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This paper contains a detailed analysis of the properties of the scalar
product of short and long living superpositions of neutral |K0〉, |K0〉
mesons. It is shown for the exact effective Hamiltonian for neutral meson
subsystem that the scalar product of its eigenvectors, which correspond
with these short and long living superpositions, cannot be real under the
assumption of CPT conserved and CP violated. The standard conclusion
obtained within the Lee–Oehme–Yang theory of neutral kaons is that in this
case such a product should be real. Also, the general and model indepen-
dent proof that probabilities of transitions |K0〉 → |K0〉 and |K0〉 → |K0〉
are not equal in the CP non–invariant system is given.

PACS numbers: 03.65.Ca, 11.10.St, 11.30.Er, 13.20.Eb

1. Introduction

Almost all properties of the neutral meson complex are described by
solving the Schrödinger-like evolution equation [1–12] (we use ~ = c = 1
units)

i
∂

∂t
|ψ; t〉‖ = H‖ |ψ; t〉‖ , (t ≥ t0) , (1)

(where t0 is the initial instant) for |ψ; t〉‖ belonging to the subspace H‖ ⊂ H
(where H is the state space of the physical system under investigation), e.g.,
spanned by orthonormal neutral kaons states |K0〉, |K0〉, and so on, (then

states corresponding to the decay products belong to H ⊖H‖
def
= H⊥), and

the non-hermitian effective HamiltonianH‖ obtained usually by means of the
Lee–Oehme–Yang (LOY) approach [1–12] (within the use of the Weisskopf–
Wigner approximation (WW) [13]):
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H‖ ≡M −
i

2
Γ , (2)

where M = M+, Γ = Γ+ are (2 × 2) matrices. In a general case H|| can
depend on time t, H|| ≡ H||(t), [14, 15].

Usually, solutions of the evolution equation (1) are expressed in terms of
the eigenvectors of H||. Generally, in the case of two-dimensional subspace
H|| the eigenvectors of H‖ acting in this H|| will be denoted as |l〉, |s〉. In
the general case solutions of the eigenvalue problem for H||

H|| | l(s)〉 = µl(s) | l(s)〉 , (3)

have the following form [16,17]

|l(s)〉 = Nl(s)

(

|1〉 − αl(s)|2〉
)

, (4)

where |1〉 stands for the vectors of the |K0〉, |B0〉 type and |2〉 denotes
antiparticles of the particle “1”: |K0〉, B0〉, 〈j|k〉 = δjk, (j, k = 1, 2),

Nl(s) =
1

√

1 + |αl(s)|2
= N∗

l(s) , (5)

and

αl(s) =
hz − (+)h

h12
, (6)

µl(s) = h0 + (−)h ≡ ml(s) −
i

2
γl(s) . (7)

Quantities ml(s), γl(s) are real, and

h0 = 1
2(h11 + h22) , (8)

h ≡
√

h2
z + h12h21 , (9)

hz = 1
2(h11 − h22) , (10)

hjk = 〈j|H‖|k〉 , (j, k = 1, 2) . (11)

In the case of neutral kaons eigenvectors of H|| are identified with the long,
|KL〉, (vector |l〉) and short, |KS〉, (vector |s〉) living superpositions of K0

and K0. This identification of vectors |l(s)〉 with states |KL(S)〉 corresponds
to the standard phase convention for CP transformation: CP|1〉 = −|2〉,
CP|2〉 = −|1〉.
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The following identities are true for µl and µs,

µl + µs = h11 + h22 ≡ TrH|| , (12)

µl − µs = 2h
def
= ∆µ = ∆m−

i

2
∆γ , (13)

µl µs = h11h22 − h12h21 ≡ det H|| , (14)

where

∆m = ml −ms = (∆m)∗ ,

∆γ = γl − γs = (∆γ)∗ . (15)

In the standard approach to the description of properties of the neu-
tral kaon complex many relations connecting parameters characterizing neu-
tral kaons follow from the properties of the scalar product of state vectors
|KS〉, |KL〉. The aim of this paper is to analyze in the general case detailed
properties of the scalar product of eigenvectors |l〉 and |s〉 depending on CP
and CPT transformations properties of the total system under considera-
tions.

