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The Arrhenius activation energy for the reaction A + A ⇆ B + B in
a dilute gas is calculated from a temperature dependence of the rate con-
stant obtained from the perturbation solution of the Boltzmann equation.
The first and the second approximation to the velocity distribution func-
tion are used in an analysis of nonequilibrium effects. Results obtained
for the line-of-centers model and the Prigogine–Xhrouet model of reactive
differential cross sections are presented. The Arrhenius activation energy
is represented as a function of appropriate threshold energies.
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1. Introduction

If a simple chemical reaction is analyzed the activation energy and the
threshold energy are often treated as if they were the same quantity. In the
kinetic theory of reacting gas this problem can be analyzed if a particular
model for the reactive cross section is specified. In this case simple relations
between both the quantities can be obtained only if nonequilibrium effects
are neglected. Otherwise, such relations have a more complicated form.
Prigogine and Xhrouet [1] were the first to show that if a bimolecular chem-
ical reaction proceeds in a dilute gas the Maxwell–Boltzmann velocity distri-
bution function of reacting molecules changes due to nonequilibrium effects.
In result the rate constant kA of chemical reaction decreases. Many au-
thors have analyzed such a decrease and solved the Boltzmann equation for
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this purpose (see, e.g., [2] and the references cited therein). Although the
line-of-centers model for the reactive cross section (the LC model) has been
very often introduced for such a solution it is interesting that even a larger
decrease of kA can be obtained if the model for reactive cross section intro-
duced originally by Prigogine and Xhrouet (the PX model) is used (compare
the results from Refs. [3–5]). As the Arrhenius activation energy [6] can be
obtained from an analysis of temperature dependence of kA, it seems inter-
esting to see how, in a case of large nonequilibrium effects, an analysis of
such a temperature dependence of kA can lead to results of the Arrhenius
activation energy different from the values of threshold energy. For this pur-
pose it is worthwhile to use the nonequilibium expressions for kA obtained
for the LC and PX models, i.e., such as obtained in Refs. [3, 5].

The Arrhenius equation can be written in the following form [7]

EArr = −k
d ln kA

d 1
T

, (1.1)

where EArr denotes the Arrhenius activation energy, k is the Boltzmann
constant and T the temperature. If in Eq. (1.1) the energy EArr is expressed
for moles of reactants the universal gas constant R instead of k is introduced.
It is worthwhile to observe that Arrhenius originally wrote this equation as

kA = A exp

(

−
EArr

kT

)

, (1.2)

where A denotes so called pre-exponential factor. This equation was ob-
tained by Arrhenius [6] after an analysis of earlier experimental data. As
this equation is very important in chemical kinetics, many scientists have
shown that this equation can be obtained in a theoretical way (see, e.g., [7]
and the references cited therein). In general the pre-exponential factor is
a function of temperature. The discrepancies from the Arrhenius equation
can be analyzed in a relatively simple way on the basis of kinetic theory of
gases (see, e.g., [7, 8]). In the simplest case we can analyze the following
bimolecular reaction

A+A ⇆ B +B . (1.3)

The rate vA of this reaction can be written as

vA = vAf − vAr = vAf − vBf , (1.4)

where the indices f and r are introduced to denote the forward and reverse
reactions, respectively, and vAr is equal to vBf .
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The rates vAf , vBf , vA and rate constants kAf , kBf , kA are simply related

kRf =
vRf

n2
R

, (R = A,B) (1.5)

kA =
vA

n2
A

, (1.6)

where nA is the number density of reactant A.
The rate of the forward chemical reaction can be expressed as

vRf = −
dnR

dt
=

∫ ∫ ∫

fR1fR2 σre g dΩ dcR1 dcR2 , (R = A,B) (1.7)

where nR is the number density, t is the time, fR1 and fR2 are the velocity
distribution functions of two colliding molecules R, distinguished by the
indices R1 and R2, σre is the differential reactive cross section, Ω is the
solid angle, whereas cR1, cR2 and g are the velocities of molecules and their
relative velocity, respectively.

