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The quantum thermodynamic behavior of small systems is investigated
in presence of finite quantum dissipation. We consider the archetype cases
of a damped harmonic oscillator and a free quantum Brownian particle.
A main finding is that quantum dissipation helps to ensure the validity
of the Third Law. For the quantum oscillator, finite damping replaces the
zero-coupling result of an exponential suppression of the specific heat at low
temperatures by a power-law behavior. Rather intriguing is the behavior
of the free quantum Brownian particle. In this case, quantum dissipation
is able to restore the Third Law: Instead of being constant down to zero
temperature, the specific heat now vanishes proportional to temperature
with an amplitude that is inversely proportional to the ohmic dissipation
strength. A distinct subtlety of finite quantum dissipation is the result
that the various thermodynamic functions of the sub-system do not only
depend on the dissipation strength but depend as well on the prescription
employed in their definition.

PACS numbers: 05.70.–a, 05.30.–d, 05.40.–a, 05.40.Jc

1. Introduction

The development of the theory of Brownian motion played a pivotal role
— and continues to do so — in the development of statistical mechanics
and thermodynamics [1, 2]. Thermodynamics together with relativity and
quantum theory form three pillars on which much of the entire structure
of physics rests. Tampering with the axioms in either of those theories is
not a good idea; doing so may well lead to contradictions with the other
theories. In particular, the field of thermodynamics bears consequences for
many branches of physics. Its four laws are well-known [3,4]: the zeroth law
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guarantees that states of thermal equilibrium exist which can be character-
ized by a temperature T . The first law provides a balance among the various
contributions that make up the internal energy of a system while the second
law introduces the concept of thermodynamic entropy S, which notably is
extensive and never decreases for a closed physical system. In addition, the
second law tells us that there exists an absolute zero of temperature.

The Third Law is attributed to Walther Hermann Nernst (1864–1941)
and arose as the result of his seminal idea — being guided by his critical
analysis of chemical and electrochemical reactions at lower temperatures —
that at low temperatures there occurs for isothermal processes a perfect
correspondence between the enthalpy and the Gibbs free energy. Thereby,
the approximate rule hypothesized earlier by Marcelin Berthelot and Julius
Thomson, becomes a “law” at zero temperature. Nernst announced this
result already in his lectures in 1905, terming it “mein Wärmesatz” (my law
of heat) [5,6]. He took this result even further: He also studied how fast the
difference between the changes in the enthalpy ∆H and the Gibbs free energy
∆G, i.e. ∆H − ∆G tends to zero [7]. In fact, this difference vanishes faster
than linear in temperature implying that the change of entropy itself must
vanish at absolute zero. This in turn implies identical, generally vanishing
initial slopes for the corresponding quantities ∆H and ∆G as a function of
temperature. An elucidating account of the history of the Third Law and
the controversies surrounding its acceptance is presented in the books by
Dugdale [8] and by Wilks [9]. In its strict form, as given by Max Planck [10],
the Third Law reads: The entropy s = S/N per particle approaches at
absolute zero a constant value s0 that possibly depends on the chemical
composition of the system. This limiting entropy constant s0 can generally
be set equal to zero.

The Third Law carries prominent consequences for quantum mechanics
and the field of low-temperature physics. First, the fact that at absolute
zero temperature the isotherm coincides with the isentrope (adiabat) imme-
diately implies that this absolute zero temperature is unattainable by use of
a sequence of isothermal and adiabatic reversible operations [11]. Therefore,
it has the consequence that the efficiency of a Carnot engine, i.e. a heat
engine that cyclically operates between two heat baths of different tempera-
tures which are never brought into contact with each other, can never reach
100% for any finite upper temperature. Moreover, the constant value of
the entropy at absolute zero is given by the degeneracy g of the N -particle
system in the corresponding quantum ground state, i.e. S(T = 0) = kB ln g,
where kB is the Boltzmann constant. The limiting value of the intensive
quantity s0 = S(T = 0)/N in the thermodynamic limit of particle number
N → ∞ will typically be zero, so long as the degeneracy g = g(N) does
not grow with N faster than exponentially [12]. A well-known exception is
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the case of noninteracting, independent particles carrying a non-vanishing
spin I, yielding s0 = kB ln(2I + 1) for the limiting entropy per particle.
Moreover, the Third Law also implies that thermal quantities such as spe-
cific heats, the isobar thermal coefficient of expansion, the isochor coefficient
of tension, etc., all approach zero as T → 0. Likewise, the (magnetic) sus-
ceptibility becomes constant as T → 0, so that the classical Curie law must
loose its validity at very small temperatures.

