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The coupling constant of f0 → ωγ decay is calculated using 3-point
sum rule and light cone QCD sum rules. We investigate the results within
the two-models which depend on θ angle.
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1. Introduction

The QCD sum rules [1] is one of the powerful methods for calculation of
the different low energy characteristics of the hadron physics. In the con-
text of QCD sum rules method, a wide class of problems of hadron physics,
such as, spectrum, mass, weak form factors ([1-3], and references therein),
magnetic moments of neutron and proton [4] etc., are successfully explained.
Application of this method to polarization operators gives a determination
of masses and couplings of low lying mesonic [1, 5] and baryonic [6] states.
The QCD sum rule method has been utilized to analyze many hadronic
properties, and it yields an effective framework to investigate the hadronic
observables such as decay constants and form factors within the nonpertur-
bative contributions proportional to the quark and gluon condensates [7].
The main idea of the method is to calculate the correlator with the help of
operator product expansion (OPE) in the framework of QCD and then con-
nect them with the phenomenological part. The interested physical quanti-
ties are determined by matching these two representations of the correlator.
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Radiative transitions between pseudoscalar (P ) and vector (V ) mesons
have been an important subject in low-energy hadron physics for more than
three decades. These transitions have been regarded as phenomenologi-
cal quark models, potential models, bag models, and effective Lagrangian
methods [8,9]. Among the characteristics of the electromagnetic interaction
processes gV Pγ coupling constant plays one of the most important roles,
since they determine the strength of the hadron interactions. In the quark
models, V → P + γ decays (V = φ, ρ, ω); P = π, η, η′) are reduced by the
quark magnetic moment with transition s = 1 → s = 0, where s is the total
spin of the qq̄-system (in the corresponding meson). Actually these quanti-
ties can be calculated directly from QCD. Low-energy hadron interactions
are governed by nonperturbative QCD so that it is very difficult to get the
numerical values of the coupling constants from the first principles. For
that reason a semiphenomenological method of QCD sum rules can be used,
which nowadays is the standard tool for studying of various characteristics of
hadron interactions. On the other hand, vector meson–pseudoscalar meson–
photon V Pγ-vertex also plays a role in photoproduction reactions of vector
mesons on nucleons. It should be notable that in these decays (V → Pγ) the
four-momentum of the pseudoscalar meson P is time-like, P ′2 > 0, whereas
in the pseudoscalar exchange amplitude contributing to the photoproduc-
tion of vector mesons it is space-like P ′2 < 0. Therefore, it is of interest
to study the effective coupling constant gV Pγ from another point of view
as well. In addition, the same model predicts amplitudes for energetically
allowed S → V γ processes, for examples f0 → ωγ, f0 → ργ, a0 → ωγ, and
a0 → ργ etc. Black et al. [10] investigated the angular dependence on these
decays.

The light scalar mesons have been the subject of continuous interest in
hadron spectroscopy. Although the structure of these light scalar mesons
have not been unambiguously determined yet [11], the possibility may be
suggested that these nine scalar mesons below 1 GeV may form a scalar
SU(3) flavor nonet [12]. The nature of the meson f0(980) is particularly
debated. One of the oldest suggestions, there is the proposal that quark
confinement could be explained through the existence of a state with vacuum
quantum numbers and mass close to the proton mass [13]. While considering
the strong coupling to kaons, f0(980) could be interpreted as an ss̄ state
[14–17]. On the other hand, it does not explain the mass degeneracy between
f0(980) and a0(980) interpreted as a (uū ± dd̄)/

√
2 state. A four quark

qqq̄q̄ state definition has also been offered [18]. In this case, f0(980) could
either be nucleon-like [19], i.e. a bound state of quarks with symbolic quark
structure f0 = ss̄(uū + dd̄)/

√
2, the a0(980) being a0 = ss̄(uū − dd̄)/

√
2, or

deuteron-like, i.e., a bound state of hadrons. The identification of the f0 and
of the other lightest scalar mesons with the Higgs nonet of a hidden U(3)
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symmetry has also been proposed [20]. On the other hand, they are relevant
hadronic degrees of freedom, and therefore the role they play in hadronic
processes should also be studied besides the questions of their nature. In
this work, we calculated the coupling constant gf0ωγ by applying 3-point
QCD sum rule and light-cone sum rule as well, which provide an efficient
and model-independent method to study many hadronic observables, such as
decay constants and form factors in terms of non-perturbative contributions
proportional to the quark and gluon condensates [7].

