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The dominant technology of data communication networks is the Packet
Switching Network (PSN). It is a complex technology organized as various
hierarchical layers according to the International Standard Organization
(ISO) Open Systems Interconnect (OSI) Reference Model. The Network
Layer of the ISO OSI Reference Model is responsible for delivering packets
from their sources to their destinations and for dealing with congestion if it
arises in a network. Thus, we focus on this layer and present an abstraction
of the Network Layer of the ISO OSI Reference Model. Using this abstrac-
tion we investigate how onset of traffic congestion is affected for various
routing algorithms by changes in network connection topology. We study
how aggregate measures of network performance depend on network con-
nection topology and routing. We explore packets traffic spatio-temporal
dynamics near the phase transition point from free flow to congestion for
various network connection topologies and routing algorithms. We consider
static and adaptive routings. We present selected simulation results.
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1. Introduction

A data communication network of packet switching type consists of a
number of nodes (i.e., routers and hosts) that are interconnected by com-
munication links. The purpose of packet switching network (PSN) is to
transmit messages from their sources to their destinations. The PSN owes
its name to the fact that in this type of network each message is partitioned
into smaller units of information called packets. Packets are transmitted in-
dividually from their sources to their destinations via a number of switching
nodes, called routers, and communication links interconnecting them. Since
packets may arrive to their destinations via different routes and out of order
the message may have to be rebuilt at the destination. Examples of PSN in-
clude the Internet, wide area networks (WANs), local area networks (LANs),
wireless communication networks, ad-hoc networks, or sensor networks.

There is vast engineering literature devoted to PSNs, see [1–6]. Wired
PSNs are described by the ISO (International Standard Organization) OSI
(Open Systems Interconnect) 7 layer Reference Model [1–3,7]. The Network
Layer of the OSI Reference Model of wired PSNs is responsible for routing
packets across the network from their sources to their destinations and for
control of congestion in data networks. Thus, the Network Layer plays an
essential role in the packet traffic dynamics. These dynamics may be very
complex and it is not well understood how they are affected by changes
in network connection topology for various routing algorithms [8–16]. For
future design of PSNs, efficient control of their congestion and improvements
in their defense strategies, it is important to improve the understanding of
packet traffic dynamics ( [16] and references therein). With this goal in
mind at different levels of abstraction various models of PSNs have been
proposed and analyzed (see, [8–27] and the articles therein). The engineering
community uses very detailed and complex simulation models. Often these
models are too specific to capture and study generic properties of realistic
data networks. Simplified models of PSNs within the statistical physics
community are able to capture some dynamical properties of packet traffics
of real data networks without incorporating the details of routing protocols
and realistic network connection topologies into these models [8–47].

In our research we use an abstraction of the Network Layer developed
in [15,20,21] and a C++ simulator, called Netzwerk-1 described in [15,20,21,
26]. The PSN model used in our research is concerned mainly with packets
and their routing as the Network Layer in real PSN networks. Our PSN
simulation model [15, 20, 21], even though it is still abstract, incorporates
some details of routing protocols and network connection topologies. Thus,
our model fills the gap between the detailed models and the simplified ones.
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Continuing our work of [9,12,15,20,22,28–36] we investigate how various
network performance indicators depend on network connection topology and
routing algorithms. We explore the packet traffic dynamics near phase tran-
sition point from free flow to congestion for static and adaptive routing
algorithms.

2. Description of Packet Switching Network model

In our PSN model (see [15] and [20]) the lengths of all messages are
restricted to one packet carrying only the following information: time of
creation, destination address, and number of hops taken. In this PSN model
each node can perform the functions of a host and a router. Hosts generate
and receive packets and routers store and forward packets on their route
from source to destination. At each node packets are created randomly and
independently with probability λ, called source load. To store the packets
each node maintains one incoming and one outgoing queue. The outgoing
queues are assumed to be of unlimited length and operate according to
first-in, first-out policy. At each time step each node, independently from
the other nodes, routes the packet from the head of its outgoing queue
to the next node on the packet’s route. A discrete time, synchronous and
spatially distributed network algorithm implements the creation and routing
of packets, see [15] and [20].

In our PSN model network connection topology is represented by a
weighted directed multi-graph L where each vertex represents a node and
each pair of parallel edges oriented in opposite directions represents a com-
munication link. A weight assigned to each directed edge of the multi-graph
L represents a packet transmission cost along this edge. Thus parallel edges
do not necessarily share the same cost.