Are there known exceptions of systems not obeying the Third Law? It
is known that many classical systems do not obey the Third Law. In par-
ticular, noninteracting classical systems with their constant values for the
specific heat clearly violate the Third Law. A well-known case is the clas-
sical ideal gas for which the entropy S assumes the form S = N [cV lnT +
kB ln(V/N)+σ], where V is the volume and σ denotes the entropy constant.
It clearly does not fulfill the Third Law because it diverges logarithmically
with temperature T for a constant specific heat cV . Even when we use
for cV the physically relevant low-temperature result, namely that quan-
tum mechanically the specific heat cV vanishes faster than lnT , we still find
a dependence on the particle density which is not compatible with the for-
mulation of Planck. This observation that the classical gas does not obey
the Third Law led Nernst to speculate that the classical gases must undergo
a “degeneracy”, which has been resolved with the quantum statistics for the
ideal Fermi gas and the ideal Bose gas, which indeed do obey the Third Law
in the strict formulation by Planck.

Are there yet other remaining open problems with the Third Law? Ap-
parent difficulties with the Third Law occur for metastable states that do
not necessarily guarantee the sufficiently fast relaxation within a finite time
scale towards thermal equilibrium, the latter being a prerequisite for the va-
lidity of the Third Law. In this context, glasses provide a system class that
can provide detectable deviations from the Third Law at low temperatures
which likely are the result of frozen-in ordered excited states that have not
yet fully relaxed. According to common wisdom the known deviations from
the Third Law will all be cured by quantum mechanics, quantum statistics,
and interactions among particles.

In the following we shall investigate the thermodynamic low temperature
properties for open quantum systems that are coupled to a heat bath of finite

dissipation strength. Because both, the thermodynamics of classical open
systems and the quantum statistical mechanics of open systems are strictly
valid only for systems that are only infinitely weakly coupled to a bath,
it is a priori not obvious how the Third Law lives up to the sub-system in
presence of finite quantum dissipation [13–22]. The effect of the finite cou-
pling of a sub-system to an environment in fact induces several subtleties
for quantum Brownian motion [22]. For example, the equilibrium density
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matrix is no longer given by its standard canonical form ρS = exp(−βHS)/Z
where HS denotes the system Hamiltonian and Z = Tr [exp(−βHS)] is the
partition function. Therefore, in clear contrast to the classical case with
dissipation, this reduced density matrix becomes also a function of the in-
teraction strength with the environment. This being so, taking a gas of free
independent quantum Brownian particles that are coupled to a heat bath
with finite dissipation strength, one may speculate that the role of the inter-
actions of the free particle with the abundant bath degrees of freedom will
be sufficient to cure the shortcomings stemming from a classical gas of free
Brownian particles.

2. Quantum harmonic oscillator revisited

To start out, we first recall the standard results for a single harmonic
quantum oscillator that is infinitely weakly coupled to a bath that establishes
the temperature T . This situation is reminiscent of the famous treatment
of the specific heat of a solid by Albert Einstein in 1907 [23], where he
found an exponential suppression of the specific heat as T → 0. This finding
impressed the Berlin school so immensely, in particular Nernst and his col-
laborators (who in 1910 experimentally confirmed this salient first prediction
of quantum theory), that Nernst together with Planck were able to bring the
“new Copernicus” [5, 6] into the exclusive circle of Berlin physicists in 1913.

2.1. Partition function and entropy

Let us consider an oscillator degree of freedom of mass M and force
constant f , i.e. its Hamiltonian HS reads

HS =
p2

2M
+

1

2
fx2 . (1)

In terms of the angular frequency ω2
0 = f/M the quantum mechanical energy

eigenvalues read En = (n+ 1

2
) ~ω0, yielding for the partition function Z the

well-known expression

Z =

∞
∑

n=0

e−βEn =
1

2 sinh [~βω0/2]
, (2)

where β = 1/kBT is the inverse temperature.
Using familiar relations we find that the internal energy E reads

E = −
∂

∂β
ln(Z)

=
~ω0

2
+

~ω0

exp(~βω0) − 1
(3)
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and, correspondingly, the entropy is given by