2. General properties of the product 〈s|l〉

Let us analyze the product 〈s|l〉 in the case of a general H|| without any
assumptions about CP- or CPT-symmetries of the system under considera-
tions. From (4) one finds

〈s|l〉 = NsNl (1 + α∗
s αl) . (16)

The important question is whether the product 〈s|l〉 is real, 〈s|l〉 ≡ (〈s|l〉)∗,
or not, 〈s|l〉 6= (〈s|l〉)∗. It is obvious that the answer to this question depends
on the properties of the product α∗

s αl. From (6) it follows that

α∗
s αl =

1

|h12|2

[(

|hz|
2 − |h|2

)

+ 2iℑ (hz h
∗)
]

, (17)

where ℑ (z) denotes the imaginary part of the complex number z (ℜ (z) is
the real part of z). So the trivial conclusion is that

〈s|l〉 = (〈s|l〉)∗ ≡ 〈l|s〉 ⇔ ℑ (hz h
∗) = 0. (18)

Taking into account the identity (13) one has h = 1
2

(

∆m− i
2∆γ

)

and thus
it can be easily found that

ℑ (hz h
∗) =

1

2
∆m ℑ (hz) +

1

4
∆γ ℜ (hz). (19)
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From this relation it is seen that if hz = 0, that is, if (h11 −h22) = 0 (see
(10)) then ℑ (hz h

∗) ≡ 0. This result does not depend on the values of ∆m
and ∆γ. So, if hz = 0 then the scalar product 〈s|l〉 must be real.

Now let us suppose that hz 6= 0. In order to draw some conclusions
about ℑ (hzh

∗) in this case one should rewrite ∆µ, ∆m,∆γ and (h11 −h22)
in a more convenient form. If the superweak phase φSW [11, 12] is used,

tan φSW =
2(ml −ms)

γs − γl
≡ −

2∆µ

∆γ
, (20)

then one can find that

∆m = −|∆µ| sinφSW ,
∆γ

2
= |∆µ| cosφSW . (21)

Next one should find a similar expression for ℜ (hz) and ℑ (hz). One has

hjj = ℜ (hjj) + iℑ (hjj) , (22)

(j = 1, 2), where

ℜ (hjj) ≡ Mjj , ℑ (hjj) ≡ −1
2Γjj . (23)

Using the following definitions

∆M = M11 −M22 , ∆Γ = Γ11 − Γ22 , (24)

one can write that

h11 − h22 = ∆M −
i

2
∆Γ ≡ 2hz . (25)

Next, if another phase φz is introduced analogously to the superweak phase
φSW by means of the relation

tan φz = −
2∆M

∆Γ
, (26)

then one finds that

ℜ (hz) = −|hz| sin φz, ℑ (hz) = −|hz| cosφz . (27)

Thus, using (21) and (27) relation (19) can be rewritten in a compact and
convenient form

ℑ (hz h
∗) = 1

2 |∆µ| |hz| sin(φSW − φz) . (28)
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Note that, e.g.., if ∆M 6= 0 and ∆Γ = 0 then φz = 1
2π + nπ, (n = 0,

±1,±2, . . .). On the other hand there is φSW ≈ 43, 5◦ in the case of neutral
K mesons (see [10–12]) and thus sin(φSW − φz) 6= 0.

Let us now analyze the case ∆Γ 6= 0 and ∆M = 0. These assumptions
yield φz = nπ, (n = 0,±1,±2, . . .), which means that also sin (φSW−φz) 6= 0
in this case.

The last possibility is ∆Γ 6= 0 and ∆M 6= 0. There is

δ ≅
h11 − h22

2(µl − µs)
≡ δ|| e

iφSW + δ⊥e
i(φSW+π/2) , (29)

in the case of neutral K system (see, e.g. [12], p. 623, formula (2)). Here

δ|| =
1

4

Γ11 − Γ22
√

(∆m)2 + (∆γ
2 )2

, (30)

δ⊥ =
1

2

M11 −M22
√

(∆m)2 + (∆γ
2 )2

, (31)

are the real parameters. Thus

tan φz ≡ −
δ⊥
δ||
. (32)

From (29) one finds

δ|| = ℜ (δ e−iφSW) ≡ ℜ (δ) cosφSW + ℑ (δ) sinφSW, (33)

δ⊥ = ℑ (δ e−iφSW) ≡ ℑ (δ) cosφSW −ℜ (δ) sinφSW , (34)

which leads to the following formula for tan φz:

tan φz ≡ −
ℑ (δ) −ℜ (δ) tanφSW

ℜ (δ) + ℑ (δ) tanφSW
. (35)

