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In this paper we examine the Casimir effect for charged fields in pres-
ence of external magnetic field. We consider scalar field (connected with
spinless particles) and the Dirac field (connected with 1/2-spin particles).
In both cases we describe quantum field using the canonical formalism. We
obtain vacuum energy by direct solving field equations and using the mode
summation method. In order to compute the renormalized vacuum energy
we use the Abel–Plana formula.

PACS numbers: 11.10.–z, 03.70.+k

1. Introduction

The imposition of boundary condition on a quantum field leads to the
modification of the vacuum energy level and can be observed as an associ-
ated vacuum pressure. This effect (called Casimir effect) has been predicted
by Casimir in his original work in 1948 [1], and has been experimentally
observed for electromagnetic field several years later. Until now, in many
theoretical works Casimir energy has been computed for various types of
boundary geometry and for fields other than electromagnetic one.

When we consider of charged fields another important question arise.
How an external field, coupled to the charge, affect the vacuum energy of
the field? Answer to this question is important for understanding of some
aspects in particle physics. Within a hadron, for example, the vacuum energy
of quark fields is affected by the electromagnetic field of the quarks and by
the color field of gluons and quarks.

In order to investigate how charged fermionic and bosonic constrained
vacuum fluctuations are affected by fields coupled to this charge, we consider

∗ This article was supported by the Polish Ministry of Science and Information Society
Technologies under the grant No. PBZ/MIN/008/P03/2003 and by the University of
Lodz.

(1753)



1754 M. Ostrowski

vacuum energy of electrically charged fields under the influence of an exter-
nal constant uniform magnetic field, and constrained by simple boundary
conditions. In Section 2 we shall consider a complex scalar field confined be-
tween two infinite plates with Dirichlet boundary conditions with magnetic
field in a direction perpendicular to the plates. In Section 3 we shall consider
a Dirac quantum field under antiperiodic boundary conditions. This choice
of geometry and external fields avoids technical difficulties and focuses our
attention on the fundamental issue.

The fermionic Casimir effect was first calculated by Johnson [2] for appli-
cations in the MIT bag model. For a massless Dirac field, Johnson obtained
an energy density 7/4 times the energy density of the electromagnetic field.

In both cases (bosonic and fermionic) we describe quantum field using
the canonical formalism. We obtain the vacuum energy by direct solving the
field equations and using the mode summation method. In order to compute
the renormalized vacuum energy we use the Abel–Plana formula.

In order to obtain influence of magnetic field on the Casimir energy
another methods can be used. Recently, the papers using Schwinger’s proper
time method have been published [3,4]. So, our purpose is to compare results
obtained using our (canonical) method with the Schwinger’s one (based on
the covariant quantization).

In paper [5] the fermionic Casimir energy in external magnetic field is
also investigate. However, in [5] authors consider Dirac field under different
boundary conditions (MIT boundary conditions) and obtain different results.

2. Bosonic Casimir effect

In this section we consider scalar field φ(~r, t) , describing charged, spinless
particles with mass m. It is under the influence of uniform magnetic field
~B = (0, 0, B). We choose direction of z axis in such a way that B is positive.

Using gauge invariance, we choose electromagnetic potential correspond-
ing to field ~B in the form: Aµ = (0,−yB, 0, 0).

The Lagrangian density of field φ takes the form:

L = (Dµφ)∗(Dµφ) − m2φ∗φ

= ∂tφ
∗∂tφ − (∂x + ieBy)φ∗(∂x − ieBy)φ

−∂yφ
∗∂yφ − ∂zφ

∗∂zφ − m2φ∗φ , (1)

and leads to the following equation of motion

∂2
t φ − ∂2

xφ − ∂2
yφ − ∂2

zφ + 2ieBy∂xφ +
(

e2B2y2 + m2
)