S = kB

[

ln(Z) − β
∂

∂β
ln(Z)

]

= kB

[

~βω0

exp(~βω0) − 1
− ln

(

1 − exp(−~βω0)
)

]

. (4)

For low temperatures, ~βω0 ≫ 1, the entropy approaches zero like

S =
~ω0

T
exp

(

−
~ω0

kBT

)

. (5)

The specific heat can now be derived either from (3) as

C =
∂E

∂T
= −kBβ

2 ∂E

∂β
(6)

or from (4) as

C = T
∂S

∂T
= −β

∂S

∂β
. (7)

In both cases, one obtains for the specific heat

C = kB

(

~βω0

2 sinh(~βω0/2)

)2

. (8)

Its low-temperature behavior

C = kB

(

~ω0

kBT

)2

exp

(

−
~ω0

kBT

)

(9)

is not analytic in temperature and corresponds to Einstein’s result for the
low-temperature behavior of the specific heat of a solid [23]. For high tem-
peratures one finds

C = kB

[

1 −
1

12

(

~ω0

kBT

)2

+O(T−4)

]

. (10)

As this result shows, the specific heat for a free particle cannot simply be
obtained by taking the limit ω0 → 0 of the harmonic oscillator. Such a pro-
cedure will not properly account for the reduced number of degrees of free-
dom which within the equipartition theorem will lead to a high-temperature
specific heat of only C = kB/2 for the free particle.
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3. Quantum harmonic oscillator: The role of quantum dissipation

3.1. Harmonic oscillator coupled to an environment

We now couple the harmonic oscillator of the previous section to an
environment consisting of an infinite number of harmonic oscillators form-
ing a heat bath. In contrast to the previous section, the coupling strength
will not be kept negligible here. In addition, system and bath are infinitely
weakly coupled to a superbath which has the purpose to provide the tem-
perature T .

The total Hamiltonian H does not need to account for the superbath
and, therefore, consists of three parts [15, 16, 18, 22, 24, 25]

H = HS +HB +HSB , (11)

where HS is given by (1), the bath Hamiltonian reads

HB =

∞
∑

i=1

(

p2
i

2mi
+
miω

2
i

2
x2

i

)

(12)

and the coupling is bilinear in the coordinates

HSB = −q

∞
∑

i=1

cixi + q2
∑ c2i

2miω2
i

. (13)

We note that quantum systems that are coupled to an environment of
finite strength are rarely exactly solvable. The dissipative quantum oscillator
becomes exactly solvable with its bilinear coupling to a bath because of the
inherent quadratic structure of the total Hamiltonian in (11). This fact holds
true even for the case of time-dependent, parametrically driven dissipative
quantum harmonic systems [26, 27].

In order to describe the influence of the environment on the system
oscillator, it is sufficient to know the spectral density of bath oscillators
defined by [13,15, 16, 19]

J(ω) = π
∞
∑

i=1

c2i
2miωi

δ(ω − ωi) . (14)

For later purposes, we introduce the Laplace transform of the damping
kernel, which generally depends on frequency, thereby causing memory-
friction [28, 29], i.e.,

γ̂(z) =
1

M

∞
∫

0

dω

π

J(ω)

ω

2z

ω2 + z2
. (15)

The important special case of strictly ohmic dissipation is characterized
by J(ω) = Mγω and γ̂(z) = γ which leads to a memoryless damping of
strength γ.
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3.2. Specific heat of a damped harmonic oscillator

We next discuss the specific heat of the damped harmonic oscillator
by following two routes. First, we start from the energy E and employ
the common relation in (6). As an alternative route we shall in Sec. 3.3
determine the entropy from the partition function by means of (4) from
which (7) allows one to evaluate the specific heat in the case of strictly
ohmic damping.