On the other hand

ℑ(δ) = δ|| sinφSW + δ⊥ cosφSW . (36)

Now if ∆Γ 6= 0 and ∆M 6= 0 , then using (30) and (31) one infers that δ|| 6= 0
and δ⊥ 6= 0. Thus it should be ℑ (δ) 6= 0 in such a case. Estimations of ℑ (δ)
and ℜ (δ) obtained from tests with neutral kaons show that ℑ (δ) 6= ℜ (δ)
(see, e.g. [12]). Taking into account all these properties it can be easily
verified that neither φz = φSW nor φz = φSW ± nπ, (n = 1, 2, 3, . . .) fulfills
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the relation (35) in the case of φSW ≈ 43, 5◦. Therefore, the conclusion
that there must be φz 6= φSW and φz 6= φSW ± nπ in the neutral meson
complexes seems to be obvious. So in the general case ∆Γ 6= 0, ∆M 6= 0
the condition hz 6= 0 causes also that ℑ (hz h

∗) 6= 0 and thus by (16) and
(17) that 〈s|l〉 6= 〈l|s〉 ≡ (〈s|l〉)∗.

All the above analysis leads to the conclusion that in the case on neutral
mesons the following theorem holds:

Theorem For the values of ∆m and ∆γ which are typical for
neutral meson complexes

〈s|l〉 = (〈s|l〉)∗ ≡ 〈l|s〉 ⇔ (h11 − h22) = 0 . (37)

It is interesting to confront this observation with the properties of matrix
elements, hjk, of the approximate as well as the exact effective Hamiltonians
for neutral meson complex following from the CP- or CPT-symmetries of the
total system under considerations. The standard approach to the description
of properties of neutral mesons is based on the LOY effective Hamiltonian,
HLOY. Taking H|| = HLOY and assuming that the CPT invariance holds
in the system considered one easily finds the standard result of the LOY
approach

hLOY
11 = hLOY

22 , (38)

where hLOY
jk = 〈j|HLOY|k〉, (j, k = 1, 2). Therefore, within the LOY the-

ory the property that in a CPT invariant system 〈KS|KL〉 = (〈KS|KL〉)
∗ ≡

〈KL|KS〉, is considered as quite obvious and unquestionable. This is one of
the standard results of the LOY theory of neutral meson complexes. The
question is whether such a property of the scalar product under consider-
ations holds in the case of the exact effective Hamiltonian for the neutral
mesons complex or not.

3. CP and CPT transformations and the exact H||

Solutions of the Schrödinger-like equation (1) can be written in the ma-
trix form and such a matrix defines the evolution operator (which is usually
non-unitary) U‖(t) acting in H‖:

|ψ; t〉‖
def
= U‖(t)|ψ〉‖ , (39)

where
|ψ〉‖ ≡ q1|1〉 + q2|2〉 , (40)

is the initial state of the system, |ψ〉|| ≡ |ψ, t = t0〉|| ∈ H||. CP and
CPT transformation properties of the matrix elements, hjk, of the exact
effective Hamiltonian, H||, can be extracted from the suitable properties of
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the exact evolution operator U||(t). The exact evolution operator U||(t) has
the following form [18]

U||(t) = PU(t)P , (41)

where P is the projection operator onto subspace H‖ and U(t) is the total
unitary evolution operator, which solves the Schrödinger equation

i
∂

∂t
U(t)|ψ〉|| = HU(t)|ψ〉|| , U(t = t0) = I , (42)

where I is the unit operator in H andH is the total (selfadjoint) Hamiltonian
acting in H. In the considered case the projector P can be defined as follows
[17, 18]

P = |1〉〈1| + |2〉〈2| . (43)

One has

H|| = PH , H⊥ = (I − P )H
def
= QH. (44)

The evolution operator U||(t) has a nontrivial form only if

[P,H] 6= 0 , (45)

and only then transitions of states from H|| into H⊥ and vice versa, i.e.,
decay and regeneration processes, are allowed.