φ = 0 , (2)

where derivative Dµ = ∂µ + ieAµ in Eq. (1) is covariant derivative.
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Solution of Eq. (2) is well known and is given in [6] in case of nonrel-
ativistic quantum particle. We briefly remind the method of solving this
kind of equation. The variables x, z and t do not occur in Eq. (2) explicity,
therefore the solution of Eq. (2) takes the form:

φ(x, y, z, t) = F (y)ei(kx+pz−ωt) . (3)

After inserting of Eq. (3) into Eq. (2) the equation for function F (y) is given
by:

∂2
yF + (ω2 − k2 − p2 − m2 + 2eBky − e2B2y2)F = 0 , (4)

which has a solution in the form:

F (y) = e−eB/2(y−y0)2Hn(
√

eB(y − y0)) , (5)

where Hn are Hermite polynomials and y0 = k(eB)−1. The parameters n, p
and ω fulfill the following relation

ω =
√

2eB(n + 1
2) + p2 + m2 . (6)

Let us introduce the Dirichlet boundary conditions in the form:

φ(x, y, z = 0, t) = φ(x, y, z = a, t) = 0 (7)

which implies that field φ is equal to zero on the two parallel planes (plates).
The plates are perpendicular to the z-axis and the distance between them
is equal to a.

In the area between plates, solution of Eq. (2) is given by:

φ(~r, t) =

∞
∫

−∞

dk

∞
∑

l=1

∞
∑

n=0

(

anlkunlk(~r)e
−iωnlt + b+

nlkunlk(~r)e
iωnlt

)

. (8)

Functions unlk are the special solutions of Eq. (2) in the form:

unlk(~r) = Cneikx sin(plz)e−eB/2(y−y0)2Hn(
√

eB(y − y0)) , (9)

where Cn = (eBa2)1/4(2nn!π3/2)−1/2 is the normalization constant, and
pl = πl/a. Solutions of Eq. (9) fulfill relations of orthogonality in the form:

∫

Γ

d3~r un1l1k1
(~r)u∗

n2l2k2
(~r) = a2δ(k1 − k2)δl1l2δn1n2

(10)
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and relations of completeness in the form:

∞
∫

−∞

dk
∞
∑

l=1

∞
∑

n=0

unlk(~r1)u
∗
nlk(~r2) = a2δ3(~r1 − ~r2), (11)

where Γ is the area between plates.
Standard commutation relations for the field

[φ(~r1, t), ∂tφ
+(~r2, t)] = iδ3(~r1 − ~r2) (12)

[φ(~r1, t), φ(~r2, t)] = [∂tφ
+(~r1, t), ∂tφ

+(~r2, t)] = 0 (13)

lead to the following commutators for creation and annihilation operators

[an1l1(k1), a
+
n2l2

(k2)] = [bn1l1(k1), b
+
n2l2

(k2)] = 1
2a−2ω−1

n1l1
δn1n2

δl1l2δ(k1 − k2) .

(14)
The Hamiltonian density

H = ∂tφ
∗∂tφ+(∂x+ieBy)φ∗(∂x−ieBy)φ+∂yφ

∗∂yφ+∂zφ
∗∂zφ+m2φ∗φ (15)

leads to the vacuum energy in the form:

Evac = L2

a
∫

0

dz〈0|H|0〉 = L2eB(2π)−1
∞
∑

l=1

∞
∑

n=0

√

π2

a2 l2 + eB(2n + 1) + m2,

(16)
where L is the length of plates.

The energy (16) is infinite. Now, we define the renormalized vacuum
energy Eren as a difference between energy (16) and energy without boundary
conditions:

Eren = L2eB(2π)−1
∞
∑

n=0

( ∞
∑

l=1

√

π2

a2 l2 + eB(2n + 1) + m2

−
∞
∫

l=0

dl

√

π2

a2 l2 + eB(2n + 1) + m2

)

. (17)

In order to compute the renormalized energy we use the Abel–Plana
formula in the form

∞
∑

l=1

f(l) −
∞
∫

0

f(l)dl = −1
2f(0) + i

∞
∫

0

dt
f(it) − f(−it)

e2πt − 1
. (18)
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This formula is often applied in renormalization problems. Its applications
and generalizations can be found in many works [7, 8].