2. Calculation

(a) In the three-point QCD sum rules:
According to the general strategy of QCD sum rules method, the cou-

pling constants can be calculated by equating the representations of a suit-
able correlator calculated in terms of hadronic and quark–gluon degrees of
freedom. In order to do this we consider the following correlation function
by using the appropriately chosen currents

Πµν(p, p′) =

∫

d4xd4yeip′·ye−ip·x〈0 | T{Jγ
µ(0)Jf0

(x)Jω(y)} | 0〉 . (1)

We choose the interpolating current for the ω and f0 mesons as jω0

µ =
1

2
(ūγa

µua+d̄γa
µda), and Jf0

= 1√
2
(ūbub+d̄bdb) sin θ+cos θ ss̄ [21], respectively.

ω-meson consist of u and d-quarks, we then ignore s-quark contribution in
this calculation. Jγ

µ = eu(ūγµu) + ed(d̄γµd) is the electromagnetic current
with eu and ed being the quark charges.

The theoretical part of the sum rule in terms of the quark–gluon de-
grees of freedom for the coupling constant gf0ωγ is calculated by consider-
ing the perturbative contribution and the power corrections from operators
of different dimensions to the three-point correlation function Πµν . For
the perturbative contribution we study the lowest order bare-loop diagram.
Moreover, the power corrections from the operators of different dimensions
〈q̄q〉, 〈q̄σ ·Gq〉, and 〈(q̄q)2〉 are considered in the work. Since it is estimated
to be negligible for light quark systems, we did not consider the gluon con-
densate contribution proportional to 〈G2〉. We perform the calculations of
the power corrections in the fixed point gauge [22]. We also work in the
limit mq = 0 and in this limit the perturbative bare-loop diagram does not
make any contribution. In fact, by considering this limit only operators of
dimensions d = 3 and d = 5 make contributions which are proportional to
〈q̄q〉 and 〈q̄η · Gq〉, respectively. The relevant Feynman diagrams for power
corrections are given in Fig. 1.
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Fig. 1. Feynman diagrams for the f0ωγ-vertex: (a) bare loop diagram, (b) d = 3

operator corrections, and (c) d = 5 operator corrections. The dashed lines denote

gluons.

On the other hand, in order to calculate the phenomenological part of
the sum rule in terms of hadronic degrees of freedom, a double dispersion
relation satisfied by the vertex function Πµν is considered [1, 2, 5]:

Πµν(p, p′) =
1

π2

∫

ds1

∫

ds2

ρµν(s1, s2)

(p2 − s1)(p′2 − s2)
, (2)

where we ignore possible subtruction terms since they will not make any
contributions after Borel transformation. For our purpose we choose the
vector and pseudoscalar channels and saturating this dispersion relation by
the lowest lying meson states in these channels the physical part of the sum
rule is obtained as

Πµν(p, p′) =
〈0 | Jf0 | f0〉〈f0(p) | Jγ

µ | ω(p′)〉〈ω | Jω
ν | 0〉

(p2 − m2
f0

)(p′2 − m2
ω)

+ . . . , (3)

where the contributions from the higher states and the continuum are given
by dots. The overlap amplitudes for vector and pseudoscalar mesons are
〈0 | Jω