The energy of the damped harmonic oscillator is given by

〈E〉 =
〈p2〉

2M
+
M

2
ω2

0 〈q
2〉 , (16)

where the expectation value of an operator OS acting in the Hilbert space of
the system is defined with respect to the canonical density matrix of system
plus environment as

〈OS〉 =
Tr [OS exp(−βH)]

Tr [exp(−βH)]
. (17)

For ohmic damping, the second moments of position and momentum can be
expressed as [15, 30, 31]

〈q2〉 =
~

M
f0(T ) (18)

and
〈p2〉 = M~f2(T ) , (19)

where we have introduced a temperature-dependent function

fn(T ) =

+∞
∫

−∞

dω

2π

γωn+1

(ω2 − ω2
0)

2 + γ2ω2
coth

(

~βω

2

)

. (20)

For n = 2, i.e. when evaluating 〈p2〉, the integrand decreases only with 1/ω
and a finite value can only be obtained by introducing a high-frequency cutoff
in the damping kernel γ̂(z). However, this divergent term gives rise only to
a temperature-independent contribution to 〈p2〉 and thus to the energy (16).
When evaluating the specific heat according to (6), this constant term will
disappear and a finite result is obtained even for ohmic damping. After some
algebra, one finds for the specific heat

C

kB

= 1 −
~βγ

2π
+ λ2

+ψ
′ (1 + λ+) + λ2

−ψ
′ (1 + λ−) , (21)

where

λ± =
~βω0

2π





γ

2ω0

±

√

(

γ

2ω0

)2

− 1



 (22)
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and ψ′(z) is the trigamma function. At low temperatures, the specific heat
thus assumes the form

C

kB

=
π

3

γ

ω0

kBT

~ω0

+
4π3

15

γ

ω0

[

3 −

(

γ

ω0

)2
]

(

kBT

~ω0

)3

+O(T 5) . (23)

This result differs significantly from the expression (9) in the absence of
dissipation. While in the latter case, the presence of an energy gap led to an
exponential suppression of the specific heat, we now find a linear increase
with temperature. This behavior indicates the existence of a finite density
of states even at small excitation energies [32]. Even at high temperatures
the effect of dissipation can be detected, albeit in a less spectacular manner.
The leading correction in the high-temperature expansion reads

C

kB

= 1 −
~γ

2πkBT
+

~
2(γ2 − 2ω2

0)

24(kBT )2
+O(T−3) . (24)

Thus, the leading correction depends on the damping strength γ. This find-
ing is in clear contrast to the behavior of the quantum escape rate [16, 29]:
There, the leading quantum correction to the escape rate always enhances
the classical result and is independent of the dissipation strength.

3.3. Energy versus partition function for a damped harmonic oscillator

Another prescription to obtain the specific heat starts out from the
canonical partition function

Z =
Tr [exp(−βH)]

TrB [exp(−βHB)]
, (25)

where TrB denotes the partial trace in the Hilbert space of the bath. In the
absence of a system–bath coupling, this expression would correspond to the
partition function of the system alone. For a damped harmonic oscillator,
the partition function becomes [33]

Z =
1

~βω0

∞
∏

n=1

ν2
n

ν2
n + νnγ̂(νn) + ω2

0

(26)

with the Matsubara frequencies νn = 2πn/~β. In view of the divergence
for strictly ohmic damping mentioned above, we allow here for a possible
frequency dependence of γ̂.

Following the standard procedure of statistical mechanics, we can obtain
the energy from the partition function by means of

〈E〉Z = −
∂

∂β
ln(Z) . (27)
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Inserting (26), one obtains

〈E〉Z =
1

β

[

1 +

∞
∑

n=1

2ω2
0 + νnγ̂(νn) − ν2

nγ̂
′(νn)

ν2
n + νnγ̂(νn) + ω2

0

]

(28)

which in general differs from the expression

〈E〉 =
1

β

[

1 +

∞
∑

n=1

2ω2
0 + νnγ̂(νn)

ν2
n + νnγ̂(νn) + ω2

0

]

(29)

obtained by evaluating the integral (20) by residues. The only exception is
the special case of strictly ohmic damping where γ̂(νn) = γ is constant.

This generally non-vanishing difference does not come as a surprise if
one only takes a closer look at the partition function (25): The evaluation
of (27) yields

〈E〉Z = 〈H〉 − 〈HB〉B

= 〈E〉 + [〈HSB〉 + 〈HB〉 − 〈HB〉B] ,
(30)

where the index “B” denotes an average with respect to the bath Hamiltonian
HB only. This result differs from the energy 〈E〉 = 〈HS〉 by the term in
the brackets which, generally, vanishes only in the absence of a system–
bath coupling. The coincidence between 〈E〉 and 〈E〉Z for the harmonic
oscillator subject to strictly ohmic damping should, therefore, be considered
as exceptional.