The renormalized energy, after using formula (18), takes (in restored SI
units) the final form:

Eren = −L2ceBa−1
∞
∑

n=0

∞
∫

λn

dt
√

t2 − λ2
n

(

e2πt − 1
)−1

, (19)

where λn = aπ−1
√

eB~−1(2n + 1) + m2c2~−2.
Eq. (19) may be written in the form:

Eren(a,B,m) = E0(a) fB(ξ, η), (20)

where

E0(a) = −c~π2L2/(720 a3) (21)

is the standard Casimir energy for B = 0 for charged, massless field [7] and

fB(ξ, η) = 720π−2ξ
∞
∑

n=0

∞
∫

λn

dt
√

t2 − λ2
n (e2πt − 1)−1, (22)

where λn = π−1
√

ξ(2n + 1) + η2), ξ = eBa2
~
−1 and η = amc~−1 are di-

mensionless parameters.
Decreasing n-times the distance between plates (a → a/n) and increasing

n2-times the magnetic field (B → n2B), we obtain the same value of ξ. So,
for small a we need stronger magnetic field to obtain the same value of fB.
It is the reason why the curves in Figs. 2 and 5 coincide at small distances.
(The same situation will be for fermions in the next section — Fig. 7.)

Numerical calculations of Eq. (19) are shown in Figs. 1–5. Main con-
clusion is that, external magnetic field decreases the Casimir energy and
pressure of the scalar field (Fig. 1), and suppresses it completely in the limit
of B → 0. The decrease of the Casimir energy with a distance is faster for
stronger magnetic field (Fig. 2).

Let us compare the behavior of the Casimir pressure for two different
distances a (Figs. 3,4). In order to suppress the pressure noticeably, magnetic
field should be of the order of 10 T for distance a = 10 nm, and of the order
of 0.1 T for distance a = 100 nm.

Asymptotic behavior of energy (20) we obtain examining Eq. (22). For
strong magnetic field (ξ → ∞) we use the relation exp(2πt)−1 → exp(2πt),
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0.1 0.2 0.3 0.4
B, T

-4´10-7

-3´10-7

-2´10-7

-1´10-7

E, J

Fig. 1. Casimir energy for scalar field as a function of magnetic field B, correspond-

ing to a = 10−7 m and L = 1 m. Bold curve corresponds to mass m = 0 whereas

thin curve corresponds to mass m = 2 eV. The dashed line corresponds to value

−π2
~c/720a3. (It is standard value of energy for B = 0.)

2.5 5 7.5 10 12.5 15 17.5 20
a, nm
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-4

-3
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Log E

Fig. 2. Casimir energy for scalar field as a function of distance a, for massless field

m = 0 and L = 1 m. Bold curve corresponds to magnetic field B = 100 T whereas

the thin one corresponds to eB = 10 T. The dashed curve corresponds to function

−π2
~ca−3/720 (standard function of distance a for B = 0). Values of energy are

shown in logarithmic scale.

which gives:

fB
∞(ξ, η) = 720π−2ξ

∞
∑

n=0

∞
∫

λn

dt
√

t2 − λ2
n e−2πt

= 360π−4ξ

∞
∑

n=0

√

ξ(2n + 1) + η2 K1

(

√

ξ(2n + 1) + η2
)

, (23)

where K1(x) is the Bessel function. Numerical calculations show that error
defined by |fB

∞/fB − 1| is less than 10−2 for ξ > 3 and η = 0 (η = 0 is the
worst case).



