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The rate of heart beat is controlled by autonomic nervous system: accel-
erated by the sympathetic system and slowed by the parasympathetic sys-
tem. Scaling properties in heart rate are usually related to the intrinsic dy-
namics of this physiological regulatory system. The two packages calculat-
ing local exponent spectra: Wavelet Transform Modulus Maxima and Mul-
tifractal Detrended Fluctuation Analysis (accessible from Physionet home
page http://circ.ahajournals.org/cgi/content/full/101/23/e215)
are tested, and then used to investigate the spectrum of singularity expo-
nents in series of heart rates obtained from patients suffering from reduced
left ventricle systolic function. It occurs that this state of a heart could
be connected to some perturbation in the regulatory system, because the
heart rate appears to be less controlled than in a healthy human heart.
The multifractality in the heart rate signal is weakened: the spectrum is
narrower and moved to higher values what indicate the higher activity of
the sympatethic nervous system.

PACS numbers: 87.19.Hh, 05.40.–a, 87.80.Vt, 89.75.Da

1. Introduction

Heart rate variability (HRV) represents one of the most promising marker
for measuring activity of the autonomic nervous system — the system that
is responsible for cardiovascular mortality [1]. The wide popularity of HRV
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study is ensured by the noninvasive, easily obtainable techniques providing
a signal to analysis [1–4]. The electrocardiogram (ECG), a recording of
cardiac-induced potential, reveals the basic information about atrial and
ventricular electrical activity of the heart. Readily recognizable features
of ECG are labeled by the letters P–QRS–T, see Fig. 1. In a continuous
ECG record each QRS complex is detected, and the so-called normal-to-
normal (NN) intervals are determined. Hence, the ECG signal is simplified
to moments of contractions only. These moments are identified by R peaks.

Fig. 1. From the top: an ECG record of a single heart beat with labels of P,Q,R,S,

and T, a representative record of ECG signal for a healthy subject, RR-signal {τi}

extracted from subsequent R peaks, a representative RR-signal for normal sinus

rhythm of 4000 beats (approximately 1 hour).

In mathematical terms, the heartbeat signal is modeled as a point pro-
cess. The occurrence of a contraction at time ti is represented by an impulse
of Dirac delta function δ(t − ti), so that the sequence of heartbeats is as
follows

X(i) =
∑

i

δ(t − ti) . (1)
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Any realization of a point process is specified by the set of occurrence times
{ti} of these events. The RR-signal {τi} is a sequence of positive numbers
representing adjacent times τi = ti+1 − ti. Hence, the widely studied RR-
signal is the series of intervals between the consecutive normal R peaks.

The ectopic beats or arrhythmic events which are present in the ECG
record and which are not represented in RR series are beside the scope of
our investigations, though we remember about their role in quantifying the
heart state, see e.g. [5] for further information.

Scale invariance of a time series means that no specific scale of time
can be identified in the data under study. It implies that the common data
analysis procedures based on searching for the characteristic scale have to be
replaced by new ones. These procedures, aiming on analysis of relationship
between scales, provide an insight on mechanisms that relate scales.

Physiologic signals are known to have scale invariant properties. A heart
rate of a healthy human shows long-range temporal correlations [6, 7], non-
Gaussianity of the probability density function of {τi} [6] and multifractal
scaling properties [8,9]. These properties are conjectured to be related with
interactions among many individual components driven by competing forces
operating near the critical point of their phase space [10, 11]. The rate
of heart beat is controlled by autonomic nervous system: accelerated by
the sympathetic system and slowed by the parasympathetic system. Mul-
tifractal scaling in heart rate requires the existence of the balance between
antagonistic activity of parasympathetic and sympathetic system. For ex-
ample, congestive heart failure is known to be associated with both increased
sympathetic system activity and decreased parasympathetic system activity.
The multifractal properties of a RR-signal are reduced to monofractal ones.
Moreover, if parasympathetic blocker — atropine, is served to a healthy
subject then a collapse of the multifractal spectrum is observed while heart-
beat dynamics during sympathetic blockade display a small change in the
multifractal spectrum [12]. Furthermore, the conservation of multifractal
properties is observed in RR-series of patients with clinically recognized au-
tonomic system dysfunction (loss of sympathetic neurons) [13]. Therefore
the origin of heart rate complexity is searched in the intrinsic dynamics of
this physiological regulatory system. Although the exact mechanism of the
heart beat is unknown [14] some attempts are done [15].

