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We analyze a contrasting dynamical behavior of Gibbs–Shannon and
conditional Kullback-Leibler entropies, induced by time-evolution of con-
tinuous probability distributions. The question of predominantly purpose-
dependent entropy definition for non-equilibrium model systems is addressed.
The conditional Kullback–Leibler entropy is often believed to properly cap-
ture physical features of an asymptotic approach towards equilibrium. We
give arguments in favor of the usefulness of the standard Gibbs-type entropy
and indicate that its dynamics gives an insight into physically relevant, but
generally ignored in the literature, non-equilibrium phenomena. The role
of physical units in the Gibbs–Shannon entropy definition is discussed.

PACS numbers: 02.50.–r, 89.70.+c, 05.40.–a

1. Introduction

There are many notions of entropy. Except for the Clausius (thermody-
namic) entropy, none of them may be considered unambiguously defined or
to share the status of a physically universal quantity in the class of dynami-
cal systems and phenomena, to the description of which a particular entropy
notion has been possibly designed.

Let us reproduce the standard (albeit non-exhaustive) list of entropies.
For classical dynamical systems one is tempted to use any of: Boltzmann,
Gibbs, Shannon, Kullback–Leibler, Renyi, Tsallis, information/differential,
topological, measure-theoretic and Kolmogorov–Sinai entropies. In the quan-
tum case one encounters von Neumann, Wehrl and Leipnik entropies, plus
more or less natural/obvious generalizations of, classical by provenance,
Kullback–Leibler, Renyi and Tsallis entropies. The concrete entropy choice
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is with no doubt the context (classical or quantum setting, specific model
system, specific notion of state, microstate and macrostate) and purpose-
dependent.

We shall follow associations born by non-equilibrium statistical physics
phenomena, where in the time-dependent problems one encounters such is-
sues like “trends” (convergence or divergence) towards stationary states plus
Boltzmann-type theorems (temporal behavior of H-functionals), validity,
limitations, possible violations, general rules of entropy evolution, meaning
of the entropy “production”/dissipation and its temporal behavior.

The term entropy methods essentially refers to the mathematically rig-
orous discussion of the asymptotic (large time) behavior of solutions of
various partial differential equations, in particular to these governing the
dynamics of probability densities. One attempts to quantify the speed of
con(div)ergence of measures that allow to differentiate among different so-
lutions and their possibly different temporal properties.

To set the stage to the main theme of our considerations, let us invoke
the simplest (naive) version of the Boltzmann H-theorem, valid in case of the
rarified gas (mass m particles), without external forces, close to its thermal
equilibrium, under an assumption of its space homogeneity, [1, 2].

If the probability density function f(v) is a solution of the correspond-
ing Boltzmann kinetic equation, then the Boltzmann H-function (which
coincides with the negative of the Gibbs–Shannon entropy) H(t) =

∫

f(v)
ln f(v)dv does not increase:

d

dt
H(t) ≤ 0 . (1)

In particular, we know that there exists an invariant (asymptotic) density
f∗(v) ≃ exp[−m(v − v0)

2/2kBT ] and H(t) is a constant only if f
.
= f∗(v).

Notice that in the one-dimensional case, the L1(R) density normalization
coefficient reads (m/2π kBT )1/2 and thence, formally, H∗ =

∫

f∗ ln f∗dv =
−(1/2) ln(2π ekBT/m) where e is the base of the natural logarithm. One
must be aware of an apparent dimensional difficulty, [3], since an argument
of the logarithm is not dimensionless.

Clearly, a consistent integration outcome for H(t) should involve a di-
mensionless argument kBT/m[v]2 instead of kBT/m, provided [v] stands for
any unit of velocity. Examples are [v] = 1m/s (here m stands for the SI
length unit, and not for a mass parameter) or 10−5 m/s. To this end, it
suffices to redefine H∗ as follows, [3, 4]:

H∗ → H
[v]
∗ =

∫

f∗ ln([v] f∗)dv . (2)

Multiplying f∗ by [v] we arrive at the dimensionless argument of the loga-
rithm in the above.
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We shall come back later to a deeper discussion of an impact of dimen-
sional units on the general definition of the Gibbs–Shannon entropy

S(ρ) = −
∫

ρ(x) ln ρ(x) dx (3)

for a probability density function ρ ∈ L1(Rn).
The entropy methods basically refer to the large time asymptotic of

the heat and Fokker–Planck equations, where in a mathematically oriented
research all dimensional units, for the sake of clarity, are scaled away. Fol-
lowing [5], let us consider the heat equation in the re-scaled (no physical
constants) form: ∂tu = ∆u with x ∈ Rn, t ∈ R+ and u(., t = 0) = u0(.) ≥ 0,
∫

u0(x)dx = 1.

As t→∞, for any u(x, t) we have u(x, t)≃ρ(x, t)=(4πt)−n/2exp
[

−x2/4t
]

in conformity with the standard wisdom [7] that a regular solution of the
heat equation behaves asymptotically as a fundamental solution, once time
goes to infinity.