µ | ω〉 = λωεω
µ , where εω

µ is the polarization vector of the vector
meson and 〈f0 | Js | 0〉 = λf0

, respectively. The matrix element of the
electromagnetic current is given by

〈f0(p) | Jγ
µ | ω(p′)〉 = −i

e

mω0

gf0ωγK(q2)(p · qεµ − ε · qpµ) , (4)
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where q = p − p′ and K(q2) is a form factor with K(0) = 1. This ma-
trix element defines the coupling constant gf0ωγ by means of the effective
Lagrangian

Λ =
e

mω
gf0ωγ∂νωβ(∂νAβ − ∂βAν)f0 (5)

describing the f0ωγ-vertex [23].
After performing the double Borel transform with respect to the variables

Q2 = −p2 and Q′2 = −p′2, and by considering the gauge-invariant structure
(−gµν(pq) + pµqν), we obtain the sum rule for the coupling constant as

gf0ωγ =
mω

2
√

2λωλf0

e
m2

f0
/M2

1 em2
ω/M2

2 〈ūu〉
(

−3 − 5

8

m2
0

M2
2

− 7

8

m2
0

M2
1

)

sin θ , (6)

where we used the relation 〈q̄σµν · Gµνq〉 = m2
0〈q̄q〉.

(b) In the light-cone sum rules:
In order to derive the light cone QCD sum rule for the coupling constants

gf0ωγ , we consider the following two point correlation function

Tν(p, p′) = i

∫

d4xeip′·x〈0 | T{jω
ν (x)jf0

(0)} | 0〉γ , (7)

where γ denotes the external electromagnetic field, and jω
ν and ja0

are the
interpolating current for the ω meson and f0, respectively.

We therefore sature the dispersion relation satisfied by the vertex func-
tion Tµ by these lowest lying meson states in the vector and the scalar chan-
nels, and in this way we obtain for the physical part at the phenomenological
level the Eq. (1) can be expressed as

Tν(p, p′) =
〈0 | jω

ν | ω〉〈ω(p′) | f0(p)〉γ〈f0 | jf0
| 0〉

(p′2 − m2
ω)(p2 − m2

f0
)

. (8)

In this calculation the full light quark propagator with both perturbative
and nonperturbative contribution is used, and it is given as [24]

iS(x, 0) = 〈0 | T{q̄(x)q(0)} | 0〉 = i
6 x

2π2x4
− 〈q̄q〉

12
− x2

192
m2

0〈q̄q〉

−igs
1

16π2

1
∫

0

du

{ 6 x
x2

σµνGµν(ux) − 4iu
xµ

x2
Gµν(ux)γν

}

+ . . . ,(9)

where the terms proportional to light quark mass mu or md are neglected.
After a straightforward computation we have

Tµ(p, q) = 2i

∫

d4xeipxA(xρgµτ − xτgµρ)〈γ(q) | q̄(x)στρ q(0) | 0〉 , (10)
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where A = i/2π2x4, and higher twist corrections are neglected since they are
known to make a small contribution [25] . In order to evaluate the two point
correlation function further, we need the matrix elements 〈γ(q)|q̄(x)στρq(0)|0〉.
This matrix element can be expanded in the light cone photon wave function
[26, 27]

〈γ(q)|q̄σαβq|0〉 = ieq〈q̄q〉
1

∫

0

d u eiuqx{(εαqβ − εβqα)

×[χφ(u) + x2(g1(u) − g2(u))] + [q · x(εαxβ − εβxα)

+ε · x(xαqβ − xβqα)]g2(u)} , (11)

where eq is the corresponding quark charge, χ is the magnetic susceptibility,
φ(u) is leading twist two and g1(u) and g2(u) are the twist four photon
wave functions. The main difference between the traditional QCD sum rules
and light cone QCD sum rule is the appearance of these wave function.
Light cone QCD sum rules corresponds to summation of an infinite set of
terms in the expansion of this matrix element on the traditional sum rules.
The price one pays for this is the appearance of a priori unknown photon
wave functions. After evaluating the Fourier transform for the M1 structure
and then performing the double Borel transformation with respect to the
variables Q2