The question posed by us here is whether the heart disease called re-
duced left ventricular systolic function is associated with the failure of the
autonomic antagonistic activity between parasympathetic and sympathetic
nervous systems. It is known that early left ventricular dysfunction elic-
its the changes in the autonomic nervous system: activates of sympathetic
drive and attenuates of parasympathetic tone in case of recognised conges-
tive heart failure [16]. The widely used NYHA classification [1] evaluates an
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efficient heart as the I class, and with increasing class number the efficiency
of a heart is smaller. The IV class denotes a heart almost not working.
The patients considered by us are classified within the NYHA I–III classes
while the congestive heart failure gives NYHA III,IV classes. Therefore, the
change in the fractal properties is not obvious.

In the next section we introduce the multifractal method of data anal-
ysis and show results of tests of the methods applied to series with known
properties. Section 3 contains the main results of analysis on the data pre-
pared in the 1st Department of Cardiology of Medical University of Gdańsk.
These data can be obtained on request [32]. Our investigations suggest that
reduced left ventricular systolic function of a heart could be related to some
perturbation in the regulatory system. The heart rate appears to be less
controlled than in a case of a healthy human heart. The multifractality in
the heart rate signal is weakened: the spectrum is narrower and moved to
higher values.

2. Numerical procedures and tests

2.1. Multifractal formalism

Multifractal formalism is the way to study scale invariance of time series
in their whole variety and dependences [19,20]. The easily recognizable sign
of the scale invariance of a X(t) process is the occurrence of scaling in any
of its statistics, called a structure function.

For example, let us consider as the structure function the statistics of
q-moments of increments of a process X(t) in a scale δ, namely:

〈|X(t + δ) − X(t)|q〉 ∝ |δ|τ(q) . (2)

Then a relevant analysis of scaling phenomena means estimates of the corre-
sponding scaling exponents τ(q) (called a partition function ). A stochastic
processes exhibiting scaling in their statistics is called a fractal stochastic
process.

Depending on relation of τ on q, a process is called:

• monofractal — if a partition function is linear,

• multifractal — any other dependence.

The q-dependence of a partition function is mapped into ubiquitous occur-
rences of irregularities, called local singularities spectrum or multifractal
spectrum: the set of pairs: {(h,D(h))} where h is the local singularity ex-
ponent and D(h) is the fractal dimension of the subset of the original time
series characterized by the local scaling exponent h, by the Legendre trans-
form:

h =
dτ(q)

dq
, D(h) = qh − τ(q) . (3)
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The most prominent example is the fractional Brownian motion BH(t)
[22] labeled by H the Hurst exponent. Since at any scale δ the following
self-similarity relation holds:

BH(δt) ≡prob δHBH(t) (4)

then all local h(t) exponents are not dependent on t, and h(t) = H.
There exists a mathematically rigorous approach to fractional Brown-

ian motions [20–22] and to their generalizations, to the, so-called random
cascades and process of the compound Poisson cascade [23] which explains
fractality by multiplicative organization of a signal. Multiplicative cascades
are built from iterative split/multiply procedures that hence produce inter-
dependencies between the different scales of the resulting process.

In case of continuous real signals arising from e.g. fully developed turbu-
lence [24, 25], or financial time series [19, 26], or load of network traffic [27],
multiplicative signal organization can be directly related. The singularity
spectrum is accessible by, for example, the wavelet analysis [28]. However,
a sequence of events extracted from human heart electrocardiogram is dif-
ferent from signals originally studied by multifractal formalism. Instead of
the singularity spectrum, the multifractal formalism provides a spectrum of,
so-called, local Hurst exponents [8–11].