Nevertheless, we briefly sketch how one would obtain the specific heat
from the partition function because this will give us as a by-product an
expression for the entropy of the damped harmonic oscillator. For strictly
ohmic damping the product (26) does not converge and in principle a high-
frequency cutoff for γ̂ should be introduced. However, this divergence can
again be traced back to an infinite energy shift due to the environmental
coupling. We may shift the energy by an arbitrary amount ∆ by multiplying
the partition function by exp(−β∆) without changing the entropy or the
specific heat. After performing an appropriate energy shift, we arrive at an
expression of the partition function valid even for strictly ohmic damping
[34], reading

Z̄ =
A

~βω0

(

2π

~βω0

)~βγ/2π

Γ (1 + λ+)Γ (1 + λ−) , (31)

where Γ (z) is the gamma function, λ± are defined in (22), and A is a constant
whose precise value is irrelevant for the following. By virtue of (4) we obtain
for the entropy the result

S = kB

[

1 − ln(~βω0) +
~βγ

2π
+ g (λ+) + g (λ−)

]

, (32)
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where we introduced the abbreviation

g(z) = ln[Γ (1 + z)] − zψ(1 + z) (33)

with the digamma function ψ(z) = Γ ′(z)/Γ (z). In the absence of damping,
i.e. γ = 0, this reproduces the result (4) for the entropy of an uncoupled
harmonic oscillator.

For very low temperatures, the entropy (32) vanishes like

S =
π

3

γ

ω0

k2
B
T

~ω0

+O(T 3) (34)

as required by the Third Law of thermodynamics. By means of (7), the
expression (21) for the specific heat is recovered identically.

The low-temperature behavior (34) is in agreement with the expression
derived by Ford and O’Connell on the basis of the free energy [35]. For the
damped harmonic oscillator these authors found that the entropy vanishes
in the limit of zero temperature also for more general forms of the bath
density of states.

4. Free quantum Brownian motion coupled to a heat bath:

Is the Third Law obeyed at zero temperature?

According to the equipartition theorem the specific heat of a free particle
is kB/2. In the limit of an infinite “box” this represents even the correct
quantum value, because the classical and the quantum partition function
become equal. In view of the fact that the specific heat of an ideal gas thus
remains non-zero down to the lowest temperatures, one becomes curious to
investigate the specific heat of a free particle coupled to an environment when
the coupling strength is not assumed to vanish: Does quantum dissipation
help to restore the Third Law?

Free quantum Brownian motion has been addressed in earlier work
[36–39] wherein the main focus centered on the role of free quantum diffu-
sion [15]. Interestingly enough, for ohmic dissipation the quantum diffusion
remains “classical”, being proportional to time t, except at zero temperature
itself, where one finds a logarithmic behavior in time t [36–39]. At finite
temperatures this quantum behavior is observable at intermediate times
only [36, 40]. One is thus tempted to conclude that finite quantum dissi-
pation will not be sufficient to cure the classical behavior for the specific
heat. Therefore, we shall next investigate the behavior of the specific heat
for free quantum Brownian motion in closer detail.

As already mentioned at the end of Sec. 2.1, simply taking the limit
ω0 → 0 in the results for the damped harmonic oscillator is not without
problems. We, therefore, start our calculation from the energy



Quantum Brownian Motion and the Third Law of Thermodynamics 1547

〈E〉 =
〈p2〉

2M
=

1

2β

[

1 + 2
∞

∑

n=1

νnγ̂(νn)

ν2
n + νnγ̂(νn)

]

, (35)

which can be obtained from the second moment of momentum 〈p2〉 by evalu-
ating the integral (20) by residues. Proceeding as in Sec. 3.2, one derives the
specific heat of the free particle in the presence of strictly ohmic damping

C

kB

=
1

2
−

~βγ

2π
+

(

~βγ

2π

)2

ψ′

(

1 +
~βγ

2π

)

, (36)

which for either T → ∞ or γ → 0 yields C = kB/2, as expected from the
equipartition theorem. On the other hand, for low temperatures the specific
heat tends to zero as

C

kB

=
π

3

kBT

~γ
−

4π3

15

(

kBT

~γ

)3

+O(T 5) (37)

in agreement with the Third Law of thermodynamics. The specific heat (36)
together with its linear low-temperature behavior are depicted in the main
part of Fig. 1 as full and dashed line, respectively. Temperatures kBT ≫ ~γ
much larger than the damping strength are required in order to restore the
classical result C/kB = 1/2.