There is a natural question to be addressed: what is the t → ∞ rate of
convergence of the so-called Kullback “distance”

‖u − ρ‖L1(t)
.
=

∫

|u(x, t) − ρ(x, t)| dx (4)

between two densities. Since, for two density functions ρ and ρ′ there holds
the Csiszár–Kullback inequality, [6]:

∫

ρ ln

(

ρ

ρ′

)

dx ≥ 1

2
‖ρ − ρ′‖2

L1 (5)

it is the Kullback–Leibler entropy

K(ρ, ρ′)
.
=

∫

ρ(x) ln
ρ(x)

ρ′(x)
dx , (6)

which actually stands for an upper bound upon a “distance measure” in the
set of density functions.

If we consider ρt to be a solution of the heat equation with the initial
data ρ0 and take ρα(x) = (1/

√
2απ) exp[−x2/2α], then we may always

find α and k such that ρα+kt has the same second moment as ρt. This
implies an asymptotic 1/t decay of the initially prescribed Kullback–Leibler
“distance”, [5],

K(ρt, ρα+kt) ≤ K(ρ0, ρα)

[

α

(α + kt)

]

. (7)
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In view of the concavity of the function f(w) = −w ln w, the Kullback–
Leibler entropy is positive. This property if often contrasted with the fact
the Gibbs–Shannon entropy S(ρ) may take negative values. Therefore, right
at this point (anticipating further discussion) we introduce the conditional

Kullback–Leibler entropy notion, which although non-positive by construc-
tion:

Hc(ρ, ρ′)
.
= −K(ρ, ρ′) (8)

is nonetheless one of the major tools in the study of an asymptotic conver-
gence towards an invariant (equilibrium) density, [8, 9]. This entropy typ-
ically displays a prototype behavior (monotonic growth in time), expected
to hold true if the entropy definition is to be compatible with the casual
understanding of the second law of thermodynamics, [9].

Now, let us consider the drifted Fokker–Planck (Smoluchowski) equation
∂tf = ∆f −∇ (bf), where f(., t) = f0 ≥ 0,

∫

f0(x)dx = 1. We assume that
the forward drift b = b(x, t) has a gradient form. Let f∗ be the stationary
solution of the F–P equation, then an obvious question is: what is the t → ∞
rate of convergence of ‖f − f∗‖L1(t)

.
=

∫

|f(x, t) − f∗(x)| dx towards the
value 0?

The outcome, albeit not completely general, is that ft
.
= f(x, t), t ≥ 0

decays in relative entropy to a Gaussian, the speed of such decay being
exponential, [6]. This is typically encoded in the formula, [6,8,9] of the form

Hc(t) ≃ exp(−αt)Hc(0) , (9)

where Hc(t)
.
= Hc(ft, f∗), with α > 0 and t > 0. See also an explicit

discussion of the Ornstein–Uhlenbeck process in [10].
In the course of the time evolution, the conditional entropy monotonically

approaches its maximum at zero, [9]. This property is seldom shared by the
Gibbs–Shannon entropy of the involved time-dependent probability density.
The Gibbs entropy may grow, diminish, oscillate and show more complicated
patterns of behavior, [9–11]. A physical relevance of such “strange” temporal
properties, compare e.g. Eq. (1), is worth addressing and it is our main goal
in the present paper.

2. Gibbs–Shannon and Kullback–Leibler entropies

A casual understanding of the entropy notion in physics is that entropy
(tacitly one presumes to deal with its thermodynamic Clausius version) is
a measure of the degree of randomness and the tendency (trend) of physical
systems to become less and less organized. We attribute a very concrete
meaning to the term organization — namely, we are interested in quantify-
ing how good is the probability localization on the state space (whatever:
configuration space, velocity or phase-space) of the system.
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As a hint let us consider a probability measure µ = (µ1, µ2, . . . , µN ) on

a system of N points, e.g.
∑N

j=1 µj = 1. The standard Shannon entropy

reads S(µ) = −
∑N

j=1 µj log µj =⇒ 0 ≤ S(µ) ≤ log N and its maximum

corresponds to a uniform probability distribution µj = 1/N for all j.
If X is a discrete random variable taking values xi with probabilities

pi, i = 1, 2, . . . , N , the quantity S(X) = −∑

pi log pi is called the Shan-
non entropy of a discrete random variable or the entropy of the probability
distribution (p1, . . . , pN ). If X takes infinitely many values x1, x2, . . . with
probabilities p1, p2, . . ., then the entropy S(X) is not necessarily finite.

As a side comment we recall that log has base 2 in which case the unit
of entropy is called a bit (binary digit), while for ln with base e, the unit of
entropy is called a nat (natural); we observe that log b ln 2 = ln b.

For a continuous random variable X with values in x ∈ Rn and the prob-
ability density ρ(x) one usually defines the Shannon entropy of a continuous
random variable (called the differential entropy of X) as:

S(X) = −
∫

Γ

ρ(x) log ρ(x)dx ,

where Γ ∈ Rn is the support set of X. One may also denote S(X)
.
= S(ρ).