If we neglect the nonequilibrium effects we introduce the Maxwell veloc-
ity distribution function

f
(0)
R = nR

(

m

2πkT

)3/2

exp

(

−
mc2R
2kT

)

, (R = A,B) . (1.8)

When the reaction (1.3) proceeds the rate of chemical reaction vA is
decreased due to nonequilibrium effects. Prigogine and Xhrouet [1] gener-
alizing the Chapman–Enskog solution [9] of the Boltzmann equation to the
case of a chemically reacting gas have shown that the rate constant of the
forward reaction kAf is smaller than its equilibrium value kAf(0) because the

velocity distribution function is no longer Maxwellian and changes from f
(0)
A

to fA. It means that the forward reaction rate changes from vAf(0) to vAf .
If we neglect the nonequilibrium effects we can obtain from Eqs. (1.1)

and (1.5)–(1.8) a simplified equilibrium expression for EArr, however, we
have also to choose the appropriate reactive cross section σre. For the LC
model introduced by Present [10] the differential reactive cross section is
introduced as

σre = σ∗ =

{

0 , g ≤ g∗,
1
4sF d

2
(

1 − g∗2/g2
)

, g > g∗ ,
(1.9)

where d is the molecular diameter, sF denotes the steric factor, and g∗ is the
threshold velocity related to the threshold energy E∗ as

E∗ =
mg∗2

4
. (1.10)
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As in Ref. [3] we assume that the threshold energies for the forward and
reverse reaction are equal, i.e., the reaction is neither exothermal nor en-
dothermal one. In this case for this cross section from Eqs. (1.5), (1.7) and
(1.8) we obtain for the forward reaction

kLC
Rf (0) = 4sFd

2

(

πkT

m

)1/2

exp

(

−
E∗

kT

)

, (R = A,B) . (1.11)

It should be emphasized that EArr is a quantity describing the overall
reaction. As we are interested in receiving a relation between the Arrhenius
activation energy and the threshold energy we analyze the reaction in which
the threshold energies for the forward and reverse reactions are equal to
one another. This case is very convenient for us because we can use the
nonequilibrium expressions for kA earlier derived [3,5] (see the next section).

After taking into account that if we neglect the nonequilibrium effects
we can use for the reaction (1.3) the following relation

vA(0) = vAf(0)

(

1 −
n2

B

n2
A

)

(1.12)

and using Eq. (1.11) for the overall reaction we get

kLC
A (0) = 4sF d

2

(

πkT

m

)1/2

exp

(

−
E∗

kT

)[

1 −
n2

B

n2
A

]

. (1.13)

After taking into consideration that in the reaction analyzed the ratio
nB/nA does not depend on temperature and using Eqs. (1.1) and (1.13) we
can get

EArr = E∗ +
1

2
kT . (1.14)

This is a known relation which we present only to show the typical way
for our further derivations performed in the next section.

For the PX model introduced by Prigogine and Xhrouet [1] the differen-
tial reactive cross section is

σre = σ0 =

{

0 , g ≤ g0 ,
1
4sFd

2 , g > g0 ,
(1.15)

where g0 is the appropriate relative threshold velocity related to the thresh-
old energy E0 as

E0 =
mg2

0

4
. (1.16)
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For the PX model of the differential reactive cross section instead Eqs. (1.11)
and (1.13) we can obtain

kPX
Rf (0)=4sFd

2

(

πkT

m

)1/2(E0

kT
+ 1

)

exp

(

−
E0

kT

)

, (R = A,B) (1.17)

kPX
A (0)=4sFd

2

(

πkT

m

)1/2(E0

kT
+ 1

)

exp

(

−
E0

kT

)[

1 −
n2

A

n2
B

]

. (1.18)

From Eqs. (1.1) and (1.18) we get

EArr = E0 −
1

2
kT

E0 − kT

E0 + kT
. (1.19)

It should be emphasized that this simple relation for the PX model, i.e.,
Eq. (1.19) in contrary to the relation for the LC model (see Eq. (1.14) ) is
not generally known. From a comparison of Eqs. (1.14) and (1.19) we see
that the relations between the Arrhenius activation energy and the threshold
energy are different for the LC and PX models. We have derived Eq. (1.19)
here to show that even in the simplest case when the nonequilibrium effects
are neglected the role of the model of the reactive cross section is important.