Within the matrix representation one can write [18]

U||(t) ≡

(

A(t) 0

0 0

)

, (46)

where 0 denotes the suitable zero submatrices and a submatrix A(t) is the
(2 × 2) matrix acting in H||,

A(t) =

(

A11(t) A12(t)

A21(t) A22(t)

)

, (47)

and Ajk(t) = 〈j|U||(t)|k〉 ≡ 〈j|U(t)|k〉, (j, k = 1, 2).
Now if we assume that

[Θ,H] = 0, (48)

(where Θ=CPT is an antiunitary operator with unitary C,P and antiunitary
T denoting operators realizing the charge conjugation, the parity and time
reversal for vectors in H, respectively), then one easily finds that [6, 18–22]

A11(t) = A22(t) . (49)

The assumption (48) gives no relations between A12(t) and A21(t).
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If the system under considerations is assumed to be CP invariant,

[CP ,H] = 0 , (50)

then using the following, most general, phase convention

CP|1〉 = e−iα|2〉, CP|2〉 = e+iα|1〉, (51)

(instead of the standard one: CP|1〉 = −|2〉, CP|2〉 = −|1〉) one easily finds
that for the diagonal matrix elements of the matrix A(t) the relation (49)
holds in this case also, and that for the off-diagonal matrix elements

A12(t) = e2iαA21(t) . (52)

This means that if theCP symmetry is conserved in the system contain-
ing the subsystem of neutral mesons, then for every t > 0 there must be

∣

∣

∣

∣

∣

A12(t)

A21(t)

∣

∣

∣

∣

∣

= 1 ≡ const . (53)

Now let us consider the case when CP symmetry is violated,

[CP ,H] 6= 0 . (54)

For our considerations it is convenient to decompose the total Hamiltonian
H into two parts [8, 9],

H ≡ H+ +H− , (55)

where
H± = 1

2 [H ± (CP)H(CP)+] . (56)

Under CP, H+ is even and H− is odd,

(CP)H±(CP)+ = ±H± . (57)

(Note that if relation (50) holds then H−≡0.) Now using relations (55)–(57)
one can easily conclude that

(CP)H(CP)+ ≡ H − 2H− . (58)

This result helps one to solve the problem of how the solution, U(t), to the

Schrödniger equation (42) transforms under CP. So let us define UCP(t)
def
=

(CP)U(t)(CP)+, where U(t) solves Eq. (42). Starting from Eq. (42) one
obtains

i
∂

∂t
UCP(t) = (H − 2H−)UCP(t) (59)

≡ HUCP(t) − 2H−UCP(t) , (60)
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with the initial condition UCP(0) = I. The solution, U(t), of Eq. (42) is the
“free” solution for Eq. (60) and thus the solution of this last equation can be
expressed as follows [23]

UCP(t) = U(t) + 2i

t
∫

0

U(t− τ)H− UCP(τ) dτ . (61)

Of course, from (59) it follows that UCP(t) = exp[−it(H − 2H−)t] but this
formula is much less convenient than (61).

Assuming that the system under consideration is not CP invariant and
using (51) it is easy to find that

A12(t) ≡ e2iα〈2|UCP(t)|1〉 . (62)

Next, inserting there UCP(t) given by (61) yields

A12(t) = e2iαA21(t) + 2ie2iα〈2|

t
∫

0

U(t− τ)H− UCP(τ) dτ |1〉 . (63)

From this last relation one infers that when CP symmetry is violated then
for t > 0 there must be

∣

∣

∣

∣

A12(t)

A21(t)

∣

∣

∣

∣

2

≡ 1 + |r21(t)|
2 + 2ℜ (r21(t)) , (t > 0) , (64)

where

r21(t) =
2i

A21(t)

t
∫

0

〈2|U(t− τ)H− UCP(τ)|1〉 dτ , (65)

and r21(t) 6= 0 for t > 0.
Let us analyze the simplest case when t is very short, t ≈ 0, but still

t > 0 and 〈2|H|1〉 6= 0. Then after some algebra one finds

A12(t)

A21(t)

2

0<t≈0

≃ 1 + 4
〈2|H−|1〉

〈2|H|1〉

2

− 4ℜ
( 〈2|H−|1〉

〈2|H|1〉

)

6= 1 . (66)

If 〈2|H|1〉 = 0 but 〈2|H2|1〉 6= 0 then for very short t one has

A12(t)

A21(t)

2

0<t≈0

≃ 1 + 4
〈2|(H+H− +H−H+)|1〉

〈2|H2|1〉

2

− 4ℜ

(

〈2|(H+H− +H−H+)|1〉

〈2|H2|1〉

)