2.2. Numerical procedures

A numerical computation straight from the definition is obviously not
feasible. The local singularity exponents vary widely from point to point
making their numerical measurement extremely unstable. The way out con-
sists in obtaining the desired multifractal spectrum via carefully designed
structure function. The following two methods to construct the structure
function have been proposed

WTMM — Wavelet Transform Modulus Maxima [28]
Here the multiresolution analysis of a signal is done by the wavelet the-
ory. A partition function τ(q) is found from a power-law dependence
Z(q, δ) ∝ δτ(q) where the structure function Z(q, δ) is the sum of the
qth powers of the local maxima of the absolute moduli of the wavelet
transform coefficients at scale δ. In this study the third derivative of
the Gaussian function is used as the analysing wavelet.

MDFA — Multifractal Detrended Fluctuation Analysis [29]
Here the multiresolution analysis bases on DFA method [17]. The
integrated signal is divided into scales of δ size. In each j-th box the
variance of the integrated and detrended signal is calculated F 2(δ, j).
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The partition function τ(q) is found from the structure function F (q, δ)
constructed as the mean of the q/2-th powers of F 2(δ, j) over all boxes
of δ length F (q, δ) ∝ δ1+τ(q).

We use the software accessible from Physionet [31] to calculate parti-
tion functions. Namely, we work with two packages: DFA.C (prepared by
J. Mietus, C.-K. Peng, and G. Moody) and MULITIFRACTAL.C (prepared
by Y. Ashkenazy). We perform the following tests to investigate the pack-
ages abilities:

1. White noise and random walk signals

Series are generated by lrand48() function. The expected result is a
partition function τ(q) linearly dependent on q with coefficient 0 for
white noise and 0.5 for a random walk. The results are shown in Fig. 2.
One should notice large departures from the theoretical predictions.
The MDFA method correctly finds the spectrum of white noise — the
point spectrum located at (0,1).

Fig. 2. Partition functions τ(q) for q ∈ [−10, 10] (top) and resulting multifractal

spectrum (bottom) for white noise and random walk signals. The series length is

20000. The multivalued picture of the WTMM spectrum of random walk is related

to (3), i.e., to sensitivity of numerical differentiation to any departure from a line.
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2. Fractional noises

Series are generated with the help of tsfBm-package [30]. The results
are shown in Fig. 3. It is easy to notice that the partition functions
are not linearly dependent on q in all cases and especially in case of
WTMM method when high negative q is investigated. It results that
the corresponding spectrum is not point-like as it is expected but has a
large width. This width is related with the method. Basically, a wider
spectrum is obtained for WTMM method. However, the maximum
of the spectrum lines is close to the theoretical values (H,1) in both
methods.

Fig. 3. Partition functions τ(q) for q ∈ [−10, 10] (top) and resulting multifractal

spectrum (bottom) for monofractal signals with Hurst exponent shown by labels.

The linear fit coefficients estimated by r2 Pearson correlation coefficient are shown

at labels. The series length is 20000.

The multifractal properties in heart rate signals have been discovered in
the data collected on Physionet page [31]. To calibrate better our numerical
tools we perform the multifractal analysis on the Physionet data too. To
observe the multi- to mono-fractal transition, we consider 24-hour series
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of 14 healthy subjects: nsr-group and 12 subjects with congestive heart
failure: chf-group. For each series the 5-hour long subseries are extracted
corresponding to diurnal (wake) human activity. Fig. 4 collects results of
the analysis.

Fig. 4. Left: mean partition functions τ(q) for q ∈ [−5, 5] for heart rate signals from

Physionet: normal sinus rhythm (nsr) mean group and congestive heart failure (chf)

mean group. At curve labels the global Hurst exponents are shown. Right: the

spectra of nsr group and chf group. At curve labels the multifractal characteristics

are added: the width and area below the curve.

The spectra obtained by both methods display the expected properties:
the shrinkage of the h interval when one moves from healthy to failure hearts
and the change in the shape of spectra from a parabola-wide to triangle-like
shape. Both properties ensure that variety of the scaling exponents vanishes
in case of congestive heart failure.

Since the multifractal formalism gives the direct estimate for the global
Hurst exponent: H = 1

2(1 + τ(2)), let us notice that the global Hurst
exponents calculated from our analysis restore the known relation:
H(nsr) < H(chf) which is interpreted as less control in case of chf. Moreover,
by both methods the basic properties quantifying the multifractal spectra
properties such as width of the spectra curve and the area below the spectra
curve provide significantly larger values for healthy heart series than values
obtained for hearts with congestive heart failure.

