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The phenomenon of epidemic spreading in a population with a hierar-
chical structure of interpersonal interactions is described and investigated
numerically. The SIS model with incubation time and temporal immunity
to a disease, is used. In our model location in social structure, effectiveness
of different types of interactions and mobility of contemporary commu-
nities are taken into account. The influence of control measures on the
spreading process is investigated as a function of initial conditions. The
cost-effectiveness of mass immunizations campaigns, target vaccinations
and the sick leaves is compared. A critical vaccinations coverage, sufficient
for suppressing an epidemic as well as the probability that endemic state
occurs, are calculated. The results of numerical calculations are similar to
the solutions of the master equation for the spreading process.

PACS numbers: 05.40.–a, 87.10.+e, 89.75.–k

1. Introduction

In recent years it was discovered that a structure of different biological,
technical, economical and social systems has the properties of complex net-
works [1,2]. The short length of the average shortest-path distance and the
high value of the clustering coefficient are some of the common properties
of those networks [2, 3]. Social networks, which are an important exam-
ple of complex networks, also have those properties. They are successfully
modeled using different approaches [4,5], in particular, small-world topology
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of interpersonal connections [2, 6] and their hierarchical structure [7, 8] are
taken into account, e.g. epidemic spreading in a population with a two-level
structure of interpersonal interactions was analyzed in Ref. [9]. Such a struc-
ture of a social network has a strong influence on dynamical phenomena in
a population.

In recent years the spreading of epidemics was investigated by many
authors, who used different models of interpersonal interactions [10–16]. In
our work, we investigate epidemic spreading in the human population, taking
into account spatial localization of individuals, with a three-level hierarchical
structure of interpersonal interactions on the basis of SIS model [18].

We assume that each individual belongs to some social groups [3, 19]:
from small ones (e.g. family or friends), to large ones (e.g. the community
of a whole city). Interpersonal interactions among individuals in the same
group are more intense than interactions among individuals from different
groups. The smaller the group, the stronger an individual’s influence on the
other individuals in that group. From the point of view of the spreading
of an epidemic, social connections within a family (household), among close
friends etc. are most effective; however, random contacts with unknown
individuals are important, too. Such random contact is most probable for
individuals who live (or work) in the same place, e.g. in the same building.
On the other hand, contemporary communities are very mobile; therefore,
there is a nonzero probability of contact between two arbitrarily chosen
individuals from a population. A contact like that can occur, e.g. while
commuting, in the cinema or any other public place, and it can result in an
infection of a new individual. In our model, we take into account this hierar-
chical structure of a social network, with interpersonal connections between
neighbors and contacts between random individuals related to the mobility
of a community. The hierarchical structure of interpersonal interactions de-
scribed in the present paper seems to be plausible for modeling real social
networks.

A group of co-workers is one of the social groups defined in our model.
Therefore, it is possible to investigate the influence of the probability of
obtaining sick leave and the duration of sick leave on spreading phenomena.

This article is organized as follows. The model of a network of human
contacts and the probabilities of infection depending on the type of social
contact, as well as the master equation, are described in Sec. 2. The results,
e.g. the influence of vaccination and sick leave on the spreading process, are
described in Sec. 3. The results obtained from the numerical model and the
results obtained from the solution of the master equation are compared in
Sec. 4, and summarized in Sec. 5.
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2. The model

In our model, each individual is in one of four permitted states: healthy
and susceptible (S), infected (IN), ill (IL), healthy and unsusceptible or iso-
lated from the rest of the population (R). The state of the individuals evolves
in time and depends on their previous state and the connections or random
contacts with other individuals. The probabilities of transitions between dif-
ferent states in one time step are described with the following parameters:
WS→IN, the probability that a susceptible individual will be infected by an
ill individual (this also denotes how contagious the disease is); WIN→IL, the
probability that an infected individual will become ill (this value is con-
nected with the average time of incubation); WIL→R, the probability that
an ill individual will recover or be isolated from the rest of the population
(e.g. in a hospital); WR→S, the probability that an unsusceptible individual
lose its immunity and became healthy and susceptible (this value may be
referred to the probability of the mutation of the pathogen).