6= 1 . (67)
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Note that these results and (64) are the quite general and that they
do not depend on any model or approximation used. Relations (64), (66)
and (67) prove that if the property (54) holds in the system, that is if the
CP symmetry is violated, then in such a system the modulus of the ratio
A12(t)/A21(t) must be different from 1 for every t > 0,

[CP ,H] 6= 0 ⇒

∣

∣

∣

∣

A12(t)

A21(t)

∣

∣

∣

∣

6= 1 , (t > 0) . (68)

The importance of this result consists in the fact that it is the rigorous con-
sequence of only two assumptions. The first is that the real properties of the
system follow from the solutions of the Schrödinger Equation (42). The sec-
ond one is that the total selfadjoint Hamiltonian H does not commute with
the CP operator. Apart from these two assumptions no additional model
assumptions or approximations were used in order to prove (68). In particu-
lar, no properties of the eigenvectors |l〉, |s〉 for the effective Hamiltonian H||

and no assumptions about their form were used in the above considerations
leading to the conclusion (68).

So, we already have all the necessary CP- and CPT-transformation prop-
erties of the matrix elements of the exact evolution operator U||(t) for the
subspace of neutral mesons,H||, and now we can extract from them the suit-
able properties of the matrix elements of the exact effective Hamiltonian for
this subspace. One can find the necessary properties of the matrix elements
of H|| by analyzing the following identity [14, 15, 18, 24, 25]

H|| ≡ H||(t) = i
∂U||(t)

∂t
[U||(t)]

−1 , (69)

where [U||(t)]
−1 is defined as follows

U||(t) [U||(t)]
−1 = [U||(t)]

−1 U||(t) = P . (70)

(Note that the identity (69) holds, independent of whether [P,H] 6= 0 or
[P,H] = 0.) The expression (69) can be rewritten using the matrix A(t)

H||(t) ≡ i
∂A(t)

∂t
[A(t)]−1. (71)

Relations (69), (71) must be fulfilled by the exact as well as by every ap-
proximate effective Hamiltonian governing the time evolution in every two
dimensional subspace H|| of states H [14, 16, 24, 25].
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It is easy to find from (71) the general formulae for the diagonal matrix
elements, hjj, of H||(t), in which we are interested. We have [18]

h11(t) =
i

detA(t)

(

∂A11(t)

∂t
A22(t) −

∂A12(t)

∂t
A21(t)

)

, (72)

h22(t) =
i

detA(t)

(

−
∂A21(t)

∂t
A12(t) +

∂A22(t)

∂t
A11(t)

)

. (73)

Using (72), (73) the difference (h11−h22) = 2hz, whose properties are crucial
for the question whether the product 〈s|l〉 is real or not, can be expressed
as follows [18]

h11(t) − h22(t) = i
1

detA(t)

{

A11(t)A22(t)
∂

∂t
ln
(A11(t)

A22(t)

)

−A12(t)A21(t)
∂

∂t
ln
(A12(t)

A21(t)

)

}

. (74)

At this point one should use the fact that an important relation between
amplitudes A12(t) and A21(t) is described by the famous Khalfin’s Theorem
[19–21, 26, 27]. This Theorem states that in the case of unstable states, if
amplitudes A12(t) and A21(t) have the same time dependence

r(t)
def
=

A12(t)

A21(t)
= const. ≡ r , (75)

then there must be |r| = 1.
The proof of this theorem is rigorous and it does not use the CP- or

CPT-transformation properties of the system considered.
Now one is ready to examine consequences of the assumptions that

(h11(t)−h22(t)) = 0 is admissible for t > 0. In such a case an analysis of
the expression (74), relations (49), (53), (64), (68) and the Khalfin’s Theo-
rem (75) allows one to conclude that

Conclusion 1

If (h11(t) − h22(t)) = 0 for t > 0 then there must be

(a)
A11(t)

A22(t)
= const. and

A12(t)

A21(t)
= const. (for t > 0) ,

or

(b)
A11(t)

A22(t)
6= const. and

A12(t)

A21(t)
6= const. (for t > 0) .
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The following interpretation of (a) and (b) follows from (49), (53), (64),
(68) and from the Khalfin’s Theorem (75). The case (a) means that the
CP-symmetry is conserved and there is no information about the CPT in-
variance. The case (b) denotes that the system under considerations is
neither CP-invariant nor CPT-invariant.

