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We study a subdiffusion-reaction system with initially separated reac-
tants in the case where one of the reactants is static. Using the scaling
method we show that the reaction front xf evolves in time according to the
power law xf ∼ tα/2 where α is the subdiffusion parameter. Comparing the
theoretical formula with the experimental data we find that the transport
of acids molecules inside the tooth enamel during the caries progress is of
subdiffusive character.

PACS numbers: 82.33.Ln, 02.50.Ey

1. Introduction

Subdiffusion is a process where the transport of particles is significantly
hindered due to internal structure of the medium. It occurs among others in
gels, porous media or amorphous semiconductors [1, 2]. The subdiffusion is
defined by the time dependence of the mean-square displacement 〈∆x2〉 of
a transported particle. In a one-dimensional system this dependence takes
the form [1]

〈∆x2〉 =
2Dα

Γ (1 + α)
tα ,
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where Dα is a subdiffusion coefficient measured in units of m2/sα and α is
a subdiffusion parameter which obeys 0 < α < 1. For α = 1 one deals with
the normal diffusion. In the absence of chemical reactions the subdiffusion
can be described by the following equation (here C denotes the concentration
of the particles)

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
,

with the Riemann–Liouville fractional time derivative defined for α > 0 as

∂αf(t)

∂tα
=

1

Γ (n − α)

∂n

∂tn

t
∫

0

dt′
f(t′)

(t − t′)1+α−n
,

where n is the smallest natural number which fulfills the equation n−α > 0.
Let us consider a subdiffusion-reaction system where subdiffusively trans-

ported particles of spice A react with static reactant B according to the
chemical formula A + B → P (inert). The equations describing this process
are

∂CA(x, t)

∂t
= DαA

∂1−α

∂t1−α

∂2CA(x, t)

∂x2
− Rα(x, t) , (1)

∂CB(x, )

∂t
= −Rα(x, t) , (2)

where the reaction term Rα(x, t) takes the form [3]:

R(x, t) =
∂1−α

∂t1−α
[kCA(x, t)CB(x, t)] ,

k is the reaction rate constant. In the following we consider the system
where the particles A and B are separated at the initial moment t = 0. An
important function characterizing such a system is a time evolution of the
reaction front xf(t). The reaction front xf(t) is defined as a point where the
reaction term reaches its maximum (see Fig. 1) Rα(xf , t) = max. A progress
of the reaction front for the normal diffusion-reaction system is given as
xf ∼ t1/2 [4, 5]. As shown in the paper [3], in the subdiffusion-reaction
system where the subdiffusion coefficients of the reactants are equal to each
other (DαA = DαB), there is

xf ∼ tα/2 , with α < 1 . (3)

We study here the subdiffusion-reaction system with one mobile A and
one static substrate B. We derive the time evolution of the reaction front
by means of the scaling method in the long time limit. The situation of
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Fig. 1. The concentration profiles of the reactants CA,B and reaction term Rα.
The Wd denotes the depletion zone, xf is the reaction front.

one mobile and one static reactant occurs in the formation of carious lesion
in the tooth enamel. By comparison of our theoretical result with the ex-
perimental data we show that the limit of caries (that is identified with the
reaction front xf) evolves in time according to Eq. (3). Thus, we find that
the transport of acid molecules inside the enamel is subdiffusive.

The main difficulty occurring in the study of subdiffusion-reaction is
that the equations describing this process (1) and (2) are non-linear partial
differential ones with the fractional derivatives. Even the normal diffusion-
reaction equations are difficult to solve and one uses several assumptions to
simplify the calculations, such as the quasistationary approximation [5–7],
the scaling method [4, 6, 8, 9], and the perturbation one [10]. Using these
methods, some characteristics of the system were derived. They include the
time evolutions of the reaction front, the width of the reaction or depletion
zone etc. Although the methods seem to oversimplify the problem, the
results obtained by means of these methods were confirmed by numerical
calculations and simulations [5, 8, 9]. In this paper we adopt the scaling
method to study the subdiffusion-reaction system with one mobile and one
static reactant.