There is number of standard views about the discrete and continuous
entropies. In the discrete case, the entropy quantifies randomness in an
absolute way. In the continuous case there is no smooth limiting passage
from the discrete to continuous entropy. Then, the entropy cannot work “as
it is” as a measure of global randomness and one usually invokes a casual list
of drawbacks: S(ρ) may be negative, may be unbounded both from below
and above, is scaling (hence coordinate transformation) dependent.

Anyway, a difference of two Shannon entropies, necessarily evaluated
with respect to the same coordinate system, S(ρ)−S(ρ′) is known to quan-
tify an absolute change in the information/randomness content when pass-
ing from ρ to ρ′ and is obviously scaling independent. The same obser-
vation extends to the time derivative of the Shannon entropy in case of
time-dependent probability densities.

Alternatively, although with reservations, one may pass to the familiar
notion of the Kullback–Leibler entropy

K =

∫

Γ

ρ (ln ρ − ln ρ′) dx ,

non-negative and scaling-independent from the outset. However, one should
keep in mind that it is the conditional Kullback–Leibler (K–L) entropy Hc =
−K, Eq. (8), which is often used in the literature in connection with the
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“entropy growth paradigm”, [8]. The conditional K–L entropy takes only
negative values and its upper bound actually equals zero, while S(ρ) may
take positive or negative value depending on the particular choice of ρ.

Let us point out that a consistent exploitation of the conditional K–L
entropy is restricted either to the large time-scale phenomena, see e.g.Eq. (7),
or to the dynamical systems which have an invariant density, see Eq. (9).
In the short time-scale regimes and for systems without invariant densities,
the conditional Kullback–Leibler entropy is not an adequate tool.

Let us consider
ρα,β = β ρ[β(x − α)] , (10)

where α ≥ 0, β > 0 are real parameters. The respective Shannon entropy
reads:

S(ρα,β) = S(ρ) − ln β . (11)

For general probability distributions ρ(x) with a fixed variance σ we have
S(ρ) ≤ 1/2 ln(2πeσ2) and S(ρ) becomes maximized if and only if ρ is a Gaus-
sian. Therefore, we can write

(2πe)−1/2 exp[S(ρα,β)] ≤ σ

β
, (12)

and give a meaning to the β-scaling transformation of ρ(x−α): the density
is broadened if β < 1 and shrinks if β > 1.

Given a one parameter family of Gaussian densities ρα = ρ(x−α), with
the mean α ∈ R and the standard deviation fixed at σ. These densities
share the very same value of Shannon entropy, independent of α:

Sσ =
1

2
ln

(

2πeσ2
)

.

If we admit the standard deviation σ to be another free parameter, a two-
parameter family ρα → ρα,σ(x) appears. Then

Sσ′ − Sσ = ln

(

σ′

σ

)

.

By denoting σ
.
= σ(t) =

√
2Dt and σ′ .

= σ(t′) we make the non-
stationary (heat kernel) density amenable to the “absolute comparison” for-

mula at different time instants t′ > t > 0: (σ′/σ) =
√

t′/t.
Indeed a fundamental solution of the heat equation ∂tρ = D∆ρ reads

ρ(x, t) =
1

(4πDt)1/2
exp

(

− x2

4Dt

)

, (13)
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whose differential entropy equals S(t) = (1/2) ln(4πeDt), or in the dimen-
sionless form: S [x](t) = (1/2) ln(4πeDt/[x]2), where [x] is any dimensional
unit with the SI dimension of length.

Let ρυ denote a convolution of a probability density ρ with a Gaussian
probability density having variance υ. The transition density (heat ker-
nel) of the Wiener process generates such a convolution for any ρ0(x), with
υ = σ2 .

= 2Dt. Then, (de Bruijn) we have the entropy accumulation for-
mula:

dS
dt

= DF = D

∫

(∇ρ)2

ρ
dx > 0 .

The monotonic growth of S(t) is paralleled by linear in time growth of the
standard deviation σ(t), hence quantifies the uncertainty (disorder) increase
related to the “flattening” down of ρ.

Let us consider the Kullback entropy K(θ, θ′) for a family of probability
densities ρθ labeled by a parameter (one or more) θ, so that the “distance”
between any two densities in this family can be directly evaluated. We take
ρθ′ as reference probability density. Then:

K(θ, θ′)
.
= K(ρθ|ρθ′) =

∫

ρθ(x) ln
ρθ(x)

ρθ′(x)
dx . (14)

It is particularly instructive to evaluate various K–L “distances” among
members of a two-parameter family of L1(R)-normalized Gaussian functions,
labeled by independent parameters θ1 =α and θ2 =σ (alternatively θ2 =σ2)
such that θ

.
= (θ1, θ2). In the self-explanatory notation, for two different θ

and θ′ Gaussian densities there holds:

K(θ, θ′) = ln
σ′

σ
+

1

2

(

σ2

σ′2
− 1

)

+
1

2σ′2
(α − α′)2 . (15)

We may assume that θ′ very little deviates from θ: θ′ = θ + ∆θ. Then, we
have

K(θ, θ + ∆θ) ≃ 1

2

∑

i,j

Fij ∆θi∆θj , (16)

where i, j,= 1, 2 and the Fisher information matrix Fij has the form:

Fij =

∫

ρθ
∂ ln ρθ

∂θi

∂ ln ρθ

∂θj
dx . (17)

In case of Gaussian densities, labeled by independent θ1 = α, θ2 = σ,
(or θ2 = σ2) the Fisher matrix is diagonal.
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Let us set α′ = α and consider σ2 = 2Dt, ∆(σ2) = 2D∆t. Then
S(σ′2) − S(σ2) ≃ ∆t/2t, while K(θ, θ′) ≃ (∆t)2/4t2. Although, for finite
increments ∆t we have

S(σ′2) − S(σ2) ≃
√

K(θ, θ′) ≃ ∆t

2t
,

the time derivative notion Ṡ surely can be defined for the differential entropy,
but is definitely meaningless in terms of the corresponding short time-scale
Kullback “distance”, cf. [10, 11].

We stress that no such obstacle arises in the standard cautious use of
the conditional Kullback entropy Hc, when an invariant density is in hands.
Indeed, normally one of the involved densities is the stationary (reference)
one ρθ′(x)

.
= ρ∗(x), while another is allowed to evolve in time ρθ(x)

.
= ρ(x, t),

t ∈ R+, thence Hc(t)
.
= −K(ρt|ρ∗) and dHc(t)/dt does make sense.

We recall that for the free Brownian motion there is no invariant density.
As we have indicated before, Eq. (7), Hc(ρt, ρt′), t < t′ still remains a useful
tool, albeit in the asymptotic regime and for not too small values of t′ − t.

3. Physical units in the entropy definition

Let us come back to an issue of physical units in the definition of a dif-
ferential entropy. In fact, if x and p stand for one-dimensional phase space
labels and f(x, p) is a normalized phase-space density,

∫

f(x, p)dxdp = 1,
then the related dimensionless differential entropy reads as follows, [4]:

Sh = −
∫

(hf) ln(hf)
dxdp

h
= −

∫

f ln(hf) dxdp , (18)

where h = 2π~ is the tentatively accepted (there is no other mention of
quantum theory) Planck constant. Let ρ(x) and ρ̃h(p) be two independent,
respectively, spatial and momentum space densities. We form the joint den-
sity

f(x, p)
.
= ρ(x)ρ̃h(p) (19)

and evaluate the differential entropy Sh for this density. Remembering that
∫

ρ(x)dx = 1 =
∫

ρ̃h(p)dp, we have formally

Sh = −
∫

ρ ln ρdx −
∫

ρ̃h ln ρ̃h dp − ln h = Sx + Sp − ln h . (20)

The formal use of the logarithm properties before executing integrations in
∫

ρ̃h ln(hρ̃h) dp, has left us with an issue of “literally taking the logarithm of
a dimensional argument” i.e. that of ln h.
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We recall that Sh is a dimensionless quantity, while if x has dimensions
of length, then the probability density has dimensions of inverse length and
analogously in connection with momentum dimensions.

Let us denote x
.
= rδx and p

.
= r̃δp where labels r and r̃ are dimension-

less, while δx and δp stand for respective position and momentum dimen-
sional (hitherto — resolution) units. Then

−
∫

ρ ln ρdx − ln(δx)
.
= −

∫

ρ ln(δxρ)dx (21)

is a dimensionless quantity. Analogously

−
∫

ρ̃h ln ρ̃h dp − ln δp
.
= −

∫

ρ̃h ln(δpρ̃h) dp (22)

is dimensionless. First left-hand side terms in two above equations we rec-
ognize as Sx and Sp, respectively.

Hence, formally we have arrived at a manifestly dimensionless decompo-
sition

Sh = −
∫

ρ ln(δxρ)dx −
∫

ρ̃h ln(δpρ̃h) dp + ln
δxδp

h

.
= Sx

δx + Sp
δp + ln

δxδp

h
, (23)

instead of the previous one, Eq. (20). The last identity Eq. (23) gives an
unambiguous meaning to the preceding formal manipulations with dimen-
sional quantities. Instead of the Planck constant h we can use any other
unit with SI dimensions of action, say δh.

As a byproduct of our discussion, we have resolved the case of the spa-
tially interpreted real axis, when x has dimensions of length, cf. also [4]:
Sx

δx = −
∫

ρ ln(δxρ)dx is the pertinent dimensionless differential entropy
definition for spatial probability densities.

Example 1: Let us discuss an explicit example involving the Gauss
density

ρ(x) =
1

σ
√

2π
exp

[

−(x − x0)
2

2σ2

]

, (24)

where σ is the standard deviation (its square stands for the variance). There
holds S(ρ) = 1/2 ln (2πeσ2) which is a dimensionless outcome. If we pass
to x with dimensions of length, then inevitably σ must have dimensions
of length. It is instructive to check that in this dimensional case we have
a correct dimensionless result:

Sx
δx =

1

2
ln

[

2πe
( σ

δx

)2
]

(25)
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to be compared with Eq. (21). Clearly, Sx
δx vanishes if σ/δx = (2πe)−1/2,

hence at the dimensional value of the standard deviation σ = (2πe)−1/2δx,
compare e.g. [4].