In each instance of PSN model set-up all edge costs are computed using
the same type of edge cost function (ecf) that is either the edge cost function
called One (ONE), or QueueSize (QS), or QueueSizePlusOne (QSPO).
Edge cost function ONE assigns a value of “one” to each edge in the multi-
graph L. It is a static cost because the edge costs do not change during
the course of a simulation. This results in a static routing. The edge cost
function QS assigns to each edge in the multi-graph L a value equal to the
length of the outgoing queue at the node from which the edge originates.
The edge cost function QSPO assigns a value that is the sum of a constant
“one” plus the length of the outgoing queue at the node from which the edge
originates. The costs QS and QSPO are derived for each edge from load
of the router from which the edge originates. The routing decisions made
using QS or QSPO edge cost function are based on the current state of the
network simulation. They imply adaptive or dynamic routing where packets
have the ability to avoid congested nodes during the PSN model simulation.
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In our PSN model, each packet is transmitted via routers from its source
to its destination according to the routing decisions made independently at
each router and based on a minimum least-cost criterion. In the case of edge
cost function ONE this results in the minimum hop routing (minimum route
distance) and in the case of edge cost function QS or QSPO this results
in the minimum route length, see [1] and [6]. Our PSN model uses full-
table routing, that is, each node maintains a routing table of least path cost
estimates from itself to every other node in the network. When the edge cost
function QS or QSPO is used, the routing tables are updated at each time
step using a distributed version of Bellman–Ford least-cost algorithm [6]. In
both cases of edge cost functions, QS and QSPO, the path costs stored in
the routing tables are only estimates of the actual least path costs across the
network because only local information is exchanged and updated at each
time step. The routing tables do not need to be updated when the static
cost ONE is assigned to each edge of the multi-graph L because this cost
does not change during a simulation. It is independent of the state of the
network. The routing tables are calculated only at the beginning and the
cost estimates are the precise least-costs, see [15] and [20].

In the PSN model time is discrete and we observe its state at the discrete
times k = 0, 1, 2, . . . , T, where T is the final simulation time. At time k = 0,
the set-up of the PSN model defined by the choice of network connection
topology type, edge cost function type, and source load is initialized with
empty queues and the routing tables are computed using the centralized
Bellman–Ford least-cost algorithm [6]. The discrete time, synchronous and
spatially distributed PSN model algorithm consists of the sequence of five
operations advancing the simulation time from k to k + 1. These operations
are:

1. Update routing tables. The routing tables of the network are updated in
a distributed manner, if the PSN model set-up uses edge cost function
QS or QSPO.

2. Create and route packets. At each node, independently of the other
nodes, a packet is created randomly with source load λ. Its destination
address is randomly selected among all other nodes in the network
with uniform probability. The newly created packet is placed in the
incoming queue of its source node. Further, each node, independently
of the other nodes, takes the packet from the head of its outgoing
queue (if there is any), determines the next node on a least-cost route
to its destination (if there is more than one possibility then selects one
at random with uniform probability), and forwards this packet to this
node. Packets, which arrive at a node from other nodes during this
step of the algorithm, are destroyed immediately if this node is their
destination, otherwise they are placed in the incoming queue.
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3. Process incoming queue. At each node, independently of the other
nodes, the packets in the incoming queue are randomized and inserted
at the end of the outgoing queue.

4. Evaluate network state. Various statistical data about the state of the
network at time k are gathered and stored in time series.

5. Update simulation time. The time k is incremented to k + 1.

The detailed description of this algorithm and its software implementa-
tion is provided in [15, 20, 21] and [26].

3. Packet traffic dynamics

In order to study packet traffic dynamics engineers and network oper-
ators use various network performance indicators like critical source load,
throughput, number of packets in transit, average delay time of all packets
delivered, average path length, round trip return time, or latency, see [1–6,15].
These network performance indicators provide aggregate information about
packet traffic. Our study shows that the network performance indicators
may be almost identical for different PSN model set-ups. However, these
PSN model set-ups may exhibit very different spatio-temporal packet traffic
dynamics. Thus, the aggregate measures of network performance may pro-
vide little insight into packet traffic patterns and their spatial and temporal
dynamics. For the improvements in design and management of PSNs such
information is important, for example to avoid over- or under-utilizations
of some network routers that may result from coupling of network connec-
tion topology with routing algorithm, i.e., from a PSN internal dynamics.
Providing such information requires development of new methodologies that
include modeling, simulation, data mining, visual data mining, real-time
data base techniques [16, 48, 49].

Our research contributes to the investigation of spatio-temporal packet
traffic dynamics in PSNs. We study how these dynamics are affected by
coupling of network connection topology with routing algorithms (specified
by a selection of edge cost function) for source loads close to the phase
transition point of each PSN model set-up. We study how small changes in
network connection topology may affect packet traffic patterns.

As a case study we consider network connection topologies that are iso-
morphic to either L

p

�
(16, l) (i.e., isomorphic to a two-dimensional periodic

square lattice with L = 16 nodes in the horizontal and vertical directions and
with l additional links added to this square lattice) or L

p

△
(16, l) (i.e., iso-

morphic to a two-dimensional periodic triangular lattice with L = 16 nodes
in the horizontal and vertical directions and with l additional links added
to this triangular lattice). Notice, that if a sufficient number ls = l1 + l2 of
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additional links is added to L
p

�
(16, l), with l1 links added in a proper way,

then one obtains a network connection topology of the type L
p
△

(16, l + l2),

i.e. Lp

�
(16, l + l1 + l2) = L

p

△
(16, l + l2). Fig. 1 illustrates how to obtain a

non-periodic or periodic triangular lattice from a square lattice. In the pre-
sented simulations of PSN model set-ups all links are static for the duration
of each simulation run and L = 16, and l = 0, or 1.

(a) (b)

(c) (d)

Fig. 1. Illustration of the relationship between non-periodic triangular lattice and

non-periodic square lattice with extra links (a), (b), and (c). Figure (d) shows a

periodic 4 × 4 square lattice with extra links isomorphic to a periodic triangular

lattice.