We introduce here the energies in reduced (dimensionless) forms which
are convenient to use in more complicated nonequilibrium expressions which
we derive in the next section

εArr =
EArr

kT
, (1.20)

ε∗ =
E∗

kT
, (1.21)

ε0 =
E0

kT
. (1.22)

We will use such energies in the next section. From Eq. (1.14) we can see
that if only ε∗ is sufficiently large, the threshold energy can be treated as the
Arrhenius activation energy, because if ε∗ increases the role of 1/2 becomes
smaller and smaller. Relation (1.19) looks even better because, for typical
values of ε0, e.g., ε0 ranging from 1 to 50, a role of the term with 1/2 is
diminished. We think that it is important whether the difference between the
threshold energy and Arrhenius activation energy can be neglected or not. If
only Eqs. (1.14) and (1.19) were sufficient to analyze this problem it would
be very simple. However, the nonequilibrium effects can be very important.
As we have mentioned the rate constant kA is diminished because of the
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existence of nonequilibrium effects. If the LC model is used the diminishing
of kA due to these effects is not trivial [3] (see also [11, 12]) and for the
PX model such effects are even larger [4, 5]. The aim of this paper is to
analyze how Eqs. (1.14) and (1.19) are changed if the nonequilibrium effects
are taken into account and to see how large the differences between the
Arrhenius activation energy and the threshold energy can be in this case.
We present such an analysis in the next section.

2. Nonequilibrium expressions for

the Arrhenius activation energy for the LC and PX models

In order to take into consideration nonequilibrium effects in expressions
relating the Arrhenius activation energy with the threshold energy we use the
results obtained from the perturbation solution of the Boltzmann equation.
We write down the Boltzmann equation for reaction (see Eq. (1.3)) for the
component A in the same form as that presented in Refs. [3, 4, 13].

∂fA

∂t
= Iel + Ire , (2.1)

where the elastic and reactive collision integrals Iel and Ire are

Iel =

∫ ∫

(

f
′

A1f
′

A2 − fA1fA2

)

σAA g dΩ dcA2

×

∫ ∫

(

f
′

Af
′

B − fAfB

)

σAB g dΩ dcB , (2.2)

Ire =

∫ ∫

(

fB1fB2 − f
′

A1f
′

A2

)

σre g dΩdcB2 , (2.3)

where f
′

A1, f
′

A2, f
′

B1, f
′

B2, f
′

A and f
′

B are introduced to denote the velocity
distribution function after collisions whereas the reactive differential cross
sections σre are those given in Eqs. (1.9) and (1.15) for the LC model and
PX model, respectively.

In these integrals the elastic differential cross sections σAA and σAB are

σAA = σAB =
1

4
d2 . (2.4)

As we have already solved the Boltzmann equation [3, 5] for the LC and
PX models of differential reactive cross sections we shall use the results
obtained. However, first we shortly describe such results. We have solved
the Boltzmann equation by the perturbation method described by Shizgal
and Karplus [14, 15] and developed by Shizgal and Napier [2]. We have
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neglected all heat effects of the reaction, i.e., we have assumed the reaction
to be neither exothermal nor endothermal one. However, we have taken into
consideration that, even in the simplest models of reactive collisions, the
particles of reactants and products need not have the same average kinetic
energies.

Solving the Boltzmann equation (2.1) by the perturbation method we
have introduced the nonequilibrium velocity distribution function as

fA = f
(0)
A + f

(1)
A = f

(0)
A (1 + ψA) (2.5)

and we have expanded the function ψA in the Sonine polynomials [9, 15]

ψA =
∑

i

a
(i)
A S

(i)
1/2(C

2
A) , (2.6)

where

C2
A =

mAc
2
A

2kT
. (2.7)

It is important to emphasize that the perturbation method can be used
only if the quantity ψA is small. This is possible in three cases: (i) if sF is
small, (ii) if the reaction proceeds near to the chemical equilibrium, (iii) if
the threshold energy, e.g., for the LC model E∗, is significantly larger than
kT . Naturally, one or two conditions mentioned above may be sufficient. To
make this clear we present the simple expression for ψA for the LC model
in one Sonine polynomial approximation

ψA = xA

(

1 −
x2

B

x2
A

)[

1

2
sF

(

E∗

kT
+

1

2

)

exp

(

−
E∗

kT

)]

S
(1)
1/2 (C2

A) . (2.8)

It is worthwhile to emphasize that, in the chemical equilibrium of the
simple reaction (1.3) analyzed in this paper, the molar fractions are equal,
i.e., xA = xB = 0.5.