Example 2: In the Introduction we have discussed the simplest version
of the Boltzmann H-theorem, where a suitable probability density function
f(v, t) determines temporal properties of the Boltzmann H-functional such
that H(t) =

∫

f(v) ln f(v)dv does not increase, d
dtH(t) ≤ 0. An invariant

(asymptotic) density, in the one-dimensional case, has the form f∗(v) =
(m/2πkBT )1/2 exp[−m(v − v0)

2/2kBT ]. Therefore, H∗ =
∫

f∗ ln f∗dv =
−(1/2) ln(2π ekBT/m) and we are faced with a dimensional difficulty, [3].
A consistent integration outcome for H(t) should involve kBT/m[v]2 instead
of kBT/m, provided [v] stands for any unit of velocity. The redefinition

H∗ → H
[v]
∗ =

∫

f∗ ln([v] f∗)dv, cures the dimensional obstacle.
We recall that under the scaling transformation Eq. (10) the respective

Shannon entropy takes the form S(ρα,β) = S(ρ)−ln β. In case of Gaussian ρ,

we get S(ρα,β) = ln[(σ/β)
√

2πe]. Clearly, S(ρα,β) takes the value 0 at σ =

(2πe)−1/2β in analogy with our previous dimensional considerations. If an
argument of ρ is assumed to have dimensions, then the scaling transforma-
tion with the dimensional β may be interpreted as a method to restore the
dimensionless differential entropy value.

4. Temporal behavior of entropies

4.1. Deterministic system

Let us consider a classical dynamical system in Rn whose evolution is
governed by equations of motion:

ẋ = f(x) , (26)

where ẋ stands for the time derivative and f is an Rn-valued function of
x ∈ Rn, x = {x1, x2, . . . , xn}. A statistical ensemble of solutions of such
dynamical equations can be described by a time-dependent probability den-
sity ρ(x, t) whose dynamics is given by the generalized Liouville (in fact,
continuity) equation

∂tρ = −∇ (f ρ) , (27)

where ∇ .
= {∂/∂x1, . . . , ∂/∂xn}.

With a continuous probability density ρ
.
= ρ(x, t), where x ∈ Rn and we

allow for an explicit time-dependence, we associate a respective differential
entropy functional S(ρ), where in general S(ρ)

.
= S(t) depends on time.

Let us take for granted that an interchange of time derivative with an
indefinite integral is allowed (suitable precautions are necessary with respect
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to the convergence of integrals). Then, we readily get an identity:

Ṡ =

∫

ρ (div f)dx
.
= 〈∇ f〉 . (28)

Accordingly, the information entropy S(t) grows with time only if the dy-
namical system has positive mean flow divergence.

However, in general Ṡ is not positive definite. For example, dissipative
dynamical systems are characterized by the negative (mean) flow divergence.
Fairly often, the divergence of the flow is constant. Then, an “amount of in-
formation” carried by a corresponding statistical ensemble (e.g. its density)
increases, which is paralleled by the information entropy decay (decrease).

An example of a system with a point attractor (sink) at origin is a one-
dimensional non-Hamiltonian system ẋ = −x. In this case divf = −1 and
Ṡ = −1. Further discussion of dynamical systems with strange (multifrac-
tal) attractors, for which the Shannon information (differential) entropy de-
creases indefinitely (the pertinent steady states are no longer represented by
probability density functions) can be found in [12]. We note that for Hamil-

tonian systems, the phase-space flow has vanishing divergence, hence Ṡ = 0
which implies that “information is conserved” in Hamiltonian dynamics.

Let there be given an invertible dynamical system on R2, with f(x)
.
=

Fx, where F is a two-by-two real matrix and x ∈ R2, [9]. A solution
has the form x(t) = exp(tF )x(0), where the matrix operator exp(tF ) is
defined through the standard Taylor expansion formula. The solution of the
Liouville equation with an initial probability density f0(x) is given by

f(x, t) = exp[−(Tr F )t] f0(exp(−tF )x) , (29)

and hence
S(ft) = S(f0) + (Tr F )t ⇒ Ṡ(ft) = Tr F . (30)

Obviously Tr F = λ1 + λ2, where λi, i = 1, 2 are the eigenvalues of F . We
realize that S(ft) grows indefinitely if Tr F > 0 and diminishes indefinitely
towards −∞ if Tr F < 0. There is no stationary density and the conditional
entropy is not defined.

4.2. Random system

In case of a general dissipative dynamical system, a controlled admixture
of noise can stabilize dynamics and yield asymptotic invariant densities. For
example, an additive modification of the right-hand side of Eq. (26) by white
noise term A(t) where 〈Ai(s)〉 = 0 and 〈Ai(s)Aj(s

′)〉 =
√

2qδ(s − s′)δij ,
i = 1, 2, . . . n, implies the Fokker–Planck–Kramers equation:

∂tρ = −∇ (f ρ) + q∆ρ , (31)
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where ∆
.
= ∇2 =

∑

i ∂
2/∂x2

i . Accordingly, the differential entropy dynamics
would take another form than this defined by Eq. (28):

Ṡ =

∫

ρ (div f)dx + q

∫

1

ρ
(∇ρ)2 dx . (32)

Now, the dissipative term 〈∇ f〉 < 0 can be counterbalanced by a strictly
positive stabilizing contribution q

∑

i

∫

1
ρ(∂ρ/∂xi)

2 dx. This allows to expect

that, under suitable circumstances, dissipative systems with noise may yield
Ṡ = 0. If 〈∇ f〉 ≥ 0, then the differential (information) entropy would grow
monotonically.