Casimir Effect in External Magnetic Field 1759

20 40 60 80 100
B, T

20

40

60

80

100

120

140
p, kPa

Fig. 3. Casimir pressure for scalar field as a function of magnetic field B, corre-

sponding to distance a = 10 nm. The diagram is made in SI units for massless

field.
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p, Pa

Fig. 4. Casimir pressure for scalar field as a function of magnetic field B, corre-

sponding to distance a = 100 nm. The diagram is made in SI units for massless

field.
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Fig. 5. Casimir pressure for massless, scalar field as a function of distance a. Di-

agram is made in SI units, using logarithmic scales. Bold curve corresponds to

B = 10 T, thin to B = 1 T, and dashed to B = 0 T.
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For weak magnetic field (ξ → 0) we change sum into integration, which
gives:

fB
0 (ξ, η) = 720π−2ξ

∞
∫

0

dn

∞
∫

λ(n)

dt
√

t2 − λ2(n)
(

e2πt − 1
)−1

= 720π−4

∞
∫

1

dy
√

y2 − 1

∞
∫

M

dx x3
(

e2xy − 1
)−1

, (24)

where M =
√

ξ + η2. Numerical calculations show that error |fB
0 /fB − 1|

is less than 5 × 10−2 for ξ < 0.04 and η = 0 (the worst case). For small ξ
formula (24) is better for numerical calculation than formula (22), because
it leads to more convergent numerical algorithms.

We compared Eq. (19) with Eq. (15) from [3] (based on Schwinger’s
method) using Mathematica 4.1. We obtained the same numerical results.
However, we are not able to prove analytically that these two equations are
equivalent.

3. Fermionic Casimir effect

The Lagrangian density of the Dirac field in external electromagnetic
field takes the form:

L = Ψ
+γ0(iγµ∂µ − eγµAµ − m)Ψ , (25)

and leads to the following equation of motion

(iγµ∂µ − eγµAµ − m)Ψa = 0, (26)

where a = 1, 2, 3, 4 are numbers of bispinor components.
We take γ matrices in Dirac representation:

γ0 =

(

I 0
0 −I

)

, γi =

(

0 σi

−σi 0

)

. (27)

Analogously as in previous section, we solve Eq. (26) in presence of

an external magnetic field ~B = (0, 0, B), but now we impose antiperiodic
boundary conditions in the form:

Ψ(x, y, z = 0, t) = −Ψ(x, y, z = a, t) . (28)

Solution of Eq. (26) can be predicted as follows:

Ψ
a(~r, t) = exp(i(ωt + kx + pz))ηa(y) , (29)
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where bispinors ηa(y) take the form:

ηa(y) =









c1un−1(y)
c2un(y)

c3un−1(y)
c4un(y)









, (30)

where ca are number parameters independent of space co-ordinates, and
functions un(y) are given by:

un(y) = e−eB/2(y−y0)2Hn(
√

eB(y − y0)) , (31)

where y0 = k/(eB).

After inserting Eq. (31) into Eq. (26) we obtain matrix equation









−(ω + m) 0 −p 2n
√

eB

0 −(ω + m)
√

eB p

p −2n
√

eB ω − m 0

−
√

eB −p 0 ω − m

















c1

c2

c3

c4









= ~0 . (32)

Nontrivial solutions of Eq. (32) (i.e. different from null vector) exist if rank
of matrix is different than 4. This situation occurs when

ω2 = p2 + 2eBn + m2. (33)

After inserting solutions of Eq. (32) into Eq. (29) we obtain general
solution of Eq. (26) in the following form:

Ψ(~r, t) =

∞
∑

n=0

∞
∑

l=−∞

∞
∫

−∞

dk
∑

s

(

e−i(Et+kx+plz)an,l,s(k)~ξn,l,s(k, y)

+ei(Et+kx+plz)b+
n,l,s(k)~ηn,l,s(k, y)

)

, (34)

where pl = π/a(2l + 1), E = |ω|, and variable s takes the values −1, 1.
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For n > 0 bispinors ~ξ, ~η from Eq. (34) are given by:

~ξn,s=1(k, p, y) =
Cn

√

2n−1(n − 1)!









− p
E+mun−1(y)
√

eB
E+mun(y)
un−1(y)

0









, (35)

~ξn,s=−1(k, p, y) =
Cn√
2nn!