For the LC and PX models we have used the following three approxima-
tions to the velocity distribution function

I. fA(0) = f
(0)
A , (2.9)

II. fA(1) = f
(0)
A [1 + a

(1)
A (1)S

(1)
1/2(C

2
A)] , (2.10)

III. fA(2) = f
(0)
A [1 + a

(1)
A (2)S

(1)
1/2(C

2
A) + a

(2)
A (2)S

(2)
1/2(C

2
A)] , (2.11)

where the zero-th approximation (I. — Eq. (2.9)) corresponds to total
neglecting of nonequilibrium effects as in the introduction of this paper.
In the first approximation (II. — Eq. (2.10)) one Sonine polynomial is
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introduced only and the coefficient a
(1)
A (1) is calculated within the pertur-

bation solution of the Boltzmann equation. In the second approximation
(III. — Eq. (2.11)) two Sonine polynomials are introduced and two ap-

propriate coefficients a
(1)
A (2) and a

(2)
A (2) are calculated. In order to derive

the expressions for vA and kA as a function of the threshold energy we use
Eqs. (1.4)–(1.7) and introduce the appropriate velocity distribution function
fA = fA(0), fA = fA(1), fA = fA(2). In this way we have got three ap-
proximations to vA for the LC and PX models [3,5]. We have introduced to
Eq. (1.7) the velocity distribution functions from Eqs. (2.9)–(2.11) to ob-
tain vAf(0), vAf(1) and vAf(2) and next obtained the expressions for vA(0),
vA(1) and vA(2). From those expressions after using Eq. (1.6) and taking
into account that for the models analyzed the nonequilibrium corrections to
the overall reaction rate vA do not depend on the concentration of product
(see Refs. [3, 16]) we can write appropriate simple expressions for the rate
constant kA for the overall reaction.

As follows from results presented in Ref. [3], for the LC model the first
and second nonequilibrium approximations for the rate constant for the over-
all reaction are:

kLC
A (1) = kLC

A (0)

[

1 −
1

2
sF

(

ε∗ +
1

2

)

exp(−ε∗)

]

, (2.12)

kLC
A (2) = kLC

A (0)

[

1 −
1

2
sF

(

ε21 +
1

30
(ε1 − ε2)

2

)

exp(−ε∗)

]

, (2.13)

where kLC
A (0) is given in Eq. (1.13) and the quantities ε1 and ε2 are

ε1 = ε∗ +
1

2
, (2.14)

ε2 = ε∗2 − ε∗ −
1

4
, (2.15)

where ε∗ is the reduced threshold energy defined in Eq. (1.21).

From the results presented in Ref. [5] it follows that for the PX model
the corresponding first and second nonequilibrium approximations for the
rate constant of the overall reaction are

kPX
A (1) = kPX

A (0)

[

1 −
1

2
sF

e21
ε0 + 1

exp(−ε0)

]

, (2.16)

kPX
A (2) = kPX

A (0)

[

1 −
1

60
sF

(

e1e3 + e2e4
ε0 + 1

)

exp(−ε0)

]

, (2.17)
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where the quantities e1, e2, e3, and e4 are

e1 = ε20 +
1

2
ε0 +

1

2
, (2.18)

e2 = −ε30 + 2ε20 +
1

4
ε0 +

1

4
, (2.19)

e3 = −ε30 + 33ε20 +
63

4
ε0 +

63

4
, (2.20)

e4 = −ε30 + 3ε20 +
3

4
ε0 +

3

4
. (2.21)

In order to get an expression for the Arrhenius activation energy as
a function of the threshold energy we can use Eqs. (1.1) and (1.20) and
introduce an appropriate equation for kA. For the LC model after such an
introduction of kA from Eqs. (1.13), (2.12) and (2.13) we get

εLC
Arr(0) = ε∗ +

1

2
, (2.22)

εLC
Arr(1) =

L(1)

C(1)
, (2.23)

where

L(1) = (2ε∗ + 1)
[

8 exp(ε∗) − (8ε∗2 − 2ε∗ + 1)sF)
]

, (2.24)

C(1) = 2
[

8 exp(ε∗) − (2ε∗ + 1)2sF
]

, (2.25)

εLC
Arr(2) =

L(2)

C(2)
, (2.26)

where

L(2) = 960(2ε∗ + 1) exp(ε∗)