2. The method

According to the assumptions, the initial and boundary conditions of
that system are as follows:

CA(x, 0) = C0AΘ(−x) , CB(x, 0) = C0BΘ(x) ,

CA(−∞, t) = C0A , CA(∞, t) = 0 ,

CB(−∞, t) = 0 , CB(∞, t) = C0B ,

where Θ(x) is the Heaviside function.
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In the first step of the scaling method, the Eqs. (1) and (2) are trans-
formed to the dimensionless form. By means of the substitutions x = ρxs,
t = τts, a(ρ, τ) = CA(ρ, τ)/CA0 and b(ρ, τ) = CB(ρ, τ)/CB0, where xs =
√

DαAτα
s =

√

DαA/(kCB0) and τs = 1/(kCB0)
1/α, we obtain

∂α

∂τα
a(ρ, τ) =

∂2

∂ρ2
a(ρ, τ) − a(ρ, τ)b(ρ, τ) ,

∂α

∂τα
b(ρ, τ) = −qa(ρ, τ)b(ρ, τ) , (4)

where ρ and τ are the dimensionless space and time variables, a and b denote
the dimensionless concentrations and q = CA0/CB0. Next, one assumes the
following form of the concentration profiles inside the reaction zone:

a(ρ, τ) =
1

τγ
ã(η) , b(ρ, τ) =

1

τλ
b̃(η) , (5)

where η = (ρ + ντσ)/τβ = (ρ − ρf)/τ
β with ρf ≡ xf/xs = −ντσ. Let us

note that the minus sign in the last formula is caused by the fact that sub-
strate B, which occupies the region x < 0, does not diffuse. The equations
(5) play a crucial role in the following considerations. Their usefulness is
supported by the analytical [4,6] and numerical [8,9] considerations. For the
normal diffusion-reaction system, where both reactants have the same diffu-
sion coefficients, it was shown [6, 8, 9] that β = 1/6, σ = 1/2, γ = λ = 1/3,
and for the system with one static reactant [4, 5] it was found that β = 0,
σ = 1/2, γ = 1/2, λ = 0. We assume that the scaling functions (5) can be
also used for the subdiffusive system with one static reactant.

We are interested in calculating the exponent σ which can be obtained
from the Eq. (4) only. Substituting the Eqs. (5) into the Eq. (4), we find the
parameter σ comparing the terms with the same order of the derivative on
the left and right sides of the equation. This procedure is relatively simple in
the case of normal diffusion but it appears to be rather complicated for the
subdiffusion because of specific properties of the fractional derivative. The
Leibnitz rule of the fractional derivative is significantly changed compared
to the case of natural order derivative. Namely [11],

dα(f g)

dτα
=

∞
∑

j=0

Γ (α + 1)

Γ (α − j + 1)Γ (j + 1)

dα−j(f)

dτα−j

dj(g)

dτ j
. (6)

Substituting (5) into (6) we obtain

∂αa(ρ, τ)

∂τα
=

∞
∑

j=0

Γ (α + 1)

Γ (α − j + 1)Γ (j + 1)

∂α−j(τ−γ)

∂τα−j

∂j ã(η)

∂τ j
. (7)
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To calculate the derivative of jth order we use the formula of Faa’ di Bruno [11]

∂j ã(η)

∂τ j
= j!

j
∑

m=1

dmã(η)

dηm

∑

Pk

j
∏

k=1

1

Pk

[

1

k!

∂kη

∂τk

]Pk

, (8)

where the second sum is taken over all natural numbers Pk defined for each
natural j and m by the equations

∑j
k=1 kPk = j and

∑j
k=1 Pk = m. It is

easy to see that in a long time limit we get

djη

dτ j
≈ Ejτ

σ−β−j ,

where

Ej = ν(σ − β) . . . (σ − β − j + 1) .

Using the formula

dατ−γ

dτα
=

Γ (−γ + 1)

Γ (−γ − α + 1)
τ−γ−α

for γ < 1 and substituting equations (5)–(8) into (4), after simple calcula-
tions we obtain

C0τ
−γ−β ã + C1τ

σ−γ−β−α ∂ã

∂η
+ C2τ

2(σ−β)−γ−α ∂2ã

∂η2

+ C3τ
3(σ−β)−γ−α ∂3ã

∂η3
+ . . . = τ−γ−2β ∂2ã

∂η2
− τ−γ−λã(η)b̃(η) . (9)

Comparing the terms with ∂2ã/∂η2 in the left- and right-hand side of Eq. (9),
one finds the relation σ = α/2 which gives ρf ∼ tα/2. So, we finally get

xf ∼ tα/2 . (10)

This relation was earlier obtained for the case of two mobile reactants with
the same subdiffusion coefficients [3]. However, the complete series (6) was
not considered, but only the first two terms was taken into account. We
also give up here a detailed analysis of the remaining terms on the left- and
right-hand side of Eq. (9) which must be mutually balanced or vanish in
the long time limit (a similar analysis for the normal diffusion is presented
in [4]).
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3. Carious lesion

The formation of carious lesion of the enamel starts when concentration
of organic acids in the dental plaque reaches sufficient value and pH of the
dental plaque lowers below an appropriate point. Then the organic acids are
transported inward the enamel and react with the mineral to form soluble
calcium ions and phosphate ions (or complexes) [12–15].