As the damping strength already serves to set the temperature scale, it
is instructive to introduce a cutoff in the density of states (14) of the bath
oscillators in order to study how a reduction of the environmental influence
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Fig. 1. The specific heat C of a free quantum Brownian particle is shown as
a function of the temperature T for strictly ohmic friction of strength γ. The
dashed line indicates the linear low-temperature behavior. In the inset, the mod-
ification due to a finite cutoff frequency ωD is depicted for different cutoff scales,
ωD/γ = 0.01, 0.1, 1, and ∞ from the upper to the lower full line. The dashed line
indicates again the linear low-temperature behavior.
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changes the dependence of the specific heat on temperature. To this end, we
introduce a high-frequency cutoff ωD by choosing the Drude model where

γ̂(z) =
γωD

z + ωD

. (38)

This environment leads to a specific heat

C

kB

=
1

2
−

~βγ

2π

1
√

1 − 4γ/ωD

[

z+ψ
′(1 + z+) − z−ψ

′(1 + z−)
]

, (39)

where we have introduced the abbreviations

z± =
~βωD

4π

(

1 ±

√

1 −
4γ

ωD

)

. (40)

Independently of the value of the cutoff frequency ωD, the specific heat
will go to zero linearly as stated in (37). However, for temperatures larger
than the cutoff frequency, the suppression of the specific heat due to the
environmental coupling will be ineffective. A reduction of the environment
thus tends to restore the classical value of kB/2 for the specific heat. This
effect is depicted in the inset in Fig. 1, where the cutoff frequency takes
the values ωD/γ = 0.01, 0.1, 1 and ∞ from the upper to the lower curve.
The dashed curve represents the linear low-temperature behavior which still
dominates at temperatures below ~ωD/kB. In contrast to many phenomena
in quantum dissipation, here an increase of the coupling to the environment
does not render the system more classical. On the contrary, a stronger
environmental coupling makes the dissipative quantum system behave more
quantum mechanically and thus helps to ensure the validity of the Third Law
of thermodynamics, i.e. the vanishing of the specific heat with decreasing
temperatures.

5. Conclusions

With this work we have explored the behavior of the specific heat for
a quantum system coupled to a heat bath with finite coupling strength. Our
findings are contrasted with the Third Law of thermodynamics which gener-
ically predicts a vanishing of the specific heat at low temperatures. For a
harmonic oscillator the presence of quantum dissipation changes the well-
known Einstein-like behavior of an exponentially fast approach towards zero
specific heat into a power-law behavior with a slope that increases with in-
creasing coupling strength. Even more intriguing is the behavior for a freely
moving quantum particle: While the quantum treatment in absence of dis-
sipation simply coincides with the classical behavior, i.e. the specific heat
takes a constant value C = kB/2, the role of finite quantum dissipation is
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able to restore the Third Law, yielding a leading linear temperature depen-
dence. Quite counterintuitively, its approach to the classical value occurs
the faster the weaker is the dissipation strength.

In contrast to common quantum statistical mechanics which intrinsically
is based on a vanishingly small coupling to the environment, the finite cou-
pling strength between the sub-system and the bath causes some subtleties
that must be recognized. As made explicit in Sec. 3.3, the thermodynamic
quantities depend on the procedure invoked in their definition: The com-
monly used expression based on the partition function provides results that
generally do not agree with the result obtained from the corresponding quan-
tum expectation value. Interestingly enough, in the strict ohmic limit (i.e.
in the absence of a high-frequency cutoff) the specific heat for the damped
harmonic oscillator does not depend on the prescription employed. For the
case of memory friction, however, where a finite cutoff frequency is present,
the thermodynamic quantities depend both on the value of this cutoff and
the prescription used in their evaluation.

The results obtained for the low-temperature behavior of the specific
heat of simple quantum systems are not only of academic interest, but may
turn out to be relevant for experiments in nanoscience where one tests the
quantum thermodynamics of small systems [41] that are coupled to an en-
vironment with a finite coupling strength.

This work has been supported by the Deutsche Forschungsgemeinschaft
(DFG) (PH, SFB 486). Both authors like to congratulate Peter Talkner for
his first 60 years and his fine scientific career. We both have heavily profited
repeatedly and continue to strongly profit from his insight and breadth of
knowledge. May our present ongoing fruitful collaborations with him blos-
som further and even intensify.
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