In our discussion the CPT Theorem [28–33] cannot be neglected. The
CPT Theorem is a fundamental theorem of axiomatic quantum field theory.
It follows from locality, Lorentz invariance and unitarity. One should also
take into account another fact that there is no experimental evidence that
CPT symmetry is violated [12, 34]. Therefore, the assumption that any
quantum theory of elementary particles should be CPT invariant seems to
be obvious. So let us assume that CPT symmetry is the exact symmetry
of the system under considerations, that is that the condition (48) holds.
In such a case the relation (49) holds. The consequence of this is that the
expression (74) becomes simpler and it is easy to prove that the following
property must hold [18]

h11(t) − h22(t) = 0 ⇔
A12(t)

A21(t)
= const., (t > 0) . (76)

Now let us go on to analyze the conclusions following from the Khalfin’s
Theorem. CP noninvariance requires that |r| 6= 1 (see (53), (64), (68) and
also [1–12,19–22]). This means that in such a case there must be r = r(t) 6=
const. So, if in the system considered the properties (48) and (54) hold then,
as it follows from (76), at t > 0 there must be (h11(t) − h22(t)) 6= 0 in this
system [18]. Thus, keeping in mind results (28) and (37) one can state that
following conclusion must be true

Conclusion 2

If the CPT symmetry is the real symmetry of the system contain-
ing neutral meson subsystem and the CP symmetry is violated
in this system (i.e., if (48) and (54) hold) then there must be

〈s|l〉 6= (〈s|l〉)∗ ≡ 〈l|s〉 . (77)

4. Discussion

As it was mentioned, the CPT Theorem follows from basic principles
of quantum theory. Simply it is the mathematical consequence of basic
assumptions of quantum theory. There is no evidence that the basic prin-
ciples of the quantum mechanics are violated. There is also no evidence of
the CPT violation. In contrast to the lack of evidence of the CPT nonin-
variance, the CP violation is an experimental fact [4, 12, 34]. This means

(by (68)) that in the real system there must be
∣

∣

A12(t)
A21(t)

∣

∣ 6= 1 for (t > 0)
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and, therefore, due to the Khalfin’s theorem (75) and the relation (76),
there must be (h11(t) − h22(t)) 6= 0 for (t > 0) in real systems. Thus the
real property of the system containing neutral mesons is that it must be
〈s|l〉 6= (〈s|l〉)∗ ≡ 〈l|s〉 (rather than 〈s|l〉 = (〈s|l〉)∗ ≡ 〈l|s〉). This means
that one of the standard results of the LOY theory that in a CPT invariant
system 〈KS|KL〉 = (〈KS|KL〉)

∗ ≡ 〈KL|KS〉, (where |KS〉, |KL〉 correspond
to |s〉, |l〉), is wrong.

On the other hand, the assumption that the inner product 〈KS|KL〉
should be real (or equivalently that there should be ℑ 〈KS|KL〉 = 0) when
the CPT symmetry holds was considered in the literature as the fundamen-
tal property of CPT invariant system allowing one to derive many relations
connecting parameters characterizing the neutral K system and some con-
strains on these parameters [2–12,35–40], etc.

The result (77) means that all relations and constrains obtained in this
way need not reflect real properties of systems under consideration. Simply,
they may lead to wrong conclusions obfuscating the real properties of the
neutral meson systems and thus our opinion about the interactions causing
decay process of these mesons. So within the standard LOY theory of neu-
tral meson complexes one should be very careful interpreting the results of
experiments with neutral mesons and in such a case one can never be sure
that this interpretation corresponds to the real properties of the system un-
der investigations. These reservations also concern relations derived within
the use of the Bell–Steinberger relation. Properties of the inner product
〈KS|KL〉 are crucial for the interpretation of such relations [35,40]. It seems
that while performing an analysis of the results of such experiments, only
relations connecting the parameters characterizing neutral meson complexes
which do not depend on any approximations and which follow directly from
the general principles of the quantum theory should be taken into account.
The mentioned above Khalfin’s Theorem is an example of such relations.