We say that L
p

�
(16, 0) and L

p
△

(16, 0), that is, the regular network con-
nection topologies are undecorated and we say that they are decorated if an
extra link is added to each of them, that is, they are of the type L

p

�
(16, 1)

or L
p

△
(16, 1). We use the following convention when we want to specify

additionally what type of an edge cost function the PSN model set-up is
using, namely, L

p

�
(16, 1, ecf) and L

p

△
(16, 1, ecf), where l = 0 or 1, and

ecf = ONE, or QS, or QSPO.
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3.1. Aggregate information about packet traffic

In this section we analyze the behavior of the following network perfor-
mance indicators: number of packets in transit (NPT ), reduced number of
packet in transit (reduced NPT ), average delay time of all packets delivered
(ADTPD), critical source load (CSL) and throughput for the PSN model
set-ups Lp

�
(16, l, ecf) and L

p
△

(16, l, ecf), where l = 0 or 1, and ecf = ONE,
or QS, or QSPO. These indicators are some of the most important network
performance indicators used to assess PSN performance [1–6,15,16]. Because
time is discrete in our algorithmic simulation model of PSN, “t” stands for
a discrete time step of a simulation run, in the following definitions of the
network performance indicators.

(a) (b)

(c)

Fig. 2. Plots of NPT (outgoing queue sizes sum over all nodes) and reduced NPT

(outgoing queue sizes sum over all nodes except two end nodes of the extra link) as a

function of time for various source loads for the PSN model set-up L
p

�
(16, 1, ONE).

Graphs of NPT and reduced NPT on (a), (b) and (c) are plotted at every 10 time

steps, up to 8000, for source loads (a) 0.020, 0.025, 0.035 (b) 0.080, 0.085, 0.090

and for reduced NPT only in (c) for source loads 0.080, 0.085, 0.090.
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The N(t) stands for the number of packets in transit (NPT, sometimes
called total NPT ) at time t, that is, it is the total number of packets in
transit in the network at time t. Thus, N(t) is the sum of all the packets
in the out-going queues of the PSN model set-up at time k = t. This
indicator represents a direct measure of how heavy the network traffic is:
in the case of congestion N(t) fluctuates around an increasing trend that is
increasing with time, otherwise N(t) fluctuates around some constant value
after some initial transient time. The graphs of N(t) of PSN model set-
up L

p

�
(16, 1, ONE) and various values of source load λ can be seen from

Fig. 2. The reduced number of packet in transit (reduced NPT ) is calculated
by summing the outgoing queue sizes of selected nodes of the PSN model
set-up. In Fig. 2 the reduced NPT is calculated by excluding the nodes of
the extra link, that is, it is the total NPT but without counting the packets
of the outgoing queues of the two end nodes of the extra link. We observe
that the reduced NPT fluctuates around an increasing trend with an increase
of time but for much higher values of source load λ than the total NPT. This
means that the PSN model set-up L

p

�
(16, 1, ONE) becomes heavily locally

congested already for small values of source load λ and becomes globally
congested for much higher values of source load λ. The reason for the build
up of the local congestion is that many packets utilize a shortcut provided
by an extra link regardless of how congested the end nodes of this link are.
This is because in the PSN model using ecf ONE, that is a static routing,
there is no built-in routing mechanism to avoid congested nodes. Thus, local
congestion builds up very fast affecting readings of the total NPT. Similar
behavior of graphs total NPT and reduced NPT was observed for PSN model
set-ups L

p

△
(16, 1, ONE).

The average delay time of all packets delivered (ADTPD) at a simulation
time k = t is calculated as the sum of delay times of all the packets that
have reached their destinations before time t, divided by the total number
of packets delivered in the time interval [0, t], see [15]. The delay time of
a packet is defined as τ = td − tc, where td is the delivery time of the
packet to its destination (the simulation cycle number in which the packet
has been delivered) and tc is the packet’s creation time. Thus, the network
performance indicator ADTPD tells us how long, on average, it takes for
a packet to reach its destination in a time interval [0, t] of the network
operation.

One of the very important network performance indicators is the critical
source load. It characterizes a phase transition point separating congestion-
free state from congested state of PSN. The phase transition from free flowing
traffic state of a network where packets reach their destinations in a timely
manner to congested state was observed in empirical studies of PSNs [38]
and motivated further research (e.g., [8–47]). Understanding the dynamics
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of the phase transition has practical implications that may lead to more
efficient designs of PSNs.

In our PSN model, for each family of network set-ups, which differ only
in the value of the source load λ, values of λsub−c for which packet traffic
is congestion-free are called sub-critical source loads while values λsup−c for
which traffic is congested are called super-critical source loads. The critical
source load λc is the largest sub-critical source load. For a given PSN model
set-up determination of the critical source load includes studying, among
other indicators, time evolution of N(t) (i.e., the number of packets in transit
(NPT )) for various source loads, see Fig. 2. We observe that for λsub−c

source load values N(t) fluctuate around some constant value after some
initial transient time and for λsup−c source load values N(t) fluctuate around
an increasing trend that is increasing with time. Details about how the
critical source load is estimated in our PSN model simulations are provided
in [15]. For the PSN model set-ups considered here the estimated critical
source load values are provided in Table I.

