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Algorithm is constructed which models single-file motion of particles
interacting with each other and with the surroundings. As an example,
we present the results of Brownian Dynamics simulations of the motion of
cations moving through a short very narrow channel containing a device
called “gate”, which may open and close the channel.

PACS numbers: 05.10.–a, 05.10.Gg, 87.16.Uv, 05.40.Ca

1. Introduction

Nanochannel transport and physical mechanisms of its regulation are
among leading open problems in nanoscience. Its importance results from
the fact that controlled and selective flow of matter through proteins in
the cell membrane — achieved by active and passive channels [1] — is one
of the most important biophysical processes in living cells. On the other
hand, similar functions may be performed by synthetic nanopores which
also can rectify the ionic currents [2–4] and pump the ions against their
concentration gradients [5] and, therefore, may be used as simple models of
biological (protein) channels, and, on the other hand, may serve as devices
for manipulating the transport in the nanoscale. Therefore, it is important
to understand the conditions and properties of material transport inside the
nanopore.

The well-known and rather obvious property of the transport of material
through very narrow pores is that the particles (ions, molecules . . . ) can pass
through such channels in the form of single file only [6].

In the absence of noise (i.e., in standard Molecular Dynamics simula-
tions) time increments δt can be made arbitrarily small. This feature makes
easy (in principle, at least) to keep all particles in prescribed unchanged
order. In the Brownian Dynamics (BD) the action of random forces may re-
sult in arbitrarily high velocities and arbitrarily long jumps, time increment
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being irrelevant in this respect. Therefore, it is impossible to keep particles
in still the same ordering by reducing time increments, the more that in
the presence of noise the time increments cannot be arbitrary [7, 8]. Some
additional procedures are needed.

We present here the developed by us algorithm which models single-file
motion of particles interacting with each other and with the surroundings,
moving in a short very narrow channel containing a device called “gate”,
which may open and close the channel. To be specific, we shall discuss in
this paper the electrostatic and soft-sphere interactions, though the formulas
and the algorithms themselves can be easily adapted to any (sensible) form
of interactions.

2. The model

We use the simplified model which does not take into account the details
of the channel’s structure. Full MD simulations of a K+-channel, includ-
ing its molecular structure, water inside, all ions in the immediate vicinity,
etc., requires use of total number of atoms in the simulation system above
4 × 104, and time-steps 0.2 fs [9, 10]. Such simulations have also some other
drawbacks [11].

Little is known about the details of the gating mechanism, the more that
the motions of dangling ends [12] in synthetic pores are probably quite differ-
ent from the motions of the subunits of proteins constituting the biological
channels. Therefore, without entering into details of equations of motion for
the channel’s walls, we model the gating process by introducing inside the
channel the artificial device called “gate” which can either allow or prevent
the flow of particles through the channel.

The main assumptions are:

(i) We simulate the motions of the particles inside the Simulation Zone
(SZ) of the length L, narrow enough to force the particles inside SZ
to move in the single-file order. Knowledge of the detailed shape (e.g.
cylinder, cone, hour-glass) is not necessary from this point of view.
Regions outside are treated as reservoirs for particles both outcoming
from and ingoing into SZ.

(ii) We neglect the motions in radial directions, and describe the particles
as moving along the z-axis of the SZ only (quasi-one-dimensional mo-
tion). However, the physical system (electrostatic interactions, etc.)
remains three-dimensional.

(iii) The opening and closing of the channel (so-called gating process) is
modeled by the presence of the charged “gate” located inside SZ. The
state of the gate is determined by its Brownian motion (Wiener process
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of intensity Qb), and by electrostatic interactions with the ions inside
SZ and with external electric field. The gate opens when the net force
exceeds some threshold value, and closes otherwise. Minimal approach
distance between particle and gate is dcg.

(iv) The real channels exhibiting the flicker noise are asymmetric and
charged. We model these properties by the mentioned above gate,
and by additional charges located outside SZ.