We shall discuss an example of a non-invertible system, provided by the
standard one-dimensional Ornstein–Uhlenbeck process, [8, 10]. We choose
the forward drift of the Fokker–Planck equation ∂tρ = D△ρ + ∇[(γx)ρ]
with γ > 0 and D > 0 being the diffusion coefficient.

If an initial density is chosen in the Gaussian form, with the mean value
α0 and variance σ2

0 , the Fokker–Planck evolution preserves the Gaussian
form of ρ(x, t) while modifying the mean value α(t) = α0 exp(−γt) and
variance

σ2(t) = σ2
0 exp(−2γt) +

D

γ
[1 − exp(−2γt)] . (33)

Accordingly, since a unique invariant density has the form ρ∗ =
√

γ/2πD
exp(−γx2/2D) we obtain:

Hc(t) = exp(−2γt)Hc(ρ0, ρ∗) = −γα2
0

2D
exp(−2γt) , (34)

i.e. a monotonic growth of the negative-valued conditional Kullback–Leibler
entropy towards its maximum at zero:

Ḣc(t) = −2γ exp(−2γt)Hc(ρ0, ρ∗) = γ2 α2
0

D
exp(−2γt) > 0 . (35)

The differential entropy:

S(t) =
1

2
ln [2πeσ2(t)] (36)

shows another temporal behavior

Ṡ =
2γ(D − γσ2

0) exp(−2γt)

D − (D − γσ2
0) exp(−2γt)

. (37)

We observe that if σ2
0 > D/γ, then Ṡ < 0, while σ2

0 < D/γ implies Ṡ > 0.
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In both cases the behavior of the differential entropy is monotonic, al-
though its growth or decay do critically rely on the choice of σ2

0 . Irrespective
of σ2

0 the asymptotic value of S(t) as t → ∞ reads (1/2) ln[2πe(D/γ)]. It is
useful to note, that in the special case of σ2

0 = D/γ the differential entropy
is a constant of motion, while the conditional K–L entropy nonetheless does
grow, asymptotically approaching the value zero according to Eq. (35).

Summarizing, we can say that the conditional Kullback–Leibler entropy
of the Ornstein–Uhlenbeck process grows monotonically in time, while the
temporal behavior of the Gibbs–Shannon (differential) entropy depends on
statistical properties (half-width σ0) of the initial ensemble density. This
pattern of temporal behavior appears to be generic to a large class of dy-
namical systems, [9].

To find out whether there is anything deeper in the above apparent differ-
ences in the temporal behavior of the Gibbs–Shannon and Kullback–Leibler
entropies associated with the same time-dependent probability density, ex-
cept for the a priori presumed existence of the reference invariant density,
let us consider the one-dimensional Fokker–Planck equation for any Smolu-
chowski process. We assume

∂tρ = D△ρ −∇(bρ) , (38)

with a forward drift b = b(x, t) of the gradient form b = −∇Φ and attribute
to a diffusion coefficient D dimensions of ~/2m or kBT/mβ.

Furthermore, we introduce the velocity fields: u(x, t) = D∇ ln ρ(x, t)
and v(x, t) = b(x, t) − u(x, t). The current velocity v(x, t), in view of ∂tρ =
−∇(vρ) which is an equivalent form of Eq. (38), contributes to the diffusion
current j = vρ.

For the differential entropy S(t) = −
∫

ρ(x, t) ln ρ(x, t) dx, while impos-
ing boundary restrictions that ρ, vρ, bρ vanish at spatial infinities or finite
interval borders, we readily get the entropy balance equation of the form
Eq. (32), with the minor modification i.e. the replacement of q by D. We
are, however, interested in its equivalent form (easily derivable under previ-
ously listed boundary restrictions), [10, 11]:

DṠ =
〈

v2
〉

− 〈b v〉 . (39)

Remembering that we deal with the Smoluchowski process, we set (ad-
justing dimensional constants): b = (D/kBT )F . Exploiting j

.
= vρ and

demanding F = −∇V we infer:

Ṡ =
1

D

〈

v2
〉

− Q̇ , (40)

where the first (positive) term on the right-hand side stands for the differ-
ential entropy accumulation rate (entropy gain by the system).
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The second term contains the Q̇ entry:

Q̇ .
=

1

kBT

∫

F j dx =
1

D
〈b v〉 , (41)

which, if positive (Q̇ > 0 is not a must, [10]), allows to interpret −Q̇ as the
entropy dissipation rate, i.e. an entropy transfer to the environment in the
form of the surplus heat. Note that kBT Q̇ =

∫

F j dx has a conspicuous
form of the fairly standard power release expression i.e. the time rate at
which the mechanical work per unit of mass is returned back to the thermal
reservoir (or absorbed if Q̇ < 0) in the form of heat.

