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Spreading of two different diseases in small world network, with re-
striction that an individual can be ill only with one disease in the same
time, is investigated in the frame of SIRS model. It was found that in
the special range of control parameters the presence of the second disease
can significantly decrease the number of individuals, who passed the first
disease. The speed of propagation of the wave-front of the epidemic is
calculated analytically and good agreement with numerical calculation is
obtained. The influence of additional long range connections on epidemic
spreading and phase transition is investigated. It is found that in special
conditions spatio-temporal patterns, in particular spiral waves, can emerge
in the system. Small number of additional long-range connections increases
the probability of emerging of spiral waves.

PACS numbers: 89.75.–k, 87.10.+e, 87.18.Hf

1. Introduction

In recent years hazards connected with the epidemics like SARS, an-
thrax, or with computer viruses results in a number of papers devoted to
this subject (see e.g. [1–9]), which are based on the mathematical model-
ing and computer simulations of spreading processes. Epidemic spreading
may be treated as one of the dynamic phenomena observed in populations
described by complex networks [10]. In particular small world type of net-
work [11] is used to model the structure of contacts between individuals
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forming the populations [1, 3, 12–16]. Different approaches, like application
of the percolation theory [3,15,17,18] or mean field approximation [6,19–21],
were used to obtain characteristics of spreading process. In our work we in-
vestigate the model of spreading of two different diseases, in the frame of
SIRS model [19], with the restriction that an individual can be ill only with
one disease in the same time. The structure of contacts between individuals
in population is given by small world network. Quantities describing the
spreading process, like outcome of the epidemic or speed of propagation of
the wave-front of the epidemic, including the role of additional long-range
connections, are calculated and discussed. Other interesting observation is
that the epidemic of the first disease can be suppressed by the second one.

The other aspect of the spreading process studied in our work is the
pattern formation. Spatial pattern formation is observed in many physi-
cal, chemical and biological systems. The study of pattern formation and
pattern dynamics enable to detect and describe many interesting nonlinear
phenomena in these systems (e.g. phase transitions) and characteristics of
local interactions (see e.g. [22–26]). To biological systems belongs also the
population (a kind of complex system) investigated in the present paper.

Invasion of a pathogen in the population, which starts from an infected
individual and with certain probability reaches its neighbors, may be treated
as a propagation of an excitation in the system. We found that in special
conditions in the system under consideration interesting spatio-temporal
patterns, in particular of a form of spiral waves, can emerge. Such effect
of epidemic spreading has not been investigated so far, to our knowledge.

2. The model

In our model we investigate the epidemic spreading in the population
consisting of N = L × L individuals (Sij), located in two-dimensional lat-
tice and connected (with the short range connections) with four nearest
neighbors. The network has small-world properties, because long-range con-
nection is added to each individual with probability p. All connections are
symmetric. Each individual can become ill with one of two different dis-
eases, however with the restriction that an individual can be ill only with
one disease in the same time; this property is observed for some pairs of
real diseases [19]. In this way an individual who is ill with the first disease
is unsusceptible to the second disease. We assumed that an individual can
be susceptible, ill or unsusceptible (the SIRS model) and because of the
presence of two different diseases each individual can be in eight permitted
states. Susceptible individual can be infected with the probability β1 by
neighbors who are ill with the first disease or with the probability β2 by
neighbors who are ill with the second disease. The number of ill neighbors
is important only in the case when an individual has some neighbors ill with
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the first disease and some other neighbors ill with the second disease. In
such a case at first is checked the probability of infection with respect to
a disease with which more neighbors is ill. If an individual become infected,
the probability of infection with other disease is not checked, because an
individual cannot be ill with both diseases in the same time.

Ill individual become unsusceptible with probability γ1 and γ2, for the
case of first and second disease respectively. In our model we assumed also
that an individual can lose its immunity to a disease with probability α1

and α2. The states of the individuals as well as their possible next states
are presented in Table I.

TABLE I

The list of possible states Sij and permitted, subsequent states of an individual.

Sij First disease Second disease Possible next states

1 susceptible susceptible 2,4

2 susceptible ill 3

3 susceptible unsusceptible 1,4,5

4 ill susceptible 6

5 ill unsusceptible 4,6,8

6 unsusceptible susceptible 1,2,7

7 unsusceptible ill 2,3,8

8 unsusceptible unsusceptible 1,3,6

3. Results

Computations were performed for the initial conditions with two ill indi-
viduals in the states 2 and 4, respectively, and the rest of population in the
state 1. Ill individuals were located in the opposite corners of the lattice.
In the case of a lack of additional shortcuts (p = 0) the spreading process
is similar to the propagation of the two different wave fronts which, after
some time steps, spread over the whole population, meeting together in the
middle of the lattice.