The spreading process in a population can be treated as a nonstationary
process, which is described by the master equation, and that approach was
applied in a number of studies [18,20,21]. The results obtained in our model
will be compared with the solutions of this equation in Sec. 4. For the present
case, the changes in time of the probabilities PX(t) that an individual is in
one of the possible states X (where X = S, IN, IL or R) are described with
the master equation























dPS(t)/dt = WR→SPR(t) − WS→INPIL(t)PS(t) ,

dPIN(t)/dt = WS→INPIL(t)PS(t) − WIN→ILPIN(t) ,

dPIL(t)/dt = WIN→ILPIN(t) − WIL→RPIL(t) ,

dPR(t)/dt = WIL→RPIL(t) − WR→SPR(t) .

(1)

This simple analytical model has one serious disadvantage: it does not
take into account the structure of interpersonal interactions in the human
population, an important part of our model, in which the population and
its structure are described as follows.

The population consists of N individuals who interact with each other in
a three-level hierarchical structure of a social network. Interactions within
the smallest social group, the household and the working team, constitute
the first level of a hierarchical structure. Interactions within larger social
groups, workers of a company (or people who work in the same place, e.g. in
the same building) and individuals who live in the vicinity (e.g. neighbors),
are second-level interactions. Interactions within the whole population (e.g.
the community of a city) are third-level interactions.
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Before the simulation whole population is divided into smaller social
groups (see Fig. 1): NH — individuals who live in the vicinity and NW —
co-workers of a company (or people who work in the same place, e.g. in the
same building). In addition, those groups are divided into smaller ones: NH

into NHG — households and NW into NWG — working teams (or school
class in case of school children). Similar distinction between residential
neighbors and work neighbors was introduced in the Solomon model, where
two different networks share a common set of nodes [23]. The average sizes
of the abovementioned groups 〈NW〉, 〈NH〉, 〈NHG〉 which determine their
number, are the parameters of the model. However, the size of working-team
is drawn from power-law distribution P (NWG) ∼ (NWG)−4 in the range
NHG ∈ (10, 100) in order to obtain scale-free distribution of connectivity
P (k) ∼ k−3. Each individual is randomly assigned to two first-level social
groups (i.e. households and working team). Because the chosen groups are
parts of larger social groups from the second level of the structure (NH and
NW), an individual is automatically assigned to second-level groups, too.
This method of modeling of social interactions gives nontrivial properties
of real social networks, i.e. small-world topology of connections, a large
clustering coefficient, a hierarchical structure, positive degree correlations
and scale-free distribution of connectivity [2, 7, 22].

Fig. 1. The whole population (N individuals) is divided into smaller social groups

(NH and NW), which are divided into smallest social groups (NHG and NWG).

To differentiate the effectiveness of pathogen transmission between the
interactions in different levels of the hierarchy we introduce three equations
describing the probabilities of acquiring infection. As close contacts are
more likely to result in infection spread we assume that the probability
of transmission of the infection between household members and between
coworkers is a simple nonlinear function [5, 24] and has a form:

p1 = WS→IN





1

2

√

NHG
IL

NHG
+

1

2

√

NWG
IL

NWG



 , (2)

where NHG
IL

is the number of ill individuals who live in the same house-
hold and NWG

IL
is the number of ill co-workers.
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Random contacts between individuals in the same groups of NH and
NW individuals is the second level of interpersonal interactions. They are
most probable for individuals living or working in the same place, e.g. in the
same building. In our model, we assume that the probability of acquiring
infection during second-level interactions is proportional to the probability
that an individual from the group is ill:

p2 = WS→IN

(

1

2

NH
IL

NH
+

1

2

NW
IL

NW

)

, (3)

where NH
IL

is the number of ill individuals who live in the vicinity and NW
IL

is the number of ill individuals who work in the vicinity.
Random contacts between pairs of individuals who do not know each

other and who are chosen arbitrarily from the whole population is the third
level of interpersonal interactions. The probability p3 of infection caused by
such a contact does not depend on the localization of the individuals and
we assume it has the following form:

p3 = WS→IN

(

NIL

N

)2

, (4)

where NIL is the number of ill individuals in the whole population. The
nonlinear factor in Eq. (4) causes the probability p3 to initially increase very
slowly and become significant for a great number of ill individuals.

It can be seen that from the point of view of each individual, his or her
interpersonal interactions are hierarchical and they can be divided into three
levels. Note that, as results from Eqs. (2)–(4), the probabilities p1, p2 and
p3 of an infection of each individual depend on the number of ill individuals
and their localization in one of the abovementioned levels. This is why the
probability of an infection of a certain individual is the greatest if the ill
individual belongs to the working team or household, it is smaller if an ill
individual lives or works in the vicinity and it is the smallest if the ill indi-
vidual is located elsewhere in the rest of the population. Other probabilities
of a transition between states X, Y are described by the parameters WX→Y,
like in the master equation (Eq. (1)).

