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The random-variable formalism of anomalous diffusion processes is pre-
sented. We elucidate the role of the subordinate stochastic processes as the
main mathematical tool that allows us to modify the dynamics of the classi-
cal, exponential relaxation process. In particular, we discuss the anomalous
diffusion schemes underlying the stretched exponential decay of modes.
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1. Introduction

Beginning with stochastic formulation [1] of transport phenomena in
terms of a continuous-time random-walk (CTRW), the physical commu-
nity showed a steady interest in the anomalous diffusion, i.e., a diffusion
that appears in absence of the second/first moments of the spatio-temporal
random-walk jump parameters and with scaling different than that of the
classical Gaussian diffusion. Such an attempt to transport phenomena was
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fundamental for understanding of the diffusive behaviour of many complex
systems, see e.g. [2–14]. The successful applications of the anomalous diffu-
sion ideology yielded a development in mathematical techniques of analysis
of the properties of the CTRW propagators (i.e., of the diffusion fronts).
Usually, following the original concept of Montroll and Weiss [1], the analy-
sis is based on a formal expression for the Fourier–Laplace transform of the
asymptotic distribution of the random position of a walker. In this case, the
usual explicit formulas are provided only under some restrictive assumptions
on the spatio-temporal coupling properties of the CTRW. Otherwise, as a
legitimate tool, use of the fractional calculus is required [15–17].

In this paper we present an approach to the random-walk analysis which
is based on the definition of the cumulative stochastic process [18]. We
demonstrate the power of the random-variable formalism, related directly
to limit theorems of probability theory [19], by showing how it can be gener-
alized to handle different diffusive situations in complex systems. Our effort
is directed toward bringing into light all stochastic conditions underlying
the well-known time-domain stretched exponential relaxation process. We
provide a clear random-walk scheme and rigorous analysis of the anomalous
diffusion. We also emphasize the possibilities of application of that scenario
in stochastic modeling of the nonexponential relaxation phenomena. The
proposed approach may serve as a basis for a model which in the framework
of the CTRW can lead to the frequency-domain Havriliak–Negami relaxation
response.

2. Subordinate processes and continuous-time random-walk

The basic element in construction of subordinate processes is the nonneg-
ative, strictly increasing stochastic process Vt called subordinator. If X(τ) is
a Markov process independent of Vt, then X(Vt) is referred to as the subor-
dinate process with the directing process X(τ) and the subordinator Vt. The
stochastic process Vt plays the role of a new, random time τ . It is termed
the operational time of a system, see [20]. The prominent example of sub-
ordination with wide range of applications in physics [1–14] is the CTRW
defined in the following way.

Given a sequence Ti , i = 1, 2, ...of nonnegative, independent, identically
distributed (i.i.d.) random variables which represent the time intervals be-
tween successive jumps of a particle, we define the random time interval of
n jumps as

T (n) =
n∑

i=1

Ti , T (0) = 0. (1)
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Then the so-called renewal process, describing the number of the particle
jumps performed up to time t > 0, takes the form

Nt = max{n : T (n) ≤ t} . (2)

Nt is also referred to as the counting process and, by the relation

{T (n) ≤ t} = {Nt ≥ n} ,

can be mathematically regarded as a process inverse to T (n). Next, for a
sequence Ri , i = 1, 2, ... of i.i.d. random variables, indicating both the
length and the direction of the i-th jump, we specify the position of the
particle after n jumps by summing up the jumps Ri

R(n) =

n∑

i=1

Ri , R(0) = 0 . (3)

Here, the variables Ri , i = 1, 2, ... are assumed to be independent of the
sequence Ti , i = 1, 2, . . . . The last assertation assures that the processes
Nt and R(n) are independent. In conclusion, the total distance reached by
the particle by time t ≥ 0 is defined as the cumulative stochastic process

R(Nt) =

Nt∑

i=1

Ri (4)

known as the CTRW. Thus the CTRW process is clearly an example of
subordination with the directing process R(n) and the subordinator Nt. In
this case Nt is the operational time of a system describing the number of
steps performed by a walker up to time t > 0.

In the recent paper of Piryatinska et al. [21], authors consider more gen-
eral class of subordinations, where the random process R(n) is replaced by
a Lévy diffusion X(τ) and T (n) is substituted by the continuous parame-
ter process T (τ) with the corresponding inverse random process Vt = inf
{τ : T (τ) > t}. The relationship between T (τ) and Vt is in principle the
same as the one between T (n) and the counting process Nt. The subordinate
process X(Vt), which is the generalization of the CTRW process R(Nt), is
called the anomalous diffusion.