2n
√

eB
E+m un−1(y)

p
E+mun(y)

0
un(y)









, (36)

~ηn,s=1(k, p, y) =
Cn√
2nn!









0
un(y,−k)

−2n
√

eB
m+E un−1(y,−k)

p
m+E un(y,−k)









, (37)

~ηn,s=−1(k, p, y) =
Cn

√

2n−1(n − 1)!









un−1(y,−k)
0

− p
m+E un−1(y,−k)

−
√

eB
m+E un(y,−k)









, (38)

where Cn =
(

(eB/π)1/2(E + m)/2E
)1/2

.

For n = 0 bispinors ~ξ0,s=−1 and ~η0,s=1 are also given by these equations,

if we take u−1(y) = 0. Whereas spinors ~η0,s=−1, ~ξ0,s=1 are equal to zero.

The spinors ~η, ~ξ are orthonormal in the sense of the norm defined by:

‖~ξn,s(k, p, y)‖2 =

∞
∫

−∞

dy~ξn,s(k, p, y)~ξ∗n,s(k, p, y). (39)

Anticommutation relations for the field operators Ψ , Π = iΨ+ in the
form:

[Ψa(~x, t),Πb(~y, t)]+ = iδ(~x − ~y)δab (40)

lead to the following anticommutators for creation and annihilation opera-
tors

[an1l1s1
(k1), a

+
n2l2s2

(k2)]+ = [bn1l1s1
(k1), b

+
n2l2s2

(k2)]+

= (2
√

πa)−1δs1s2
δl1l2δn1n2

δ(k1 − k2) . (41)

In the Dirac theory, the vacuum state is defined as the state with filled
up negative energy levels. This situation corresponds to:

anls|0〉 = 0 , bnls|0〉 = 0 . (42)
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The Hamiltonian density of the field

H = −Ψ
+γ0(iγi∂i − eγµAµ − m)Ψ = iΨ+∂tΨ (43)

(where in the second step we use the fact that Ψ fulfills the Dirac equation)
leads to the vacuum energy density as follows:

Evac(a) = 〈0|H|0〉

= −1
2
√

πa

∞
∑

n=0

∞
∑

l=−∞

∑

s

∞
∫

−∞

dkE
(

~η∗nl1(k, y)~ηnl1(k, y) + ~η∗nl,−1(k, y)~ηnl,−1(k, y)
)

= −eB(
√

πa)−1
∞
∑

n=0

∞
∑

l=−∞

αn

√

π2

a2 (2l + 1)2 + 2eBn + m2 , (44)

where α0 = 1/2 and αn = 1 for n > 0.
The energy density (44) is infinite. Renormalized vacuum energy is the

difference between energy density (44) and vacuum energy without boundary
conditions, and is given by:

Eren(a) = −2eB(
√

πa)−1
∞
∑

n=0

αn

(

∞
∑

l=0

√

4π2a−2(l + 1/2)2 + 2eBn + m2

−
∞
∫

0

dl
√

4π2a−2l2 + 2eBn + m2

)

. (45)

In order to calculate Eq. (45) we use Abel–Plana formula in the useful form:

∞
∑

t=0

F (t + 1/2) −
∞
∫

0

dtF (t) = −i

∞
∫

0

dt

e2πt + 1
(F (it) − F (−it)) , (46)

and finally we obtain renormalized energy density (in restored SI units) in
the form:

Eren(a) = −8ceBa−2
∞
∑

n=0

αn

∞
∫

λn

dt

e2πt + 1

√

t2 − λ2
n , (47)

where λn = a(2π)−1
√

2~−1eBn + m2c2~−2.
Eq. (47) may be written in the form:

Eren(a,B,m) = E0(a) fF (ξ, η) , (48)
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where

E0(a) = −7c~π2/(180a4) (49)

is the standard Casimir energy density for B = 0 for massless field [2] and

fF (ξ, η) = 1440
7 π−2ξ

∞
∑

n=0

αn

∞
∫

λn

dt
√

t2 − λ2
n (e2πt + 1)−1, (50)

where λn = (2π)−1
√

2nξ + η2, ξ = eBa2
~
−1 and η = amc~−1.