Each (IL) individual may go on sick leave for x time steps (i.e. days)
with the probability pSL. A person on sick leave does not interact with NW

and NWG groups throughout the duration of sick leave. We assume that
after x days this person comes back to work, even if she or he is still sick.
On the other hand, when an individual recovers before the sick leave period
is over they do not return to work earlier. This assumption allow us to
find optimal time of sick leave i.e. when the number of ill individuals and
the number of healthy individuals on sick leave are minimal. It is possible
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also to investigate the influence of probability pSL of going on sick leave on
spreading phenomena.

In order to investigate the influence of target vaccination on the pro-
cess of epidemic development we introduce the parameter pTV. In each time
step all susceptible closest neighbors (S) of the ill individual belonging to the
same NHG and NWG groups, are vaccinated with the probability pTV. Af-
ter vaccination, these individuals become unsusceptible (R) (to simplify the
model we assume that the time necessary to develop immunity is very short
— no longer than one day). It should be noted that introducing the proba-
bility pTV can be also treated as a simple model of chemoprophylaxis [25,26].
The value of the probability pTV is related to the time of identification of ill
individuals in population by health services.

3. Results

Computations were performed for different initial conditions with ran-
dom location and different numbers n of ill (IL) individuals, and the rest of
the population healthy and susceptible (S). Large values of n can be com-
pared to, e.g. broad dispersal of pathogens during bio-terrorist attack or to
a case when public health preventive measures are delayed with respect to
the beginning of an epidemic. Synchronous dynamics and the size of the
population N = 105 were used. In most computations the average sizes of
social groups NHG = 4 and NH = NW = 100 were used. In order to investi-
gate the dynamics of the spreading process and the range of an epidemic we
introduce two observables: the time tmax when the maximal number of ill
individuals is reached and the magnitude of epidemic V defined as relative
number of individuals who went through the disease during epidemic.

The time of incubation τ = 1/WIN→IL influences the rate of the epidemic
spread only. The time tmax increases approximately linearly with τ . On
the other hand, the dynamics of spreading process and the magnitude of
epidemic depend significantly on the value of the parameter WIL→R. Fig. 2
illustrates that for a critical value of WIL→R = WC

IL→R
there is an abrupt

decrease in the time tmax and the magnitude of the epidemic. The changes
become sharper, when the system size increases — it indicates that a phase
transition occurs at this value, because it is characteristic feature of phase
transitions in finite systems. This is confirmed by a significant increase in the
transient times (i.e. the time before the system reaches the point attractor)
for WIL→R slightly smaller than WC

IL→R
, which is typical behavior for a phase

transition.
In order to investigate the influence of routine preventive vaccination on

the spreading process, at the time t = 0 the state of NR0 randomly cho-
sen individuals is set to R. With an increase in the number of preventively
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Fig. 2. The influence of the parameter WIL→R on the magnitude of epidemic V (a)

for different initial conditions (the number of initially ill individuals n = 1; 10; 100

and 1000 from bottom to top, respectively) and time tmax (b) for different values of

WS→IN (0.2 and 0.3 from left to right, respectively). Results were averaged over 100

independent simulations. The values of the other parameters are: WS→IN = 0.2;

WIN→IL = 0.5; WIL→R = 0.2; n = 10.

vaccinated individuals NR0, there is a decrease in the rate of spreading of
infection: the time tmax increases. This is so because an epidemic cannot
spread freely in the presence of vaccinated individuals. However, for critical
value NR0 = NRC there is an abrupt decrease in tmax and the magnitude of
epidemic V : the epidemic is suppressed (see Fig. 3). This phenomenon was
described vaccinated populations for many diseases and is known as herd
immunity [27]. It can be regarded as a phase transition. Such phase tran-
sitions are observed in percolating systems [28]. When the disease is more
contagious, i.e. when the value of WS→IN increases, the part of the pop-
ulation that should have been preventively vaccinated in order to suppress
the epidemic also increases. In addition, the value of WIL→R parameter is
important: when WIL→R decreases, the critical value NRC increases signif-
icantly and the changes in the magnitude of epidemic for NR0 ≈ NRC are
more abrupt. The behavior of the system also depends on the initial condi-
tions (Fig. 3(b)). With an increase in the number initially ill individuals n,
there is a slight increase in NRC and the changes in the magnitude of epi-
demic are less abrupt. This indicates substantial risk with broad dispersal
of pathogens (e.g. as a result of a bio-terrorist attack): the magnitude of an
epidemic is relatively large even if almost whole population was vaccinated.