Under current premises, there exists a stationary solution of the Fokker–
Planck equation

ρ∗(x) =
1

Z
exp

(

−V (x)

kBT

)

, (42)

where Z =
∫

exp(−V (x)/kBT ) dx.
Let us take ρ∗(x) as a reference density with respect to which the di-

vergence of ρ(x, t) is quantified in terms of the conditional K–L entropy.
Then

Hc(t) = −
∫

ρ ln

(

ρ

ρ∗

)

dx = S(t) − ln Z − 〈V 〉
kBT

, (43)

and straightforwardly, because of

d

dt
〈V 〉 = −kBT Q̇ (44)

we arrive at
Ḣc = Ṡ + Q̇ ≥ 0 . (45)

At this point, we can come back to a continued discussion of the Ornstein–
Uhlenbeck process. Namely, we have here a direct control of the behavior of
the “power release” expression Q̇ = Ḣc − Ṡ. Since

Ḣc =
γ2α2

0

D
exp(−2γt) > 0 , (46)

in case of Ṡ < 0 we encounter a continual power supply Q̇ > 0 by the
thermal environment (alternatively, power absorption by the system).

In case of Ṡ > 0 the situation is more complicated. For example, if
α0 = 0, we can easily check that Q̇ < 0, i.e. we have the power drainage
from the environment for all t ∈ R+. More generally, the sign of Q̇ is
negative for α2

0 < 2(D− γσ2
0)/γ. If the latter inequality is reversed, the sign

of Q̇ is not uniquely specified and suffers a change at a suitable time instant
tchange(α

2
0, σ

2
0).
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Interestingly enough, in the special case of σ2
0 = D/γ i.e. Ṡ = 0, we

encounter
Ḣc = Q̇ ≥ 0 , (47)

i.e. a direct connection between the entropy increase and heat removal (to
the thermostat) time rates, which counterbalance each other.

4.3. Phase-space dynamics

One may argue that the reported above, rather unexpected, insight into
the nontrivial power transfer processes is an artifact of the one-dimensional
spatial (Smoluchowski) projection of the phase-space motion. Let us, there-
fore, indicate arguments to the contrary.

For Hamiltonian systems the phase-space flow is divergence-less. Indeed,
let us consider a two-dimensional conservative system ẋ = p/m and ṗ =

−∇V where H = p2/2m + V (x). Obviously, divf = 0 which implies Ṡ = 0.
In particular this extends to the standard harmonic oscillator with V (x) =
(mω2/2)x2.

For the harmonic oscillator with friction, ẋ = v, ẋ = −(γ/m)v −
(ω2/m)x, we can adopt the observations of Subsection 3.1 with the two-by-
two matrix F , whose first row contains only zeroes, while (F )21 = −ω2/m,
(F )22 = −γ/m. Consequently Tr F = −γ/m.

A solution of the corresponding Liouville-type equation was discussed in
Subsection 4.1. The Gibbs–Shannon entropy evolves in time according to
Eq. (30): S(t) = S(0) − (γt)/m and S → −∞ as t → ∞. Since γ > 0, we

have Ṡ = −γ/m < 0. There is no stationary density and hence no Hc(t).
An admixture of noise in the velocity/momentum rate equation in the

damped harmonic oscillator case allows for the existence of a stationary
density. Let us consider, [8, 9], an example of the noisy damped harmonic
oscillator: ẋ = p/m, ṗ = −(γ/m)p − (ω2/m)p + ξ(t) where the white noise
term ξ is normalized as follows 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = σδ(t − t′). The
corresponding Fokker–Planck–Kramers equation for the probability density
f(x, v), with v = p/m is

∂f

∂t
= −∂(vf)

∂x
+

1

m

∂[(γv + ω2x)f ]

∂v
+

σ2

2m2

∂2f

∂v2
, (48)

and has a unique stationary solution:

f∗(x, v) =
γω

√
m

πσ2
exp

[

− γ

σ2

(

ω2x2 + mv2
)

]

. (49)

A detailed, in part computer-assisted, analysis of the temporal behav-
ior of Gibbs–Shannon and conditional K–L entropies evaluated for density
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solutions of the above Kramers equation, with the initial data

f0(x, v) =
1

2πσ2
xσ2

v

exp

(

− x2

2σ2
x

− v2

2σ2
v

)

(50)

has been made in Ref. [9]. We shall summarize the outcomes of this inves-
tigation.