(v) Water molecules are not modeled explicitly but are described electro-
statically by an effective dielectric constant and as the source of friction
and noise — as is frequently done [13].

No periodic boundary conditions are imposed. Instead, in our simula-
tions we assumed (when other rules are satisfied) that:

(i) Particles can leave and enter the simulation zone through both aper-
tures.

(ii) Particle leaves the simulation zone (and can be counted to the cur-
rent balance at the given aperture) when its center-of-mass position is
smaller than the lower threshold, or greater then the higher threshold.
In our case we accepted as thresholds the particle diameter dc and
simulation zone length L minus dc.

(iii) Single-file assumption implies that when one particle leaves the sim-
ulation zone, another cannot enter through the same aperture in the
same time (i.e., during the same time-step).

(iv) When rule (iii) allows, particle may enter SZ when nearest particle is
farther that the prescribed smallest distance. In our case the smallest
distance is dc + ε (ε = 0.00001 nm).

(v) Particles enter SZ with prescribed finite probabilities P (0) and P (L),
which may be different for different apertures (i.e. at x = 0 and
x = L). The probabilities of entrance simulate concentrations outside
SZ, the lower concentration, the lower probability.

In our simulations we assumed that (when other rules are satisfied) dur-
ing one time-step only one particle may enter the SZ through a given en-
trance, and, when entering, that it is located at the distance dc from the
aperture. This rule can be changed.

The Langevin-type equations of motion for the particles (cations) moving
along the channel reads:

miv̇i = −γivi + Ri(zi) + Fi(zi) ,

żi = vi , (1)
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where vi is the velocity of i-th ion, zi the position, mi the mass, γi the friction
coefficient, Fi(zi) sum of deterministic forces, and Ri(zi) the random force.

The gate is charged to prescribed value qg = Zge, where Zg is the valence
and can be in two states: open and closed, respectively. In our simulation
important is the absolute value of the force Fg acting on the gate. We assume
Fg to be sum of deterministic and random forces described below.

The deterministic force Fi(zi) experienced by the cations and the gate
consist of the applied external force (voltage), and the internal Coulomb
force from other charges. The Coulomb interaction between two ions is
modified by the addition of a short-range repulsive 1/r10 force, where r is
the ion–ion distance [8].

The random force Ri acting on ions is assumed to be the thermal noise
represented by the Gaussian white noise. On the other hand the random
force experienced by the gate Rg is given by the Wiener process (gate’s
Brownian motion) Rg =

∑

n Ri,n where n denotes the n-th step of iteration.
In the Brownian Dynamics calculations, δt should be of the order of

mi/γi [7, 14, 15]. Using the Euler scheme for the Eq. (1)

mi

vi(t + δt) − vi(t)

δt
+ γivi(t) = Fi(t) + Ri(t) , (2)

would lead to obviously wrong result: vi(t + δt) = Fi(t) + Ri(t). Therefore,
we use the following scheme of discretization:

mi
vi(t + δt) − vi(t)

δt
+

γi

2
[vi(t + δt) + vi(t)] = Fi(t) + Ri(t) ,

zi(t + δt) − zi(t))

δt
= vi(t + δt) . (3)

This computational scheme is similar, though not identical, with that de-
scribed recently in Ref. [7, 14]. The “forward evaluation” (Eq. (3)) has
stability and accuracy implications, and [14] suggest using it for each ex-
trapolative force calculations.

3. Numerical results

The length of the simulation zone is L = 10nm. This corresponds to the
real length of biological channels and, roughly, to the length of the narrow
part of the synthetic channel reported in [12]

The net flow of particles, the particles are the potassium cations, through
the channel (simulation zone) was calculated either by keeping the balance
of particles entering and leaving both apertures, or by counting the particles
passing the gate in both directions. Both procedures lead to the same results.
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Initial values of velocities of cations were drawn from the Maxwell distri-
bution with the variance kBT/mc. The results are insensitive on the exact
values of temperature and mass within rather wide range of temperatures
and masses.