In the case WR→S > 0 the behavior of the system is more complicated.
There is a non zero probability PE of occurrence of an endemic state (we
define PE as a probability that after 105 time steps the number of ill or
infected individuals is greater than zero). The influence of routine preven-
tive vaccination on the magnitude of epidemic V and the probability PE for
values WR→S > 0 is shown in Fig. 3(a) and Fig. 3(d), respectively. It is vis-
ible that the greater WR→S the greater V and NRC. It indicates that mass
routine vaccination is not optimal in the case of easily mutating pathogens.
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The value of the probability PE increases with WR→S increasing. Surpris-
ingly, the use of routine preventive vaccination can also increase the prob-
ability PE for certain values of NR0. When the average number of new
infected individuals equals the average number of individuals who lost their
immunity, the endemic state occurs. Such condition can occur when the
epidemic spreads slowly enough, i.e. when the number of resistant (R) indi-
viduals is large enough (see Fig. 3(a)). However, for values NR0 > NRC the
probability that endemic state occurs reaches zero.

Fig. 3. The influence of the number of preventive vaccinated individuals NR0 on

the time tmax (a) for different values of WS→IN (0.2; 0.3 and 0.4 from left to right,

respectively) and the magnitude of epidemic V (b) for different initial conditions

(the number of initially ill individuals n = 1; 10; 100 and 1000 from bottom to top,

respectively) and (c) for different values of WR→S (0; 0.0005; 0.0016 and 0.006 from

bottom to top, respectively). The value of the probability PE for different values of

WR→S (0.0005; 0.001; 0.0016 and 0.006 from bottom to top, respectively) is shown

in (d). The results are averaged over 100 independent simulations. The values of the

other parameters are: WS→IN =0.3, WIN→IL =0.5, WIL→R =0.2, WR→S =0, n=10.

The routine preventive vaccination is not the only method of using vac-
cines. In our work, we also investigated the influence of target vaccination.
Fig. 4 illustrates the influence of the probability pTV on the spreading pro-
cess (in the simulation we assume that there was no shortage of vaccines).
Like in the case of mass vaccination there is a critical value of pTV = pC

TV

when phase transition takes place and abrupt changes in tmax and V are vis-
ible. In addition, the influence of initial conditions is similar to the previous
case (cf. Fig. 3(b) and Fig. 4(b)). Note that above the critical value, a fur-
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ther increase in pTV did not provide better results: the changes in V and
in the relative number NV of individuals who are vaccinated are very small
(see Fig. 4(b) and Fig. 4(c)). The value of pC

TV
increases when WIL→R de-

creases. However, the value of the parameter WIL→R has a smaller influence
on effectiveness of target vaccination than in the case of routine preventive
vaccination.

Because of the cost of vaccines, it is important to calculate the relative
number NV of individuals who are vaccinated (Fig. 4(c)). Although in our
model we assume unlimited supplies of vaccines, during a real epidemic
a shortage of vaccines is quite likely. The value of NV quickly increases
with an increase in pTV. It can be seen that for pTV = pC

TV
there is an

abrupt decrease in NV and the number of vaccines necessary to suppress an
epidemic is very low. However, for large n even very quick identification of
new ill individuals (pTV ≈ 1) is insufficient: the magnitude of the epidemic
and the number of vaccines used remain relatively large. This result suggests
that quick identification of new cases of infection is not the only important
measure. It is also crucial to take action at early stages of an epidemic,
when the very first cases of infection are identified (low n).