Numerical calculations of Eq. (47) are shown in Figs. 6,7. In contrast
to the bosonic case, for the Dirac field the Casimir energy is enhanced by
the external magnetic field (Fig. 6). So, the Dirac vacuum behaves like
paramagnetic medium. Decrease of the Casimir energy with a distance is
slower in strong magnetic field (Fig. 7).

Vacuum pressure is shown in Figs. 8–9. For massless field (and strong B)
it is increasing linear function of magnetic field B (Fig. 8). For massive
field, pressure depends on the field B very weakly — two curves in Fig. 9
(for B = 1 T and B = 100 T) coincide. For electron field values of Casimir
pressure are measurable for distances smaller then 0.1 nm (Fig. 9). In prac-
tice it excludes possibilities of experimental tests. It can play a role only in
subatomic distances, for example in some particle models.

Analogously as for bosons, we compared Eq. (47) with Eq. (9) from [4]
(based on Schwinger’s method) using Mathematica 4.1. We obtained the
same numerical results. However, we are not able to prove analytically that
these two equations are equivalent.

0.1 0.2 0.3 0.4 0.5 0.6
B, T

-300

-250

-200

-150

-100

-50

E, Jm-3

Fig. 6. Casimir energy density for the Dirac field as a function of magnetic field

B, corresponding to distance a = 1 m. Bold curve corresponds to mass m = 0

whereas the thin one corresponds to mass m = 2 eV. Dashed line corresponds to

the value equal to −7π2
~ca−4/180 (standard value of energy for B = 0).



Casimir Effect in External Magnetic Field 1765

50 100 150 200 250 300 350 400
a, nm

-1

1

2

3

4

5
Log E

Fig. 7. Casimir energy density for the Dirac field as a function of distance a,

for massless field m = 0. Bold curve corresponds to magnetic field B = 8 T

whereas the thin one corresponds to B = 1 T. Dashed curve corresponds to function

−7π2
~ca−4/180 (standard function of energy for B = 0). Values of energy are

shown in logarithmic scale.

10 20 30 40 50
B, T

5000

10000

15000

20000

p, Pa

Fig. 8. Casimir pressure for massless, the Dirac field as a function of magnetic field

B, corresponding to distance a = 100 nm. The diagram is made in SI units.

We examine the asymptotic behavior of energy density (48) using the
same methods as in previous section (for bosons). For strong magnetic field
(ξ → ∞) and for η → ∞ we use the relation exp(2πt)− 1 → exp(2πt), what
gives:

fF
∞(ξ, η) = 1440

7 π−2ξ

∞
∑

n=0

αn

∞
∫

λn

dt
√

t2 − λ2
n e−2πt

= 360
7 π−4ξ

∞
∑

n=0

αn

√

2ξn + η2 K1(
√

2ξn + η2) . (51)

Using formula (51), we receive good numerical results (error |fF
∞/fF− 1|<1%)

for η > 2.6 and ξ > 0.5.
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Fig. 9. Casimir pressure for the Dirac field of electrons (m = me) as a function of

distance a. The diagram is made in SI units for two values of field B = 1 T and

B = 100 T. Both curves coincide.

For weak magnetic field (ξ → 0) we change sum into integration, which
gives:

fF
0 (ξ, η) = 1440

7 π−2ξ

∞
∫

0

dn

∞
∫

λ(n)

dt
√

t2 − λ2(n)
(

e2πt + 1
)−1

= 360
7 π−4

∞
∫

1

dy
√

y2 − 1

∞
∫

η

dxx3(exy + 1)−1 . (52)

Unfortunately, this method is not suitable in this case. It is “too brutal”
and we lose the ξ parameter in the expression (52). It suggests that EB→0 =
E(B=0) +O(B2). In Fig. 6 we can see that both curves ale locally horizontal
for B → 0.
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