TABLE I
Critical source load values.

ecf λc of Lp

�
(16, 0) λc of Lp

�
(16, 1) λc of Lp

△
(16, 0) λc of Lp

△
(16, 1)

ONE 0.115 0.020 0.140 0.030
QS 0.120 0.125 0.155 0.160
QSPO 0.120 0.125 0.155 0.160

We observe that for PSN model set-ups Lp

�
(16, 0, ecf), where ecf = QS

or QSPO, the critical source loads have the same value (at the precision level
of our estimation) and this value is only slightly larger than the critical source
load of PSN model set-up L

p

�
(16, 0, ONE). The same holds true for PSN

model set-ups L
p
△

(16, 0, ecf), where ecf = ONE or QS or QSPO. We also
observe that the addition of an extra link decreases significantly the critical
source loads for PSN model set-ups using edge cost function ONE but has
almost no effect on them for the PSN model set-ups using edge cost function
QS or QSPO. The extensive study of effects of network connection topology,
edge cost function type, and mode of routing table update on critical source
load values in the PSN model under consideration is reported in [15,29–34].
Here we discuss how network performance indicators number of packets in
transit, throughput and average delay time of all packets delivered evaluated
at a given time T = 6400 depend on source load λ.

Another very important network performance indicator is throughput. It
measures the rate at which a network delivers packets to their destinations.
Thus, throughput of each PSN model set-up at simulation time t is calculated
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by taking the time-average of a total number of packets delivered to their
destinations up to time t.

Fig. 3 and Fig. 4 display graphs of throughput as a function of source load
λ of PSN model set-ups Lp

�
(16, l, ecf) and L

p

△
(16, l, ecf), respectively, where

l = 0 or 1, and ecf = ONE or QS or QSPO, calculated from simulation
runs up to T = 6400 updates. We observe that graphs of throughputs of
PSN model set-ups L

p

�
(16, 0, ecf) with ecf = ONE or QS or QSPO are

almost identical, see (a) in Fig. 3. The same holds true for PSN model set-
ups L

p
△

(16, 0, ecf) with ecf = ONE or QS or QSPO, see (a) in Fig. 4.
For each type of network connection topology throughput graphs for various
ecf s attain their maximum at almost the same value of source load λT that
is a bit larger than the corresponding critical source loads λc. We observe
that the rate of increase of throughput graphs is constant for source loads λ

lower than λT.

(a)

(b)

Fig. 3. Plots of throughput of the PSN model set-up with network connection

topology L
p

�
(16, 0) in (a) and L

p

�
(16, 1) in (b) and edge cost function ONE blue

graphs, QS green graphs and QSPO red graphs, at simulation time T = 6400.

By comparing the graphs of figure (a) with those of figure (b), respec-
tively in Fig. 3 and Fig. 4, we notice that addition of an extra link to the
network connection topology has very little effect on throughput of PSN
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(a)

(b)

Fig. 4. Plots of throughput of the PSN model set-up with network connection

topology L
p

△
(16, 0) in (a) and L

p

△
(16, 1) in (b) and edge cost function ONE blue

graphs, QS green graphs and QSPO red graphs, at simulation time T = 6400.

model set-ups using edge cost function QS or QSPO. However, it has a
significant effect on throughput in the case of PSN model set-ups using the
edge cost function ONE. Addition of an extra link to the network connection
topologies Lp

�
(16, 0) and L

p

△
(16, 0) decreases the maximum value of through-

put of each PSN model set-up L
p

�
(16, 1, ONE) and L

p

△
(16, 1, ONE). The

respective source load value λT at which throughput attains its maximum,
that is about 0.155 for the PSN model set-up L

p

�
(16, 1, ONE) and it is about

0.170 for the PSN model set-up L
p
△

(16, 1, ONE), is much higher than the

corresponding critical source load value λc = 0.020 for Lp

�
(16, 1, ONE), and

λc = 0.030 for L
p

△
(16, 1, ONE). This is due to the significant build up of

local congestion at the end nodes of an extra link. This build-up happens
already for very small source load values before the network becomes glob-
ally congested at much higher source load values, as can be seen from Fig. 2
in the case of PSN model set-up L

p

�
(16, 1, ONE). This build-up of local

congestion may also explain why for source load values lower than λT the
rate of increase of throughput is not constant any longer. We observed sim-
ilar qualitative behaviors of throughput graphs for PSN model set-ups with
network connection topologies of different size and type (e.g., non-periodic
square lattices or non-periodic triangular lattices).
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Fig. 5 and Fig. 6 display graphs of number of packet in transit (NPT ) as
a function of source load λ of PSN model set-ups Lp

�
(16, l, ecf) (Fig. 5) and

L
p

△
(16, l, ecf) (Fig. 6) where l = 0 or 1, and ecf = ONE or QS or QSPO.

The NPT graphs are calculated from simulation runs up to T = 6400 up-
dates. We observe that graphs of NPT of PSN model set-ups Lp

�
(16, 0, ecf)

with ecf = ONE, or QS, or QSPO are almost identical, see (a) in Fig. 5.
The same holds true for PSN model set-ups Lp

△
(16, 0, ecf) with ecf = ONE,

or QS, or QSPO, see (a) in Fig. 6. For each type of network connection
topology the NPT graphs are constant for source loads λ smaller than the
corresponding critical source loads λc. For source loads bigger than the cor-
responding critical source loads λc the graphs of NPT monotonically increase
with the increase of source load values.

(a)

(b)

Fig. 5. Plots of number of packets in transit (NPT) of PSN model set-up with

network connection topology L
p

�
(16, 0) in (a) and L

p

�
(16, 1) in (b) and edge cost

function ONE blue graphs, QS green graphs and QSPO red graphs, at simulation

time T = 6400.