−
(

64ε∗5−368ε∗4+2400ε∗3+552ε∗2−12ε∗+129
)

sF , (2.27)

C(2) = 1920 exp(ε∗)−(32ε∗4−128ε∗3+1040ε∗2+1056ε∗+258)sF . (2.28)

For the PX model using Eqs. (1.18), (2.16) and (2.17) in the same way
as that described above for the LC model we obtain

εPX
Arr(0) = ε0 −

1

2

(ε0 − 1)

(ε0 + 1)
, (2.29)

εPX
Arr(1) =

P (1)

X(1)
, (2.30)
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where

P (1) = (2ε20 + ε0 + 1)
[

8 exp(ε0) − (8ε30 − 10ε20 + ε0 + 1)sF
]

, (2.31)

X(1) = 2
[

8(ε0 + 1) exp(ε0) − (2ε20 + ε0 + 1)sF
]

, (2.32)

εPX
Arr(2) =

P (2)

X(2)
, (2.33)

where

P (2) = 960 (2ε20 + ε0 + 1) exp(ε0) − (64ε70 − 560ε60
+3264ε50 − 2088ε40 + 84ε30 − 1011ε20 + 258ε0 + 129)sF , (2.34)

X(2) = 2 [960(ε0 + 1) exp(ε0)

−(16ε60 − 96ε50 + 600ε40 + 528ε30 − 681ε20 + 258ε0 + 129)sF] .(2.35)

Fig. 1. represents the ratio of the Arrhenius activation energy and the
threshold energy calculated for the LC model from Eqs. (2.22)–(2.28) and
represented as a function of the reduced threshold energy ε∗. Such a ratio
for the PX model calculated from Eqs. (2.29)–(2.35) and represented as
a function of ε0 is given in Fig. 2.

0 5 10 15 20 25

1,0

1,1
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1,3

1,4

1,5

 (0)
 (1)
 (2)

LC A
rr/

 

*

Fig. 1. The ratio εLC
Arr
/ε∗ as a function of ε∗ for the equilibrium results — (0)

and those using one — (1) and two — (2) nonequilibrium corrections to the rate
constant for the LC model.
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Fig. 2. The ratio εPX
Arr
/ε0 as a function of ε0 for the PX model presented in the

same way as in Fig. 1.

3. Discussion

We have derived equations relating the Arrhenius activation energy to
the threshold energy. First, we have written down such equations for the
simplest case of the Maxwellian velocity distribution function for molecules,
i.e., for Eq. (1.8) which is used in the equilibrium. Next, after taking into
account the nonequilibrium effects, for the line-of-centers model, the sim-
ple equilibrium relation (2.22) changes to Eqs. (2.23), (2.26) corresponding
to the first and second approximations to the velocity distribution function
(obtained from the perturbation solution of the Boltzmann equation), re-
spectively. For the Prigogine–Xhrouet model such an equilibrium relation
(see Eq. (2.29)) changes to Eqs. (2.30), (2.33) for such nonequilibrium ap-
proximations. As we can see, for both the models analyzed, the differences
between the Arrhenius activation energy and the threshold energy can be
practically neglected if only those energies are large enough. Even the role
of the nonequilibrium effects diminishing the values of the rate constant of
chemical reaction is not important in this case. However, the situation be-
comes completely different if the Arrhenius activation energy is small. We
know that for very small values of εArr the problem of choosing of the ap-
propriate model can be important, and for some models of reactive cross
sections not only small but even negative εArr can appear [7, 17–19]. For
small positive values of εArr, e.g., ranging from 1 to 8 the difference fol-
lowing from introduction of the LC or PX model can be important. In
these ranges of εArr if only the nonquilibrium effects are neglected the dif-
ferences between εPX

Arr and ε0 calculated for the PX model are even smaller
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than such differences between εLC
Arr and ε∗ for the LC model (see Fig. 1. and

Fig. 2.). But if these nonequilibrium effects are taken into consideration, as
the nonequilibium corrections to the rate constant are more pronounced for
the PX model than for the LC model, such nonequilibrium corrections to
the Arrhenius activation energy are also more pronounced for the PX model.

Just to summarize, we have shown for both the models that the Arrhe-
nius activation energy can be changed due to the nonequilibrium effects.
Such corrections are larger for the Prigogine–Xhrouet model than for the
line-of-centers model if the appropriate threshold energy is small.
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