3. Multifractal properties related to reduced

left ventricular systolic function

The multifractal properties are estimated for RR-series collected and se-
lected from patients treated in Medical University of Gdańsk [32]. The 24h
ECC Holter monitoring was performed in the group of 40 subjects with
normal echocardiogram, without past history of cardiovascular diseases:
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gk-group, and in the group of 90 patients with reduced left ventricular
systolic: nk-group. ECG data were recorded and digitized using Delmar
Avionics recorder. Recordings were analyzed and annotated using Delmar
Accuplus 363 system by an experienced physician. The two 5 hours subsets
were extracted from each obtained data set corresponding to different stages
of human activity: nocturnal (sleep) and diurnal (wake).

For each series the partition function τ(q) is calculated by both methods:
WTMM and MDFA for q = −5, . . . , 5 with a dq = 0.1 step. Then the
group averaged partition function is found. These results together with their
standard deviation errors to underline variability of the results are presented
in Fig. 5. In case of MDFA method the errors are significantly smaller.

Fig. 5. Mean partition functions τ(q) for q ∈ [−5, 5] representing the group means

obtained by different methods (for better figure readability only every third point

is plotted, the standard deviation errors are added).

Fig. 6. Multifractal spectra of gkwake, gksleep, nkwake and nksleep groups obtained

by different methods. At curve labels the multifractal characteristics are added:

the width and area below the curve.
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Both methods find the difference between spectra, see Fig. 6 when the
wake parts of series are considered. The spectra widths and spectra areas in
case of gk-group are larger then in nk-group, however the difference is not as
significant as in case of congestive heart failure. This indicates at the loss of
multifractality but the loss is weaker than the change to monofractal case.
Moreover, the localizations of the spectra are changed — they are moved
to higher h values — more anticorrelations are present in the signal. This
can be interpreted as an indication that the heart with reduced left ventricle
systolic is less controlled than the healthy heart. Surprisingly, the stronger
control mechanisms can be found in the sleep series — the spectra are moved
to lower h values. However, the nocturnal series do not provide a clear
answer about the multifractality — WTMM method indicates a significant
loss of fractality while MDFA suggests even an increase in fractality. This
result can be related with algorithms leading to a partition function. For

Fig. 7. The minimal (left) and maximal (right) 95-confidence intervals of h-value

in case the multifractal study is for q ∈ [−5, 5].

the diagnostic purpose it could be useful to clarify the differences between
groups by determining limits of the corresponding group spectra. In Fig. 7
we present the group averages of the localization of the spectra by plotting
the minimal (bottom) and maximal(top) values of spectra together with
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95-confidence error intervals. It appears that with the help of MDFA method
a healthy heart can be successfully discriminated from a heart with reduced
left ventricular systolic function.

4. Closing

In the paper we investigated if the reduced left ventricular systolic func-
tion could be associated to the imbalance in the control mechanism of au-
tonomous nervous system. It is known that this imbalance affects the mul-
tifractal spectra of a heart rate signal by decreasing the multifractality.

The study was done by two methods- WTMM and MDFA. Both methods
used software packages easily accessible from Internet. These methods were
carefully tested to find out best parameters for the multifractal analysis of
heart rate signals.

By both methods the loss of multifractality was observed though this loss
could not be recognized as a change to monofractal case. Moreover, since
the localizations of the spectra were changed, we could conclude that the
heart with reduced left ventricle systolic was less controlled than the healthy
heart. However, we found the strong control mechanisms in the sleep series.

Moreover, due to the low errors MDFA method could be practically used
to discriminate a healthy heart from a heart with reduced left ventricular
systolic function.

Summing up, the multifractal analysis performed by us indicated that in
the disease of reduced left ventricular systolic function the imbalance in the
autonomic nervous system relies on activation of sympathetic nervous system
rather and only weak deactivation of parasympathetic nervous system is
noticed.

We wish to acknowledge the support of the Rector of Gdańsk University
— project: BW/5400-5-0166-5.
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