The anomalous diffusion X(Vt) exhibits some important mathematical
properties, which will frequently be used in our further considerations. As
X(τ) and Vt are independent processes, the probability density function
(p.d.f.) p(x, t) of X(Vt), obtained via the total probability formula, equals

p(x, t) =

∞∫

0

f(x, τ)g(τ, t)dτ , (5)
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where f(x, τ) and g(τ, t) are the p.d.f.s of X(τ) and Vt, respectively. Simi-
larly, the Fourier transform p̃(k, t) = 〈exp(ikX(Vt))〉 and the Laplace trans-
form p̂(k, t) = 〈exp(−kX(Vt))〉 are given by

p̃(k, t) =

∞∫

0

f̃(k, τ)g(τ, t)dτ ,

p̂(k, t) =

∞∫

0

f̂(k, τ)g(τ, t)dτ . (6)

Here k > 0 has the physical sense of a wave number.
Recently, it has been explored [22] a special case of the CTRW, where

the interjump time intervals Ti belong to the domain of attraction of a
completely asymmetric stable distribution Sα,1(t)

1 (i.e. P (Ti > t) ∝ t−α as
t → ∞ for some 0 < α < 1, see [23, 24]), and the jumps Ri belong to the
domain of attraction of a γ-stable distribution Sγ,β(x) with 0 < γ ≤ 2,
|β| ≤ 1. If the above assumptions are satisfied, then the appropriately
rescaled CTRW process R(Nt) tends in distribution to the subordinate pro-
cess X(Vt), where X(τ) is the standard γ-stable Lévy motion and Vt is the
so-called inverse-time α-stable subordinator (or inverse-time α-stable pro-
cess) defined via its Laplace transform

〈exp(−uVt)〉 = Eα(−cαut
α) , cα > 0 . (7)

Here

Eα(z) =

∞∑

n=0

zn

Γ (nα+ 1)
(8)

is the Mittag–Leffler function [25].
In the aforementioned paper, the authors elucidate the role of the inverse-

time α-stable subordinator Vt and show that this random process is respon-
sible for the nonexponential Cole–Cole relaxation. In the next section we
introduce a new type of a subordinator and, in a similar manner, point out
its relationship with another significant type of relaxation, namely with the
stretched exponential relaxation response.

1 Here, for a stable distribution we use the notation Sα,β(t), where 0 < α ≤ 2 denotes

the index of stability and |β| ≤ 1 denotes the skewness parameter.
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3. Stretched exponential response and anomalous diffusion

The classical Debye pattern of dielectric ralaxation

φ(t) = e−ωpt ,

where ωp is the loss-peak frequency (a characteristic material constant),
has found for many years a widespread acceptance in representing the re-
laxation data of various physical systems. However, as extensive time-and
frequency-domain experimental investigations prove, the exponential model
of relaxation hardly ever fits the relaxation data [26, 27]. As an alternative,
the deviation from the classical pattern observed in the time-dependent re-
sponse of dielectric systems to a steady electric field is often described by
the stretched exponential relaxation function

φ(t) = e−(ωpt)α

, α ∈ (0, 1). (9)

It is commonly assumed [16–18] that the theoretical attempts to model
the nonexponential relaxation can be based on the idea of relaxation of an
excitation representing the diffusive behaviour of the system as a whole. In
the framework of the one-dimensional nonbiased CTRWs, the time-domain
relaxation function for a given mode k is introduced in a standard way as
the following Fourier transform

φ(t) =
〈
eikR(t)

〉
,

where R(t) denotes the diffusion front — the scaling limit of the CTRW. If
R(t) takes values only on the positive half-line, the above definition must be
modified [18] by replacing the Fourier transform with the Laplace transform.
Hence we obtain

φ(t) =
〈
e−kR(t)

〉

for the biased walk. The above two formulas give the temporal relaxation
of a macroscopic excitation.

Let us now consider the subordinate process with the directing process
X(τ) belonging to the family of Lévy stable processes and the subordinator

V
(α)
t being the fully asymmetric Lévy α-stable process with the following

Laplace transform

〈
e−kV

(α)
t

〉
= e−cαk

αt , 0 < α < 1 .