Note that if we assume that real properties of the system are described
by the solutions of the Schrödinger Equation (42) (with H = H+) then there
can be 〈s|l〉 = 〈l|s〉 ≡ (〈s|l〉)∗ for hz 6= 0 only if φz = φSW, that is if

2∆M

∆Γ
≡ −

ℜ (h11 − h22)

ℑ (h11 − h22)
=

2 (µl − µs)

γl − γs
. (78)

The result of the Fridrichs–Lee model [19] calculations performed in [17]
with the assumption that values of parameters of this model correspond to
the parameters of neutral K complex is the following [18]

ℜ(hFL
11 − hFL

22 ) = ∆MFL ∼ 1.7 × 10−13ℑ (〈1|H|2〉) 6= 0 , (79)

and
ℑ(hFL

11 − hFL
22 ) ≡ −1

2 ∆ΓFL = 0 . (80)
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So, the relation (78) does not take place in the case of the Fridrichs–Lee
model. The same conclusion one can draw analyzing the experimentally
obtained values ∆M = mK0

−mK̄0
and ∆µ = mKL

−mKS
, ∆γ = ΓKL

−ΓKS

[12].
The result (77) is the consequence of the property (68) that for t > 0

modulus of the ratio A12(t)/A21(t) must be different from unity if CP sym-
metry is violated. Within the LOY theory such a property follows from the
properties of matrix elements of the approximate LOY effective Hamiltonian.
On the other hand, taking into account the conclusions derived in [42], the
property (68) cannot considered to be the obvious.

In [42] it was found that within the LOY theory the modulus of the
similar ratio can be equal to one for some models of interactions. Note that
the conclusion (68) does not depend on any approximation. It also does not
depend on any model of interactions. As it was mentioned it is the simple
implication of two general assumptions: that the total Hamiltonian, H,
does not commute with the CP operator and that the Schrödinger equation
describes correctly the system we are interested in. This means that this
relation reflects real properties of system with CP violated.

All evolution equations for neutral meson complex have the form of
Eq. (1) (see [1–12, 43, 44]). Solutions of this equation are used to describe
time evolution of neutral mesons and mixing processes. Solving this equa-
tion one can find amplitudes Ajk(t), (j, k = 1, 2). An important property
of the ratio A12(t)/A21(t) = r(t) follows from the Khalfin’s Theorem (75).
The main result of this paper (i.e., the property (77)) and the earlier result
that there must be h11(t) − h22(t)) 6= 0 for t > 0 in the CPT invariant sys-
tem [18] (see also [45]) is the consequence of this Theorem. One may want
to confront the Khalfin’s Theorem with the experimental results, which give
|1 − |r(t)| | ∼ 10−3 = const. with some limited accuracy (see, e.g., [12, 44]).
This does not mean that the Khalfin’s Theorem is wrong. Simply effects
connected with the Khalfin’s Theorem are very tiny and they seem to be
beyond the accuracy of recent experiments (see also [27]). In the light of
the detailed model analysis given in [19] the conclusion that for t ≫ t0,

|rmax(t)− rmin(t)|
def
= ∆r < 10−11, seems to be acceptable. Within the LOY

approximation physical states, |l〉, |s〉, decays exponentially. In general there
are tiny corrections to the exponential decay laws at very short and very long
times [46]. The amplitudes Ajk(t) calculated within the LOY, that is in fact
within the WW approximation give the result r(t) = rLOY = const. These
amplitudes calculated more accurately contains non-exponential and non-
oscillatory tiny corrections (see [19,22]) leading to varying in time r(t) with
the spectrum of changes limited by ∆r < 10−11. In other words there is

r(t) = rLOY + d(t) , (81)
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where d(t) varies in time t and | d(t)| ≤ ∆r for t ≫ t0. (Note that the
Khalfin’s Theorem does not require d(t) to be large.) These corrections seem
to be irrelevant for many parameters describing neutral meson complex but
they and, therefore, the consequences of the Khalfin’s Theorem, must be
taken into account in high precision CPT symmetry tests.

The last remark. Within the standard theory of neutral meson complexes
all evolution equations are derived from the Schrödinger Equation (42) using
more or less accurate approximations (see [1–12, 35–40] and so on). This
means that there is a consensus that the Schrödinger Equation describes
correctly time evolution in such systems. So, if we adopt this opinion and
assume that the Schrödinger Equation describes correctly real properties of
the varying in time processes in the systems, e.g., containing neutral meson
complex as a subsystem, then we must also accept all rigorous consequences
of such an assumption. The main conclusions of this paper are consequences
of this type.
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