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PT-SYMMETRY, PSEUDO-HERMITICITY: THE REAL
SPECTRA OF NON-HERMITIAN HAMILTONIANS
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PT-symmetry gives rise to a new class of complex Hamiltonians with
real spectrum. The pseudo-Hermicity of Hamiltonians are discussed and
PT-symmetric Hamiltonians are shown to belong to class of pseudo-Hermit-
ian Hamiltonians. We have studied this for a general potential with an
emphasis on a particular type.

PACS numbers: 03.65.Ge

The Hermiticity of the Hamiltonian had been accepted as the necessary
condition for the real spectrum since 1998 [1]. Recently a more physical
alternative axiom called PT-symmetry has been investigated [1]. The con-
dition H = HT is being replaced by weaker and more physical requirement
H = HPT where P and T are respectively space reflexion and time rever-
sal, and one obtains new classes of complex Hamiltonian whose spectra are
still real and positive. The PT-symmetry Hamiltonian obeys the following
properties:

(i) PT-symmetry is exact : The spectrum is real.

PT-symmetry is broken : There are complex eigen values.

(1) The indefinite innerproduct < |>> is defined by <4 [1ho >= (¢1|P|1)2)
Y |Y1), |12) € H, where H is the Hilbert Space.

Mostafazadeh [5] in his very noteworthy work introduces the concept of
pseudo-Hermiticity in which he has pointed out that all the PT-symmetric
Hamiltonians regarded so far [1-5]are actually P-pseudo Hermitian, namely
PHP~! = Ht. Again it is claimed that it is nothing but n-pseudo Hermitic-
ity i.e. nHn~' = H' [5]. By highlighting the concept of pseudo-Hermiticity
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he has addressed that pseudo-Hermitian is a generalisation of Hermiticity. It
can now be found that the real eigen values of the PT-symmetric potential
are to be connected to the concept of n-distorted inner product (1|ny) [6].
It is observed [7] that the distinct real eigen values have n-orthogonal eigen
vectors. It is also known that the complex eigen values have zero 7-norm.
Some other classes of non-Hermitian Hamiltonians both PT-symmetric and
non PT-symmetric Hamiltonians have been accepted as pseudo-Hermitian
under 7 = e~ %@ and n = e % [g].

In this paper, we consider a general model of a non-Hermitian Hamil-
tonians which have real spectrum and will show that pseudo-Hermiticity is
more consistent than PT-symmetry. Let the Hamiltonian be of the form

p + ieg(x)]?

o= o+ V(@), (m=1=h). (1)

By applying gauge-like transformation [8]
@ p +ieg(a))e @ = p—icg(a),

where f(z) = —2¢ [ g(z)dz .
Again

e/ p +ieg(x))’e T = /Op 4 icg()][p + ieg(x)]e /)
= /D p +ieg(z))e TP e/ [p +icg(a)]e )
= [p—ieg(@)][p —icg()]
= [p—icg(z))”.

Similarly e/ (®) [p + ieg(x)]"e/® = [p — ieg(z)]".

Hence e/ @) H e~ /(@) = HI and this implies H. to be pseudo-Hermitian
under this transformation.

We shall now discuss a Hamiltonian of the type

+icx™?  a?+ €2
b= P R 2

where m is some positive integer.
Let us remember that

PzP™ ' = —x; PpPl=—p=TpT ', TiIT'=—il,
ol =2, i'=—i, p=-p, pl=p.
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Then H, satisfies
(i) H. is non-Hermitian.
(i) H. is real.

(iii) H is PT-symmetric if m is odd and H. is PT-pseudo-Hermitian if m
is even.

(iv) H. is not T-pseudo-Hermitian.
(v) H. is P-pseudo-Hermitian if m is even.
The eigen value equation is
Hepn () = Entn(z) . (3)
Applying a suitable transformation H. becomes

p2 CL2 + 52

SO = Fgpo =L E T )
where f(z) = —-Z72™*! and 1, becomes
Qpn(x) = eXp |:(m n 1)$m+1:| ¢n(x)7

where ¢, (z) are well known eigen functions of simple Harmonic oscillator,
one therefore obtains

En:<n+%> @+, n=012... (5)
5 oy a2 exmtl 9 on1/4
Yn(x) = Npexp [—(a +€)7+m+1] x H, [m(a + &%) } (6)

(a2 +¢2)"/"
(an!(ﬂ)1/2)1/2 ’

N,, = normalization constant =

Hence the eigen values are real and eigen functions are real and normalizable.
By replacing € by #d in equation (2) we have

—sxm)?  q2 — §2
Hy =2 . L T—a”. (7)
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The results (5) and (6) consequently change to

1
E, = <n+§> (@>=62)"*, a>o6n=012...

and

where

(az . 52)1/8
(2nn!(ﬂ-)1/2)1/2 '

Hence for the Hamiltonian (7) we have real eigen values with complex
eigen functions. However, the eigen values become complex as eigen func-
tions are non-localised. This transition of eigen values from real to complex
takes place when 6 > a = dpitical -

The exactness of PT-symmetry implies the reality of the spectrum. More
specifically, if an eigen vector |¢) is PT-invariant, PT|¢) = ¢, then the cor-
responding eigen value is real. We have noticed that real Hamiltonians with
real eigen values can have real eigen functions but non-real Hamiltonians
with real eigen values cannot have real eigen functions, and that pseudo-
Hermiticity is only a necessary condition for the reality of the spectrum, not
a sufficient condition.

M,, = normalization constant =
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