For α1 = α2 = 0 most of ill individuals are on the forehead of the wave
front. In this condition the range of epidemic (denoted by V1 — the number
of individuals, which were at least one time infected with the first disease
and V2 — the number of individuals, which were at least one time infected
with the second disease) depends significantly on the values γ1 and γ2. In
the case of a collision of two different wave fronts ill individuals cannot be
infected by another disease (see Table I). Hence, the propagation process



1564 R.A. Kosiński, A. Grabowski

stops, until some ill individuals become unsusceptible. When γ1 is much
smaller than γ2, the probability that an individual will be infected with the
first disease is much larger. This is so, because individuals ill with the first
disease have long lasting immunity on the second disease and individuals
ill with the second disease quickly recover and become unsusceptible. The
width of the first wave front is much larger than width of the second wave
front. In those conditions the first wave front can stop the second one. Thus,
the second epidemic can be suppressed by the first one — it is like “fighting
fire with fire”. In Fig. 1 the influence of γ1 on the range of epidemic V2

is shown. For γ1 > γ1C almost whole population was infected with second
disease and V2 ≈ 1. However, for γ1 < γ1C the range of the second disease is
restricted only to half of population. As we see for critical value of γ1 = γ1C

occurs a phase transition. When there is a decrease in γ2, there is a decrease
in γ1C and the changes of V2 in function of γ1 are more abrupt. In the case
when γ1 is close to 1 the opposite situation is visible, because large enough
is the difference between γ1 and γ2 (see inset in Fig. 1 for p = 0).

Fig. 1. The range of epidemic V2 in function of γ1 for different values of γ2 (γ2 = 0.1

— circles; γ2 = 0.3 — triangles; γ2 = 0.7 — crosses and γ2 = 1 — diamonds). The

inset shows range of epidemic V1 in function of γ1 for different values of p (0; 0.0001;

0.0004; and 0.0016, from bottom to top, respectively) and γ2 = 0.5. The values of

the other parameters are: β1 = β2 = 1, α1 = α2 = 0, p = 0, L = 100. Results were

averaged over 100 independent simulations.

It is interesting to investigate the influence of the presence of the long-
range connections also for the case α1 = α2 = 0. In the case when γ1 and
γ2 are large, the presence of short-cuts cause that the range of epidemic is
greater (see inset in Fig. 1). For large enough p almost whole population
will go through both diseases. However, for γ1 ≪ γ2 additional long-range
connections slightly influence the range of epidemic. We can distinguish
three different ranges of the parameter γ1 (Fig. 2). In the first range, before
phase transition γ1 < γ1C, the presence of short-cuts do not influence V2.
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For γ1 > γ1C the range of epidemic decreases with increase in p. The greater
γ1 the smaller changes of V2 are observed. In intermediate region of values
of parameter γ1 initially V2 slightly decreases with increasing p, however, for
large enough p an increase in V2 is visible.

Fig. 2. The range of epidemic V2 in function of p for different values of γ1 (γ1 = 0.01

— triangles; γ1 = 0.05 — diamonds; and γ1 = 0.1 — squares). The values of the

other parameters are: γ2 = 0.5, β1 = β2 = 1, α1 = α2 = 0, L = 100. Results were

averaged over 100 independent simulations.

The presence of short-cuts change not only the range of epidemic, but
also spatial localization of individuals who passed a disease. The number
n1 of clusters of individuals who are unsusceptible only to the first disease
(Sij = 6) depends significantly on parameters γ1 and p (Fig. 3). It is visible
that for the critical value of γ1 the behavior of the system change abruptly

Fig. 3. The relation between the number of clusters n1 of individuals in the state

Sij = 6 (individuals which have passed only first disease) and γ1 for different values

of p (0, 0.0016, 0.064, 0.0256 from the bottom to the top, respectively). The values

of the other parameters are: γ2 = 0.5, β1 = β2 = 1, α1 = α2 = 0, L = 100. Results

were averaged over 100 independent simulations.
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i.e. the number of clusters n1 increases rapidly (see maxima of curves in
Fig. 3). For narrow range of the values of parameter γ1 the presence of
short-cuts has strong influence on spatial character of the outcome of the
epidemic. For low values of p individuals who passed through only first
disease are grouped in a small number of clusters — for small enough γ1

there is only one cluster. With increasing p there is an increase in the
number of clusters, because there is more secondary sources of epidemic.
Therefore, there is an increase in length of all wave-fronts and their shape,
as a result of collisions of different wave-fronts is more complicated.

4. Speed of epidemic

The speed v of propagation of wave-front of epidemic in the case of one
disease is connected only with probability of infection. However, in the case
of two epidemics this equation is more complicated. We assume symmetric
values of parameters, i.e. β1 = β2 = β, γ1 = γ2 = γ and α1 = α2 = α to
simplify the calculation of v and assume that initially two ill individuals are
located in the opposite corners of the lattice. In consequence two different
wave-fronts propagate to the center of the lattice with the speed v = β.
After the collision a value of v changes. This phenomenon is similar to
a phenomenon of diffusion of two different liquids. To calculate v we use
master equation.