This qualitative behavior of the NPT graphs holds also true for the PSN
model set-ups with network connection topologies L

p

�
(16, 1) and L

p

△
(16, 1).

By comparing the graphs of NPT of figure (a) with those of figure (b) in
Fig. 5 and, respectively, in Fig. 6, we also notice that an addition of an extra
link to the network connection topology L

p

�
(16, 0) and L

p

△
(16, 0) has no

effect on the graphs of NPT of PSN model set-ups using edge cost function
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(a)

(b)

Fig. 6. Plots of number of packets in transit (NPT) of PSN model set-up with

network connection topology L
p

△
(16, 0) in (a) and L

p

△
(16, 1) in (b) and edge cost

function ONE blue graphs, QS green graphs and QSPO red graphs, at simulation

time T = 6400.

QS or QSPO. However, it has a significant effect on the NPT graphs in
the case of PSN model set-ups using the edge cost function ONE. This is
because the critical source loads λc of PSN model set-ups L

p

�
(16, 1, ONE)

and L
p

△
(16, 1, ONE) are significantly smaller than those of PSN model set-

ups Lp

�
(16, 0, ONE) and L

p
△

(16, 0, ONE). Furthermore, the NPT graphs of

the PSN model set-ups L
p

�
(16, 1, ONE) and L

p

△
(16, 1, ONE) change their

rate of increase twice. The first change of rate of increase (form zero to
non-zero) corresponds to the transition from free-flowing state to the locally
congested state of each instance of the PSN model set-up. The second change
of rate of increase in the NPT graphs corresponds to the transition from the
locally congested state to the globally congested state of each instance of
the PSN model set-up. This can also be confirmed by seeing Fig. 2 in the
case of the PSN model set-up L

p

�
(16, 1, ONE).

The graphs of the network performance indicator average delay time
of all packets delivered (ADTPD) as a function of source load λ of the
PSN model set-ups L

p

�
(16, l, ecf) and L

p

△
(16, l, ecf), where l = 0 or 1, and

ecf = ONE, or QS, or QSPO, are displayed, respectively, in Fig. 7 and
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Fig. 8. By looking at the graphs in figures (a) of Fig. 7 and Fig. 8 we notice
that for PSN model set-ups with undecorated network connection topologies,
i.e. Lp

�
(16, 0) and L

p

△
(16, 0), the graphs of ADTPD behave qualitatively very

similarly.

(a)

(b)

Fig. 7. Plots of average delay time of all packets delivered (ADTPD) of PSN model

set-up with network connection topology L
p

�
(16, 0) in (a) and L

p

�
(16, 1) in (b) and

edge cost function ONE blue graphs, QS green graphs and QSPO red graphs, at

simulation time T = 6400.

The same holds true for the PSN model set-ups with decorated network
connection topologies, i.e. Lp

�
(16, 1) and L

p
△

(16, 1). For the PSN model set-

ups L
p

�
(16, 0, ecf) and L

p

△
(16, 0, ecf), where ecf = ONE or QSPO, the

graphs of ADTPD are constant for source loads λ smaller than the corre-
sponding critical source loads λc and they increase monotonically with the
increase of source load values for source loads λ larger than the correspond-
ing critical source loads λc. For the PSN model set-ups L

p

�
(16, 0, QS) and

L
p
△

(16, 0, QS) the behavior of ADTPD graphs is similar except for very
small source load values. For these source load values each of the graphs of
ADTPD attains first its local maximum. This happens because for the PSN
model set-ups using the edge cost function QS there are only few queuing
packets for very small source load values. Thus, the costs of all paths are
very similar and packets perform almost random walks on their routes from
their sources to their destinations. This results in higher values of ADTPD



Packet Traffic Dynamics Near Onset of Congestion . . . 1593

(a)

(b)

Fig. 8. Plots of average delay time of all packets delivered (ADTPD) of PSN model

set-up with network connection topology L
p

△
(16, 0) in (a) and L

p

△
(16, 1) in (b) and

edge cost function ONE blue graphs, QS green graphs and QSPO red graphs, at

simulation time T = 6400.

graphs for small source load values. With the increase of source load values
there are more queuing packets in a network and the costs of the paths be-
come more differentiated. Thus, packets are delivered more efficiently from
their sources to their destinations and the values of ADTPD graphs drop
and stay almost constant for source loads λ smaller than λc.

By looking at the ADTPD graphs in Fig. 7 and Fig. 8 we observe that
an addition of an extra link has very little effect on ADTPD graphs in the
case of PSN model set-ups with edge cost function QS and QSPO but it has
significant effect in the case of PSN model set-ups with edge cost function
ONE. In each of the ADTPD graphs corresponding to either one of the
PSN model set-ups with edge cost function ONE and network connection
topology L

p

�
(16, 1) or L

p
△

(16, 1) the first increase happens for the source
loads for which the local congestion at the end nodes of an extra link starts
to build up. This can be seen also from the figures in Fig. 2 for PSN model
set-up L

p

�
(16, 1, ONE). This increase is followed by the plateaus in ADTPD

graphs that correspond to the source loads at which the PSN model set-ups
are only locally congested at the end nodes of the extra link. The second
increase in ADTPD graphs happens for source loads for which the PSN
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model set-ups become globally congested. The values of the source loads
corresponding to the right hand side ends of the plateaus of ADTPD graphs
are closed to the ones at which throughputs attain their maximum and NPT
graphs change their rates of increase for the second time.