It is commonly accepted that the products of the reaction, which do not
react with ions and minerals, are transported outwards the enamel [14]. The
organic acids (e.g. acetic or lactic) are produced in the dental plaque by oral
microorganisms that metabolize the simple sugars coming from diet [14].
The enamel is composed of crystal of hydroxyapatie. These crystals are or-
ganized in larger forms called prisms. The intercrystalline and interprismatic
spaces of enamel are filled with water [14]. Hence, an internal structure of
the enamel is rather complex and it can be treated as a porous medium.

SOUND ENAMELDENTAL PLAQUE

x=0

C

100%

xf

x

CARIOUS LESION

Fig. 2. The schematic view of the tooth enamel. The dotted line and dashed one
represent the concentration of the hydroxyapatite and the organic acid, respectively.

We are interested in identification of the process which is responsible
for the transport of organic acids inward the enamel. It seems to be sub-
diffusive. The reaction front xf is identified by the depth of the carious
lesion (see Fig. 2), so we use (10) to extract the parameter α from the
experimental data which are taken from [13]. In [13] the depth of the cari-
ous lesion was measured by means of the scanning electron microscopy and
the artificial caries was produced in lactate buffers containing disodium-
methane-hydroxy-diphosphonate. In Fig. 3 we present the experimental
data (squares) and the power function (solid line)

xf = 0.93 t0.32 , (11)

which is the best fit to the experimental data obtained by means of the least
squares method. Comparing the functions (10) and (11) we find α = 0.64
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(here we omit the calculation of the error of the parameter). Since the
obtained value of the subdiffusion parameter is significantly smaller than 1,
we conclude that the subdiffusion occurs in the enamel.
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Fig. 3. Lesion depth versus time; the squares represent experimental data, the solid
line is the plot of the power function (11).

4. Concluding remarks

The time evolution of the reaction front (10) does not depend on the
reaction term, so it appears to be a general property of the subdiffusion-
reaction process. Our result coincides with the one presented in [3] for
the system where DαA = DαB . The equation (10) can be used to extract
the subdiffusion parameter α from experimental data. In this way we find
that the progress of caries is subdiffusive. This result is not surprising as the
tooth enamel is of rather complex structure and it can be treated as a porous
medium. Therefore, the transport of large undissociated acid molecules can
be subdiffusive because of strongly limited mobility of the molecules.

REFERENCES

[1] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000); J. Phys. A37, R161 (2004).
[2] T. Kosztołowicz, K. Dworecki, S. Mrówczyński, Phys. Rev. Lett. 94, 170602

(2005); Phys. Rev. E71, 041105 (2005).
[3] S.B. Yuste, L. Acedo, K. Lindenberg, Phys. Rev. E69, 036126 (2004).
[4] M.Z. Bazant, H.A. Stone, Physica D147, 95 (2000).
[5] Z. Koza, Physica A240, 622 (1997).
[6] D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disor-

dered Systems, Cambridge University Press, 2000.



1578 T. Kosztołowicz, K.D. Lewandowska

[7] T. Kosztołowicz, K.D. Lewandowska, cond-mat 0603139.
[8] L. Gálfi, Z. Rácz, Phys. Rev. A38, 3151 (1988).
[9] Z. Jiang, C. Ebner, Phys. Rev. A42, 7483 (1990).

[10] H. Taitelbaum, Y.L. Koo, S. Havlin, R. Kopelman, G.H. Weiss, Phys. Rev.
E46, 2151 (1992).

[11] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York
1974.

[12] F.J. Holly, J.A. Gary, Archs Oral Biol. 13, 319 (1968).
[13] J.D.B. Featherstone, J.F. Duncan, T.W. Cutress, Archs Oral Biol. 24, 101

(1979).
[14] E.C. Moreno, R.T. Zahradnik, J. Dent. Res. 53, 226 (1974).
[15] J.D.B. Featherstone, J.F. Duncan, T.W. Cutress, Archs Oral Biol. 23, 397

(1978).