Fig. 4. The influence of the probability pTV on the time tmax (a) for different

values of WS→IN (0.2, 0.3 and 0.4 from left to right, respectively); the mag-

nitude of the epidemic V (b) and the relative number of vaccinated individu-

als NV (c) for different initial conditions (the number of initially ill individuals

n = 1, 10, 100 and 1000 from bottom to top, respectively). The results are aver-

aged over 100 independent simulations. The values of the other parameters are:

WS→IN = 0.3, WIN→IL = 0.5, WIL→R = 0.2, n = 10.
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When the value of the parameter WS→S increases, there is an increase in
magnitude of epidemic and in pC

TV
. Moreover, for greater values of WR→S,

the changes in V for values of the probability pTV in the proximity of the
critical value are more abrupt (Fig. 5). The probability that endemic state
occurs reaches zero for pTV > pC

TV
. Note that, there is significant increase

in pC
TV

only for very large values of WR→S and PE monotonically decreases
with pTV increasing - this indicates that target vaccination is a very effective
control method even in the case of easily mutating pathogens.

Fig. 5. The influence of the probability pTV on the magnitude of the epidemic V

(a) and the probability PE (b) for different values of WR→S (0.003, 0.006, 0.015

and 0.035 from bottom to top, respectively). The results are averaged over 100

independent simulations. The values of the other parameters are: WS→IN = 0.4,

WIN→IL = 0.5, WIL→R = 0.2, n = 10.

In our model, it is possible to investigate the influence of the probability
pSL of going on sick leave (this is a simple method of isolating ill individuals
from part of the population) on the spreading phenomena. Fig. 6 illustrates
the influence of the probability pSL on the time tmax (Fig. 6(a)), magnitude
of the epidemic V (Fig. 6(b)) and the relative number NNW of individuals
who do not work, because they are on sick leave (Fig. 6(c)). When pSL

increases, the time tmax also increases, because an ill individual who is on
sick leave interacts strongly with its local neighborhood only: long-range
connections are removed from the social network. Hence, the number of
new sources of the epidemic is smaller and the rate of the spreading process
is lower. For the critical value pSL = pC

SL
there is an abrupt decrease in tmax

and V . It should be noted that the change in the magnitude of epidemic
for pSL ≈ pC

SL
is much more abrupt than in the case of critical values of NR0

(cf. Fig. 3) and pTV (cf. Fig. 4), which is not clearly visible in the logarithmic
scale. As in the case of using vaccines, changes in the magnitude of the
epidemic V in the proximity of the critical value are less abrupt for a larger
number of initially ill individuals. Note that for n = 1000 and in the range
of control parameters when an epidemic is suppressed, the maximal number
NNW of individuals who are on sick leave is almost ten times smaller than
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the number NV of necessary vaccines (cf. Fig. 6(c) and Fig. 4(c)). The
value of NNW depends also on the time of incubation and increases with an
increase in WIN→IL.

Fig. 6. The influence of the probability pSL on the time tmax (a) for different

values of WS→IN (0.2, 0.3 and 0.4 from left to right, respectively); the magnitude

of epidemic V (b) and maximal number of individuals NNW who do not work

due to sick leave (c) for different initial conditions (the number of ill individuals

n = 1, 10, 100 and 1000 from bottom to top, respectively). In Fig. 6(d) the relation

between the magnitude of the epidemic V and the duration of sick leave x (for

different values of pSL: 0.1, 0.3, 0.4, 0.5 and 0.6 from top to bottom, respectively)

is shown. The results are averaged over 100 independent simulations. The values

of the other parameters are: WS→IN = 0.2, WIN→IL = 0.5, WIL→R = 0.2, n = 10.

The duration of sick leave x also influences the spreading process.
Fig. 6(d) illustrates the relation between the magnitude of the epidemic V
and x, for different values of pSL. It can be seen that with an increase in x,
there is a decrease in the critical value pC

SL
. However, for low enough pSL

the epidemic is not suppressed even for very long sick leave. The number of
individuals who do not work NNW decreases significantly as x increases for
pSL > pC

SL
(the change in NNW is more rapid for greater pSL) and reaches

a value close to minimum when the epidemic is suppressed. A further in-
crease in x causes only a slight decrease in NNW. On the other hand, when
pSL < pC

SL
, the value of NNW increases quickly with increasing x.

The influence of going on sick leave on the magnitude of epidemic and
the probability that an endemic state occurs, for different values of WR→S is
shown in Fig. 7. When there is an increase in WR→S, there is a slight increase
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in pC
SL

and the changes in V for values of the probability pSL ≈ pC
SL

are more
abrupt. Similarly as in the case of routine preventive vaccination, for certain
values of pSL an increase in PE is visible. If the epidemic spreads slowly
enough, i.e. if value of the probability pSL is large enough (see Fig. 6(a)),
the probability that endemic state occurs increases.