In conclusion the network performance indicators throughput, number of
packets in transit (NPT ), and average delay time of all packets delivered
(ADTPD) for the considered PSN model set-ups change significantly their
qualitative and quantitative behaviors for source loads near the correspond-
ing critical source loads λc. We observe that an addition of an extra link
to the network connection topologies Lp

�
(16, 0) and L

p
△

(16, 0) has very little
impact on the discussed aggregate measures of network performance in the
case of PSN model set-ups using the edge cost function QS or QSPO, that
is in the case of dynamic (adaptive) routing. However, such addition has
a significant impact in the case of PSN model set-ups using the edge cost
function ONE that is, in the case of static routing. For the analysis of the
behaviors of other network performance indicators of aggregate type and
how the addition of a larger number of extra links affects the performance
of various PSN model set-ups , see [15,20,29–34] for the PSN model under
consideration and for slightly different model see [9, 12, 28].

3.2. Spatio-temporal packet traffic dynamics near onset of congestion

By looking at the graphs of the network performance indicators discussed
in the previous section one may be tempted to conclude that for PSN mod-
els set-ups with undecorated network connection topologies (i.e., Lp

�
(16, 0)

and L
p

△
(16, 0) packet traffic dynamics does not depend significantly on the

edge cost function type. Also, one may think that the connectivity of the
network connection topology (i.e., network connection topology isomorphic
to a square lattice vs. the one isomorphic to a triangular lattice) does not
have a strong effect on packet traffic dynamics. Furthermore, by looking at
the graphs of the discussed network performance indicators one may also be
tempted to conclude that addition of an extra link to the network connection
topologies L

p

�
(16, 0) and L

p

△
(16, 0) has no effect on packet traffic dynamics

in PSN model set-ups using the edge cost function QS or QSPO and it has
only an effect when the edge cost function ONE is used instead. To verify
all these hypotheses we examine spatio-temporal packet traffic dynamics for
the discussed PSN model set-ups for source loads close to their respective
critical source loads λc, that is near the phase transition points from conges-
tion free states (free flowing network states) to the congested states of the
networks.
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Plots in Figs. 9, 10, 11, and 12 display spatial distribution of the outgoing
queue sizes at nodes for various PSN model set-ups. The x- and y- axis
coordinates of each plot denote the positions of switching nodes and z-axis
denotes the number of packets in the outgoing queue of the node located at
that (x, y) position. The header of each column of the table in each of the
Figs. 9 to 12 and the parameters shown under each plot uniquely define the
PSN model set-up, the simulation time, the values of critical source load λc

and super-critical source load λsup−c.

Looking at the plots in Fig. 9 and Fig. 10 we observe that the qualita-
tive behavior of spatial distribution of outgoing queue sizes is very similar for
PSN model set-up L

p

�
(16, l, ONE) and L

p

△
(16, l, ONE) when, respectively,

l = 0 or 1, and in each case the source load is λc or λsup−c. When l = 0, in
each instance of PSN model set-up the queue sizes are randomly distributed
with large fluctuations. Increase in source load results in substantial increase
of queue sizes and fluctuations among them (notice, the plots use different
scales on z-axis). When l = 1, in each case of the PSN model set-up with
edge cost function ONE, that is for L

p

�
(16, 1, ONE) and L

p

△
(16, 1, ONE),

the end nodes of an extra link become very quickly locally congested (see
also plots in Fig. 11). The extra link provides a “short-cut” in packets traffic
and many packets are being sent via routes passing through this link, regard-
less how big the outgoing queues are at the nodes to which this extra link
attaches. When the edge cost function ONE is used the routing is static,
hence, it does not have build in mechanism to avoid congested nodes of the
network. Thus, this leads to the build up of local congestion for broad range
of source load values (see plots in Fig. 11) on the time scale of our simula-
tions before the networks become globally congested for higher source load
values or longer time simulations. The build up of local congestion is respon-
sible for changes in the graphs of network performance indicators discussed
in the previous section. In particular, it is responsible for the plateaus ob-
served in the graphs of average delay time of all packets delivered in Figs. 7
and 8. The discussed characteristics of the outgoing queue size distributions
observed for λc and λsup−c are also observed in this type of distributions, re-
spectively, for other sub-critical source load values and super-critical ones in
PSN model set-ups Lp

�
(16, l, ONE) and L

p

△
(16, l, ONE) when, respectively,

l = 0 or 1 and L is different than 16.

From the plots in Fig. 9 and Fig. 10, as in the case of the discussed above
PSN model set-ups using edge cost function ONE, we observe a random dis-
tribution of outgoing queue sizes in each PSN model set-up L

p

�
(16, 0, ecf)

and L
p

△
(16, 0, ecf), where ecf = QS, QSPO, and the source loads are λc.

However, the differences in the magnitudes of the fluctuations of these queue
sizes are smaller than those in the case of PSN model set-ups using the edge
cost function ONE. This is because in the PSN model set-ups using dy-
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L
p

�
(16, l, ONE), T = 7000 L

p

�
(16, l, QS), T = 7000 L

p

�
(16, l, QSPO), T = 7000

l = 0, λc = 0.115 l = 0, λc = 0.120 l = 0, λc = 0.120

l = 0, λsup−c = 0.120 l = 0, λsup−c = 0.125 l = 0, λsup−c = 0.125

l = 1, λc = 0.020 l = 1, λc = 0.125 l = 1, λc = 0.125

l = 1, λsup−c = 0.025 l = 1, λsup−c = 0.130 l = 1, λsup−c = 0.130.