As it has been already shown in [20], such an operational time V
(α)
t does

not change the type of relaxation — φ(t) remains a simple exponentially



1622 M. Magdziarz, K. Weron

decaying function. To win a model undergoing a stretched exponential re-

laxation pattern, we have to modify the subordinator V
(α)
t . Since V

(α)
t is

1/α-selfsimilar, for b > 0 and t > 0 we get

V
(α)
bt

d
= (bt)1/αV

(α)
1 ,

where “
d
=” stands for “equal in law”. Note that for α→ 1, V

(α)
t converges to

the degenerate deterministic process. Now we transform the above formula

by “stretching” the spatial axis and introduce a new subordinator V
(α)
t by

defining its finite-dimensional distributions

V
(α)
t :

d
= ctV

(α)
1 , c > 0 . (10)

V
(α)
t is clearly a positive, strictly increasing process. Additionally, it is

1-selfsimilar and its Laplace transform is given by the stretched exponential
function

〈
e−kV

(α)
t

〉
= e−cαt

αkα

, 0 < α < 1 , cα > 0 . (11)

Clearly, when α → 1, then V
(α)
t becomes deterministic. In what follows

we illustrate the relationship between the stretched exponential relaxation

pattern and the anomalous diffusion X
(
V

(α)
t

)
, where X(τ) belongs to the

general class of Lévy stable diffusions and V
(α)
t is defined by (10).

We first consider the problem of finding the relaxation function φ(t)

for the anomalous diffusion X
(
V

(α)
t

)
. Recall that V

(α)
t has the Laplace

transform (11) and X(τ) belongs to the class of γ-stable Lévy processes. In
the case of the nonbiased random-walk, i.e. when the process X(τ) has the
following characteristic function

〈
eikX(τ)

〉
= e−cγk

γτ , cγ > 0 ,

the above formula together with (6) and (11) imply that the relaxation
function takes the form

φ(t) =

〈
eikX(V

(α)
t )

〉
=

∞∫

0

e−cγk
γτg(τ, t)dτ = exp(−cα,γt

αkαγ) ,

where g(τ, t) is the p.d.f. of V
(α)
t and cα,γ = cα ·c

α
γ . Hence for ωp = kγ ·c

1/α
α,γ

we obtain the stretched exponential time-domain relaxation function (9).
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Even if the directing process X(τ) is the classical Brownian motion (that

is when γ = 2), the anomalous diffusion X(V
(α)
t ) leads to the stretched

exponential function
φ(t) = exp(−cα,2t

αk2α)

as well.
Similarly, in the case of the biased random-walk, when the totally asym-

metric process X(τ) has the Laplace transform

〈
e−kX(τ)

〉
= e−cγk

γτ , 0 < γ ≤ 1 ,

it can be shown in an analogous way that

φ(t) =

〈
e−kX(V

(α)
t )

〉
=

∞∫

0

e−cγk
γτg(τ, t)dτ = exp(−cα,γt

αkαγ) .

Once more, for ωp = kγ · c
1/α
α,γ , we get the stretched exponential function

(9). In even more general case, when X(τ) is a general Lévy process with
characteristic function

〈
eikX(τ)

〉
= e−Cψ(k)τ ,

here ψ(k) is the logarithm of the characteristic function of the random vari-
able X(1), some standard calculations lead to the stretched exponential
response function as well.

4. Conclusions

We have introduced a new type of subordinator V
(α)
t by modifying the

well known strictly increasing α-stable process. We have demonstrated how
the empirical time-domain stretched exponential function can be obtained

from the anomalous diffusion model X(V
(α)
t ) and illustrated the role of the

operational time τ = V
(α)
t in this probabilistic model. Our considerations

show that the type of relaxation function derived from the anomalous diffu-
sion process depends entirely on the subordinator. The Lévy-stable directing
process X(τ) influences only the constant ωp in the stretched exponential

function (9) and determines the spatial properties of X(V
(α)
t ), see Table I.

Our results together with the ones presented in [20] and [22] confirm that
the subordination being the transformation from the physical time t to the
operational time τ is responsible for the anomalous behaviour of a system.
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TABLE I

Stochastic schemes of the stretched exponential time-domain response with subor-

dinator V
(α)

t . Let us note that the Brownian motion in combination with V
(α)

t also

leads to the nonexponential relaxation of a system.

X(τ), 0 < γ ≤ 2, |β| ≤ 1 φ(t)

symmetric γ-stable
Lévy processes (0 < γ < 2, β = 0) exp(−cα,γt

αkαγ)

strictly increasing α-stable
Lévy processes (0 < γ < 1, β = 1) exp(−cα,γt

αkαγ)

Brownian motion (γ = 2, β = 0) exp(−cα,2t
αk2α)

deterministic process linear in
operational time (γ = 1, β = 1) exp(−cα,1t

αkα)
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