Fig. 7. The influence of the probability pSL on the magnitude of the epidemic

V (a) and the probability PE (b) for different values of WR→S (0.0024, 0.0032,

0.004 and 0.006 from bottom to top, respectively). The results are averaged over

100 independent simulations. The values of the other parameters are: WS→IN =

0.3, WIN→IL = 0.5, WIL→R = 0.2, n = 10.

4. Comparison with master equation

In the master equation it is assumed that each individual interacts with
all other individuals in the population and the interactions with all individ-
uals are treated in the same way. In contemporary large communities this is
not true, because people interact strongly only with a small (in comparison
to the size of the whole population) number of other individuals. In Fig. 8
the results obtained from analytical solutions of the master Eq. (1) and from
the present model are compared. The two curves are similar but in the case
of our model, the number of ill individuals increases faster and the maximum
appears for lower values of the time than in the case of the solutions of the
master equation. When only a few individuals are ill at t = 0, the number of
infected individuals NIN resulting from the master equation increases very
slowly, because PIL is very low. In our model, however, strong interactions
with the nearest neighbors are taken into account; consequently, the epi-
demic spreads faster, which explains the discrepancy between the location
of the two curves. For large enough time t the solution of master equation
settles in fixed point, but in the case of numerical calculation oscillations of
the number of ill individuals are still observed. When the number of suscep-
tible individuals is very low, the number of ill individuals decreases, because
the probability that a new individual will be infected is low. On the other
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hand, when the number of ill individuals is low the number of susceptible
individuals increases. Hence, when the critical value NS is reached, the epi-
demic starts to spread. In consequence, there is an abrupt increase in NIL.

Fig. 8. Comparison of the relation NIL(t)/N obtained in the presented model (solid

line) with the solution of the master equation (dashed line) for WS→IN = 0.5,

WIN→IL = 0.5, WIL→R = 0.2, WR→S = 0.002.

5. Conclusions

The model of the spreading of an epidemic in the population with a three-
level hierarchical structure of interpersonal interactions has been described
and investigated numerically. In our model, the influence of routine pre-
ventive vaccinations on the spreading of an epidemic was investigated. We
found the critical coverage of preventive vaccination, sufficient for suppres-
sion of an epidemic. However, the vaccine coverage is very high and strongly
increases with infectivity of a disease. Moreover, in the case of broad dis-
persal of pathogens (e.g. as a result of a bio-terrorist attack) the magnitude
of the epidemic remains relatively large, even if almost whole population is
vaccinated.

Contrary to routine preventive vaccination, target vaccination can give
much better results with little demand for vaccines (or antiviral agents),
i.e. when only the nearest neighbors of ill individuals are vaccinated. An
epidemic can be suppressed with a relatively small number of vaccines if new
ill individuals are identified quickly enough. Particularly good results can
be obtained if the target vaccination starts just after the appearance of the
very first cases of infection, i.e. in initial stage of an epidemic.

In our model we also investigated the influence of sick leave (which can
be treated as a simple method of isolating ill individuals from a part of the
population) on the process of an epidemic spread. It turns out that for



1534 A. Grabowski, M. Rosińska

a critical value of the probability of going on sick leave there is an abrupt
decrease in the magnitude of the epidemic. The number of individuals who
do not work necessary to suppress the epidemic is very low.

Routine preventive vaccination can be effective only in the case of well-
known pathogens (e.g. in the case of childhood diseases such as measles). If
there is a new pathogen in a susceptible population (as a result of mutation
or a bio-terrorist attack), only a quick public health response can provide
good results. In such case, the efficiency of target vaccination of the nearest
neighbors of ill individuals is high. Removing interpersonal interactions with
spatially distant individuals by isolating an ill individual (e.g. at home)
decreases significantly the number of new sources of the epidemic and is
helpful in suppressing the epidemic spread.

Our results were compared with the solutions of the master equation.
The character of both solutions is similar; however, there are discrepancies
between the locations of the maxima of the relations of the number of ill
individuals and time. This is so because in our model we assume a hierar-
chical structure of interpersonal interactions in a more plausible way than
in the case of the master equation. Our model provides an opportunity to
study the influence of absences from work including preventive closing of
workplaces and schools as well as targeted vaccinations on the spread of an
epidemic. This is of particular interest since these measures are frequently
implemented in practice.
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