Fig. 9. Spatial distribution of outgoing queue sizes in PSN model set-ups

L
p

�
(16, l, ecf), with l = 0 or 1 and ecf = ONE, QS, QSPO, for critical source

loads λc and super-critical source loads λsup−c.
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L
p

△
(16, l, ONE), T = 7000 L

p

△
(16, l, QS), T = 7000 L

p

△
(16, l, QSPO), T = 7000

l = 0, λc = 0.140 l = 0, λc = 0.155 l = 0, λc = 0.155

l = 0, λsup−c = 0.145 l = 0, λsup−c = 0.160 l = 0, λsup−c = 0.160

l = 1, λc = 0.030 l = 1, λc = 0.160 l = 1, λc = 0.160

l = 1, λsup−c = 0.035 l = 1, λsup−c = 0.165 l = 1, λsup−c = 0.165

Fig. 10. Spatial distribution of outgoing queue sizes in PSN model set-ups

L
p

△
(16, l, ecf), with l = 0 or 1 and ecf = ONE, QS, QSPO, for critical source

loads λc and super-critical source loads λsup−c.
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L
p

�
(16, 1, ONE), L

p

�
(16, 1, ONE), L

p

�
(16, 1, ONE),

T = 7000, λsup−c = 0.080 T = 7000, λsup−c = 0.090 T = 7000, λsup−c = 0.130

Fig. 11. Spatial distribution of outgoing queue sizes in PSN model set-up

L
p

�
(16, 1, ONE) for three different super-critical source loads λsup−c.

namic edge cost function QS or QSPO the adaptive routing tries to avoid
congested areas of the network when routing the packets. Thus, this results
in a more even distribution of packets among the outgoing queues. For the
other sub-critical source load values in the PSN model set-ups Lp

�
(16, 0, ecf)

and L
p

△
(16, 0, ecf), where ecf = QS, QSPO, respectively, queue size dis-

tributions and fluctuations are qualitatively similar. However, we observe a
significant qualitative difference between the distribution of outgoing queue
sizes of the PSN model set-up L

p

�
(16, 0, QSPO) and those of the set-ups

L
p

�
(16, 0, QS) and L

p
△

(16, 0, QS)) and L
p
△

(16, 0, QSPO), when their respec-
tive λsup−c source loads are used, see plots of Fig. 9 and Fig. 10. We observe
in the PSN model set-up L

p

�
(16, 0, QSPO) with λsup−c (i.e., in the con-

gested state of the network) emergence of spatio-temporal self-organization
in the sizes of the outgoing queues and formation of a pattern of peaks and
valleys. At time T = 8000 this pattern is well developed across the whole
network, see [35].

The pattern of peaks and valleys in the sizes of the outgoing queues
emerges also in the PSN model set-up L

p

�
(16, 0, QS) with λsup−c, that is

in the congested state of the network. However, the time scale on which
this pattern emerges is much longer than the time scale on which it emerges
in the PSN model set-up L

p

�
(16, 0, QSPO), see [35]. Also, we notice that

the differences among sizes of the neighboring peaks and valleys increase
much faster with time in the PSN model set-up L

p

�
(16, 0, QSPO) than the

one with L
p

�
(16, 0, QS), see [35]. This could imply that, when the edge

cost function QSPO is used, the cost component ONE is responsible for
the observed qualitative differences in the evolution of the spatio-temporal
packet traffic dynamics between the PSN model set-up L

p

�
(16, 0, QSPO)
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L
p

�
(16, l, QSPO), T = 1000 L

p

�
(16, l, QSPO), T = 3000 L

p

�
(16, l, QSPO), T = 5000

l = 0, λsup−c = 0.125 l = 0, λsup−c = 0.125 l = 0, λsup−c = 0.125

l = 1, λsup−c = 0.130 l = 1, λsup−c = 0.130 l = 1, λsup−c = 0.130

Fig. 12. Spatial distribution of outgoing queue sizes in PSN model set-up

L
p

�
(16, 0, QSPO) (first row) and in PSN model set-up L

p

�
(16, 1, QSPO) (second

row) for super-critical source loads λsup−c at various times.

and the one with L
p

�
(16, 0, QS) in the congested state of each network. A

similar behavior in these types of PSN model set-ups was observed for values
of L other than 16 and other super-critical source load values. Thus, in the
PSN model set-ups L

p

�
(16, 0, QS) and L

p

�
(16, 0, QSPO) in their congested

states as the number of packets increases the pattern of peaks and valleys
emerges in spite of the adaptive routing attempts to distribute the packets
evenly among the outgoing queues. On the time scales of the performed
simulations we have not observed the emergence of the pattern of peaks and
valleys in the distributions of the outgoing queue sizes of the PSN model set-
ups L

p
△

(16, 0, QS) and L
p
△

(16, 0, QSPO) in their congested states. In the
case of these PSN model set-ups the queuing packets are distributed much
more evenly (see plots in Fig. 10). Thus, the network connection topology
connectivity in PSN models using adaptive routing plays an important role
in the emergence of patterns in spatial distributions of packets among the
queues.
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Looking at the plots in Fig. 9 and Fig. 12 we see that adding an extra
link to the network connection topology of each of the PSN model set-
ups L

p

�
(16, 0, QS) and L

p

�
(16, 0, QSPO) speeds up a “peak-valley” pattern

emergence in their congested states. This is also true for PSN model set-ups
L

p

�
(L, 0, QS) and L

p

�
(L, 0, QSPO), L

np

�
(16, 0, QS) and L

np

�
(16, 0, QSPO)