Before the collision, in one half of the lattice, all individuals are ill with
the same disease, therefore:















dS(t)/dt = αR(t) − βI(t)S(t) ,

dI(t)/dt = βI(t)S(t) − γI(t) ,

dR(t)/dt = γI(t) − αR(t) ,

(1)

where S(t), I(t), R(t) are the probabilities that an individual is suscepti-
ble, ill and unsusceptible, respectively. We assume that the system is in
a stationary state, hence we obtain: S = γ/β; I = α(β − γ)/β(γ + α);
R = γ(β − γ)/β(γ + α). Individuals susceptible or unsusceptible on the
first disease can be infected with the second disease. The probability that
one of them can be infected equals S + R and this individual is infected
with the probability β. Hence, the speed of propagation of the wave front is
v = β(S + R) = β(1 − I). After calculation we obtain

v =
γ

γ + α
(β + α) . (2)

Comparison of analytical calculation with a numerical simulation is shown
in Fig. 4. As we see both results agree rather well. Discrepancy in results are
connected, first of all, with the assumption that the system is in stationary
state, what is not true in large range of values of control parameters.
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Fig. 4. Relation between the speed v of wave-front and γ (γ1 = γ and γ2 = γ) for

different values of α (α1 =α and α2 =α), α=0.01 — crosses; α=0.1 — diamonds

and α=0.3 — triangles and p = 0. Good agreement with analytical results (solid

line) is visible. The values of the other parameters are: β1 = β2 = 1, L = 200.

Results were averaged over 100 independent simulations.

5. Spiral waves

In models of epidemic spreading, where there is a non-zero probability
that an unsusceptible individual can lose its immunity (SIRS model), or an
ill individuals can directly become susceptible (SIS model), some interesting
patterns can emerge. Temporal patterns, like oscillations of different types,
were earlier observed [27, 28]. Also in the present model such patterns are
observed, however, more interesting are spatio-temporal patterns which can
emerge in special conditions. In the case when all parameters describing
a disease are equal 1 (i.e. αi = βi = γi = 1; i = 1, 2) as a result of collision
of two wave-fronts (connected with different diseases) a spiral wave can be
formed. It is surprising that the additional long-range connections do not
destroy spiral waves, moreover they can increase the probability of emerging
of spiral waves, as was observed earlier in Ref. [29]. This is so, because with
an increase in the number of shortcuts there are more secondary sources of
epidemic and more collisions of different wave-fronts. However, a fraction
of shortcuts should be so small that they cannot spoil the propagation of
spiral waves (p < L−1). Spiral waves are also formed, when some parameters
(α, β, γ) are slightly smaller than 1, in particular the influence of change of
γ is the weakest. Then the system loses its deterministic character, and
patterns are noised. The level of noise (i.e. the number of individuals which
are not in the proper states in comparison to surrounding pattern) increases
with time and when it reaches high enough level patterns are destroyed.

In some cases individuals ill with one of the diseases vanish and spiral
waves are formed only by individuals ill with the same disease (see Fig. 5
where two different spiral waves are shown). Fig. 6 illustrates more compli-
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Fig. 5. Two spiral waves in the case when only one disease survive. The system

after four time steps go back to its initial state (a). Individuals ill with the first

disease, unsusceptible or susceptible are black, dark gray or light gray, respectively.

Fig. 6. Spiral waves for two diseases. Individuals ill with the first or the second

disease are black or white, respectively. In the upper-right corner of the lattice

individuals are ill only with the first disease, which is a result of the presence of

two spiral waves in this region.
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cated case with individuals ill with the first or second disease forming spiral
waves in major part of the lattice. At the same time in the upper-right
corner of the lattice two spiral waves, in which individuals are ill only with
the first disease, are observed. Wave-fronts generated in this region built
some kind of a barrier, which holds propagation of the second epidemic.

The presence of shortcuts increases probability of creating spiral waves,
but it is not their only influence on pattern formation. In the case when one
end of a long range connection is reached by the forehead of spiral wave and
the second end is in the region where individuals are susceptible a spherical
wave is formed there.

6. Conclusions

In this work the model of spreading of two different diseases, with the
restriction that an individual can be ill only with one disease in the same
time, in the frame of SIRS model and with the contacts between individuals
in the form of small world network, has been investigated. The outcome of
epidemic, like its range as a function of removal rate γ, has been calculated.
We observed that for special range of control parameters the epidemic of the
first disease is suppressed by the second one. We investigated the influence of
the presence of additional long-range connections on range of epidemic and
spatial localization of individuals who passed a disease. The speed of prop-
agation of the wave-front of the epidemic has been calculated analytically
and good agreement with numerical calculations was obtained.

It has been found that pattern formation (e.g. spiral and spherical
waves), commonly observed in different physical systems, can occur also
in an epidemic spreading, when two different diseases propagate in a sys-
tem. As it results from our observations, the necessary condition for pattern
formation is the restriction that an individual ill with the first disease is
unsusceptible to the second disease and vice versa. Such interactions be-
tween two pathogens and immune system of an individual is observed in
the nature [19]. An interesting property of the system is that the presence
of small number of additional long-range connections (p ≪ 1) increases the
probability of forming spiral waves. However, the presence of long-range
connections is not necessary for pattern formation; it can emerge also for
some special localization of initial sources of epidemic.
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