A list of the parameters used in the BD simulations is given below:

Temperature: T = 298 K and kBT = 4, 12 × 10−21 J,
Mass of cation: mc = 6.5 × 10−26 kg,
Friction constant: γc = 2.08 × 10−12 kg/s,
Dielectric constant: εw = 81,
Voltage: U = 1.77 × 10−2 V
Ion diameter: dc = 0.266 × 10−9 m,
Ion-gate min. distance: dcg = 2.5dc,
Valences: Zc = +1, Zg = −50,
Intensity of short-range force: F 0

SR = 18 × 10−9 N,
Intensity of noise: Qc = 0.47 × 10−9 N, Qg = 0.01Qi.

Intensity of the gate’s noise Qg is different from cations’ one Qc (and
is taken as a free parameter) due to the difference of masses, and also due
to a kind of “stiffness” of (or hindrances in) the motions of channel’s walls
constituents.

In all simulations first 106 steps were rejected. The power spectrum
was calculated from runs of length 107δt. The power spectrum of the series
{m1, . . . mN} is

S(f) =
1

N

∣

∣

∣

∣

N
∑

n=1

mne−2πifn

∣

∣

∣

∣

2

, (4)

where mn denotes either the net number of particles leaving SZ during the
n-th step (then mn can be either positive, zero, or negative), the number of
particles inside SZ at the end of the n-th step (mn = Np ≥ 0), or the state
of the gate during the n-th step (then mn = {0, 1}). All these power spectra
are dimensionless.

There are data that suggest that inside very narrow pores the physical
properties of aqueous solutions, such as dielectric constant, density, diffu-
sion coefficient, viscosity, solvatation of ions (i.e., their effective diameters),
etc. may differ from their bulk values [17]. Therefore, we checked how the
changes of such parameters influence our model. We found that the quanti-
tative changes of calculated values of net currents and of frequency spectra
resulting from reasonable variations of these parameters are within the limits
of quantitative differences resulting from different realizations of the noise.
The results are shown in Figs. 1–3. These observations suggest robustness
of the model.
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Fig. 1. Power spectra S(f) of the stochastic series of subsequent values of the net

number of cations mn leaving the simulation zone. Panel A: S(f) for 7 different

realizations of the intrinsic noises, the same values of all parameters in every series:

ε = 81, mc = 6.5 × 10−26 kg, U = 17.7 × 10−3 V, δt = 31 × 10−15 s, Qg = 0.01 Qc,

F 0
SR = 18× 10−9 N, gate thresholds = ±1.1× 10−9 N. Panel B: S(f) with the same

realizations of the intrinsic noises, for 7 different values of all parameters in every

series. In every series only one parameter is changed: ε = 0.93 ε0, m = 0.77m0,

U = 1.33 U0, δt = 0.8 δt0, Qg = 0.75 Q0
g, FSR = 0.6 F 0

SR, where p0 denotes the

value of the given parameter from the panel A.

Fig. 2. Power spectra S(f) of the stochastic series of subsequent values of the

number of cations Np inside the simulation zone. Notation and values of parameters

the same as in Fig. 1.
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Fig. 3. Power spectra S(f) of the stochastic series of subsequent values of the state

of the gate. Notation and values of parameters the same as in Fig. 1.

On the other hand, the model is sensitive with respect to the changes
of relative strength of random and deterministic forces — decrease of the
dielectric constant with noise unchanged, or increase of noise with electro-
static forces unchanged changed significantly the results. E.g., either too
strong gate noise or too strong electrostatic force (i.e., low dielectric con-
stant) dampen the flicker noise.

When the single-file limitations are removed, all the power spectra shown
in Figs. 1–3 become S(f) ∼ f−1.5, i.e., the corresponding processes behave
like the Wiener process.

The code for the single-file motion is presented at the WWW site
http://arxiv.org/abs/physics/0603238.

We express our warmest thanks to Paweł Góra, Peter Hänggi, Lutz
Schimansky-Geier and Peter Talkner for enlightening critical discussions in
various stages of the development of this work.
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