(where np in the superscript means non-periodic square lattice) when an
extra link has other position and/or length and L is different from 16
(see [15, 33, 34] and [35]). Thus, in spite of the fact that the considered
adaptive routings try to distribute packets evenly among the network nodes
the influence of an extra link is stronger one by preventing this to happen
and speeding up the “peak-valley” pattern formation. This is also true when
instead of one extra link a relatively small number of extra links is added
(see [15]). The speeding up of pattern formation happens because an ex-
tra link or small number of them provides a “short-cut in communication”
among more distant nodes about the states of their outgoing queues that is
about possible local congestions.

For PSN model set-ups with decorated (i.e., with an extra link) periodic
or non-periodic triangular network connection topologies and edge cost func-
tions QS or QSPO in the congested states of the networks we have not seen
emergence of peak-valley patterns on the time scales of our simulations (see
plots in Fig. 10). Recall that each periodic/non-periodic triangular lattice
can be obtained from periodic/non-periodic square lattice by adding in a
proper way a sufficient number of extra links. Thus, addition of many extra
links to the network connection topologies L

p

�
(L, 0) and L

np

�
(L, 0) prevents

emergence of the peak-valley patterns in PSN model set-ups with dynamic
edge cost functions QS or QSPO in their congested states (see plots in
Figs. 10 and [33]). Looking at the plots in Fig. 10 we observe rather small
differences among the outgoing queue sizes in the congested states of the
PSN model set-ups L

p

△
(16, 0, QS) and L

p

△
(16, 0, QSPO). These differences

seem to be even smaller, when an extra link is added to the periodic tri-
angular network connection topology, except of the two nodes to which the
extra link is attached. These nodes attract much larger numbers of packets
than other nodes. This results in the build up of local congestion at these
nodes. In conclusion, the connectivity of network connection topology in the
PSN model set-ups with dynamic edge cost QS or QSPO is responsible for
the emergence or not of the peak-valley pattern in congested states of these
networks.

4. Conclusions

We briefly described the PSN model of the OSI Network Layer (see
for details [15, 20], and [21]) used in our study. We introduced defini-
tions of the following aggregate measures of network performance critical
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source load, throughput, number of packets in transit, average delay time of
all packets delivered [1–6,15]. We studied how these network performance
indicators are affected by network connection topology type and static and
adaptive routing algorithms. We observed that for all three PSN model
set-ups L

p

�
(16, 0, ecf), where ecf = ONE or QS or QSPO, the graphs of

throughput, number of packets in transit, average delay time of all packets
delivered are almost identical. However, there are significant differences in
the spatial distributions of the outgoing queue sizes between the PSN model
set-up L

p

�
(16, 0, ONE) and those with L

p

�
(16, 0, ecf), where ecf = QS,

or QSPO, particularly, in the network congested states. These differences
became even more significant when an extra link is added to the network
connection topology L

p

�
(16, 0).

Our simulations showed that even small changes in network connection
topology may significantly affect spatio-temporal packet traffic dynamics and
that the changes in these dynamics may not be detected by various network
performance indicators. For example, we noticed that addition of an extra
link to a network connection topology isomorphic to a periodic square lattice
or a periodic triangular lattice has no effect on the studied aggregate mea-
sures of performance of PSN model set-ups with adaptive routing algorithms
(i.e., using the dynamic edge cost function QS or QSPO). However, in the
case of PSN model set-ups with network connection topology isomorphic
to a periodic square lattice and edge cost function QS or QSPO (adaptive
routings) addition of an extra link speeds up significantly emergence of a
peak-valley pattern among outgoing queue sizes in the networks congested
states. On the time scale of our simulations, emergence of such patterns was
not observed in congested states of PSN model set-ups with adaptive rout-
ings and decorated network connection topologies isomorphic to decorated
periodic triangular lattices. In the case of PSN model set-ups with static
edge cost function ONE (i.e., in the case of static routing) the aggregate
measures of network performance detected the changes in spatio-temporal
packet traffic dynamics caused by addition of an extra link. Namely, they
detected the rapid build up of local congestion at the nodes to which this
extra link was attached.

In conclusion, our study shows that even small change in a network con-
nection topology (addition of an extra link) may significantly affect spatio-
temporal packet traffic dynamics regardless if the routing is static or dy-
namic. However, the nature of how it effects these dynamics depends on the
connectivity of network connection topology coupled with edge cost func-
tion type (or routing algorithm type, static vs. adaptive). We observed that
changes in these dynamics may or may not be detected by the considered
network performance indicators of the aggregate type.
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The presented investigation contributes to the growing research on com-
plex dynamics of data communication networks [8–47] and dynamics of other
complex networks [51–56]. Better understanding of these dynamics can re-
sult in improvements in design and operation of data communication net-
works.
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NSERC of Canada. X.T. acknowledges partial financial support from Shar-
cnet and the University of Guelph. The authors thank B. Di Stefano, A.
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