z
0 dt e−t2 , and where dD = d− s−S + (W + w)/2 = d−B

(cf. Fig. 1(b)) has been used. The assumption of a uniform initial distri-
bution in the large gaps approximately takes into account the diffusion of
the particle in y-direction on its way towards the large gap. Finally, the
probability p for avoiding the trap is given as

p(U) = 2

∞
∫

s

dy ρU (y) . (8)

To estimate the size of the deterministic attraction basins of the traps,
i.e. to approximate the quantities s and S (see Fig. 1(b)), we recall that the

force field is proportional to ~E(~r), cf. Eq. (1), and that the electric field has

the “incompressibility” property ~∇ · ~E(~r) = 0. Assuming that the (mean)
electric field amplitudes in the small and large gaps are approximately the
same, we can thus read off from Fig. 1(b) that the “broadening” factor α
fulfills the relation α = 2S/W = 2s/w = 2(S + s)/(W + w). It readily
follows that
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α =
2B

W + w
+ 1 , (9)

and

s =
Bw

W + w
+

w

2
, (10a)

S =
BW

W + w
+

W

2
. (10b)

In summary, our approximation of the average particle velocity (4) is
given by (5), where the average traveling distance ∆x(τ, U) is obtained
from (6), the probability p(U) for avoiding a trap from (7), (8), and the
geometrical quantities α and s from (9) and (10a), respectively. The result-
ing theoretical curves in Fig. 3 are in good agreement with the numerical
findings, in particular in view of the various approximations in the derivation
of (6)–(10a).

6. Conclusion

In this contribution, we discussed the non-equilibrium phenomenon of
absolute negative mobility (ANM) from the viewpoint of an experimental
realization. In particular, we focused on the difficulties and possibilities
one encounters when realizing the crucial ingredients for ANM — diffusion
and particle traps, identified in previous works on simplified model systems
[11–13] — with a microfluidic device [10], see Fig. 1. Starting from the
stochastic differential equations (1) as a theoretical model for this microflu-
idic set-up [19], we derived the analytic approximation (5)–(10a) for the
average particle velocity (4) in response to a static external perturbation.
The model (1) covers the microstructured potential landscape, thermal fluc-
tuations, and, due to their similitude [20], electrophoretic and electroosmotic
forces on the particle, which are the two most important electrokinetic effects
in our case. Once the unknown effective coupling γ to the thermal heat bath
and the effective coupling q to the electric field (see Eq. (1) and subsequent
discussion) have been experimentally determined, the model (1) can be used
to make quantitative predictions for the microfluidic ANM-experiment. Its
reliability has been established in [10,19] by direct comparison with several
experimental measurements; for the sake of completeness those experimen-
tal results are also reproduced in Fig. 3, showing excellent agreement with
the theoretical model (1).

We thank our experimental partners J. Regtmeier, T.T. Duong, D. Ansel-
metti and A. Ros for admitting the reproduction of their experimental data
in Fig. 3. This work has been supported by the Deutsche Forschungsgemein-
schaft under SFB613, and by the ESF program STOCHDYN.
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