In three basic regimes: overdamped γ2 > 4ω2, critical γ2 = 4ω2 and un-
derdamped γ2 < 4ω2 cases, the conditional Kullback–Leibler entropy quan-
tifies an approach of f(x, v, t) towards f∗(x, v) in terms of the monotonic

growth pattern (this statement includes also the case of Ḣc(t) = 0).
The situation is entirely different, if we consider the Gibbs–Shannon

entropy of f(x, v, t). Let us denote σ∗ = σ2/2γω2 and αx = σ2
x − σ∗,

αv = σ2
v − ω2σ∗. The behavior of S(t) sensitively depends on the mutual

relations (signs, vanishing or non-vanishing of any or both etc.) between αx

and αv and all details can be found in Ref. [9].
In the overdamped and critical cases, five independent temporal behav-

iors are admitted. First three are of the monotonic type, since Ṡ is vanishing,
positive or negative. The fourth one admits a change of sign of Ṡ at certain
t0 > 0 from positive to negative plus the same scenario in reverse. The fifth
temporal scenario shows a passage through Ṡ-positive, negative and again
positive stages of evolution plus the reverse (negative, positive, negative)
option.

The underdamped case shows even more intriguing patterns of tempo-
ral behavior. Namely, in addition to the monotonic negative or positive
signs of Ṡ we have also a conspicuous damped oscillation of S(t), where Ṡ
changes sign indefinitely, but an amplitude of oscillations performed by S(t)
continually diminishes.

All these diverse temporal patterns are special for the Gibbs–Shannon
entropy. They are in turn accompanied by a unique pattern of the strictly
monotonic growth (or none) Ḣc(t) ≥ 0 which is displayed by the conditional
Kullback–Leibler entropy, [9].

In close analogy with our considerations pertaining to the nontrivial
power transfers between an open dynamical system and its thermal environ-
ment, cf. Subsection 4.2, let us notice that the invariant density Eq. (49)
has the form analogous to this of ρ∗, Eq. (42). Indeed, we have:

f∗(x, v) =
1

Z
exp

[

−2γ

σ2
Ecl(p, x)

]

(51)

with 1/Z = (γω
√

m)/(πσ2) and Ecl(p, x) = p2/2m + V (x) with V (x) =
ω2x2/2 is an energy of a classical harmonic oscillator at the (x, p = mv)
phase-space point.
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Accordingly, we have

Hc(t) = −
∫

f ln

(

f

f∗

)

dxdv = S(t) − ln Z − 2γ

σ2
〈Ecl〉 , (52)

where S(t) = −
∫

f ln fdxdv. Therefore, it is an intrinsic property of our

dynamical system that Ḣ = Ṡ + Q̇ ≥ 0, where we define

d

dt
〈Ecl〉 .

= −σ2

2γ
Q̇ (53)

and clearly, Q̇ is the direct analogue of the previously introduced power/heat
transfer rate in the mean, cf. Eqs. (41) and (44).
Remark: Let us add that in the study of quantum open systems weakly
coupled to thermal reservoirs, the heat bath is known to drive an open
system to its equilibrium state at the same temperature, [13,14]. In terms of
quantum mean values, evaluated by means of reduced density operators, the
analogues of the first and second laws of thermodynamics were derived. They
stay in close affinity with our “thermodynamical” formulas (40), (45) and
(53), here obtained in the purely classical (e.g. non-quantum) framework.
Another viewpoint on the uses of entropy methods in quantum theory, in
connection with closed quantum systems, can be found in Refs. [11, 15].

5. Conclusions

Standard notions of thermodynamical entropy are basically used under
equilibrium or near-equilibrium conditions. The primary built-in concept is
an equilibrium (steady) state and the behavior of entropy in the time domain
is seldom addressed.

If one attempts to analyze a dynamics of an approach towards the pre-
scribed steady state, it is necessary to pass to the time domain where the
non-equilibrium and often rapid dynamical processes take place. Various
notions of entropy may be designed to quantify such non-equilibrium phe-
nomena.

Our analysis of simple diffusion-type models indicates that the very no-
tion of entropy, except perhaps for the standard Clausius thermodynamical
entropy, is non-universal and purpose-dependent. In particular, the condi-
tional Kullback–Leibler entropy is regarded (in reference to the
“purpose”) to be the only valid entropy growth justification in terms of model
systems, [8, 9], (that in conformity with the standard interpretation of the
second law of thermodynamics for closed systems).

However, a deeper insight into the underlying physical phenomena
(power/heat transfer processes in the mean) is available only through the
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differential (Gibbs–Shannon) entropy, whose temporal behavior is generi-
cally inconsistent with the “entropy growth” pattern. Moreover, the Gibbs–
Shannon entropy balance equation contains the conditional Kullback–Leibler
entropy time rate as an explicit non-negative “entropy production” or rather
“entropy accumulation” term, see e.g. Subsections 4.2 and 4.3. The entropy
dissipation may proceed through the previously mentioned mean power
transfer mechanism, however, the involved “heat transfer” expression Q̇ is
not necessarily positive-definite.

The conditional Kullback–Leibler entropy is an appropriate tool in case
of “slow” processes, and in the asymptotic (large) time regime. The Gibbs–
Shannon (differential, information) entropy is perfectly suited for the “short-
est description length analysis”, in particular for the study of rapid changes
in time of the probability distribution involved.

The paper has been supported by the Polish Ministry of Science and
Information Society Technologies under the (solicited) grant No PBZ-MIN-
008/P03/2003.
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