1 = −p2 and Q2
2 = −p′2, we finally obtain the following sum rule

for the coupling constant gf0ωγ

gf0ωγ =
1

3
√

2

mω〈ūu〉
λf0

λω
em2

ω/M2

1 e
m2

f0
/M2

2

{

− M2χφ(u0)E0

s0

M2

+4g1(u0)
}

sin θ , (12)

where the function
E0

s0

M2
= 1 − e−s0/M2

(13)

is the factor used to subtract the continuum, s0 being the continuum thresh-
old, and

u0 =
M2

2

M2
1

+ M2
2

, M2 =
M2

1 M2
2

M2
1

+ M2
2

(14)

with M2
1 and M2

2 are the Borel parameters in the ω and f0 channels.

3. Numerical calculation

From the 3-point QCD sum rules view, in our calculations we use the nu-
merical values 〈ūu〉 = −0.014 GeV3, mf0

= 0.98 GeV, λf0
= 0.18±0.02 GeV2

[28], mω = 0.782 GeV. We note that neglecting the electron mass the e+e−
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decay width of ω meson is given as Γ (ω → e+e−) = [4πα2/(3mω3)]λ2
ω. Then

using the value from the experimental leptonic decay width Γ (ω → e+e−) =
0.60 ± 0.02 keV for ω [29], we obtain the value λω = (0.108 ± 0.002) GeV2

for the overlap amplitude ω meson. In order to examine the dependence of
gf0ωγ on the Borel masses M2

1 and M2
2 , we choose M2

1 = M2
2 = M2. Since

the Borel mass M2 is an auxiliary parameter and the physical quantities
should not depend on it, one must look for the region where gf0ωγ is prac-
tically independent of M2. We determined that this condition is satisfied
in the interval 1.0 GeV2 ≤ M2 ≤ 1.4 GeV2. The variation of the coupling
constant gf0ωγ as a function of Borel parameter M2 at different θ values are
shown in figure 2. Examination of this figure shows that the sum rule is
rather stable with these reasonable variations of M2. In the 3-point QCD
sum rules calculation, we then choose the middle value M2 = 1.2 GeV2

for the Borel parameter in its interval of variation and obtain the coupling
constant of gf0ωγ for various θ angles as between gf0ωγ= 0.68 ± 0.02 and
gf0ωγ= 1.25± 0.02, where only the error arising from the numerical analysis
of the sum rule is considered.

Fig. 2. The variation of the coupling constant gf0ωγ as a function of Borel parameter

M2 at different θ values in the calculation of 3-point QCD sum rules.

From the light-cone sum rules view, we use the numerical values men-
tioned above as well as for the magnetic susceptibility χ = 3.15 GeV−2 [30].
Using the conformal invariance of QCD up to one loop order, the photon
wave functions can be expanded in terms of Gegenbauer polynomials; each
term corresponding to contributions from operators of various conformal
spin. Due to conformal invariance of QCD up to one loop, each term in this
expansion is renormalized separately and the form of these wave functions
at a sufficiently high scale is well known. In the previous works, twist-4
photon wave functions were used [26, 27]. Since they are not correct one
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should use new functions that are calculated by Ball, Braun and Kivel [30]
and hence we have used the asymptotic forms of the photon wave function
given by [30]

φ(u) = 6u(1 − u) ,

g1(u) = − a

16
− h

8
, (15)

where a = 40u2(1 − u)2 and h = −10(1 − 6u + 6u2). Since mf0
≈ mω,

we will set M2
1 = M2

2 = 2M2 which sets u = u0 = 1

2
. Note that in this

approximation, we only need the value of the wave functions at a single
point; namely at u = 1

2
and hence the functional forms of the photon wave

functions are not relevant.
In Fig. 3, we showed the dependence of the coupling constant gf0ωγ on

parameter M2 at constant value of the continuum threshold as s0 = 2.0 at
different θ values. In this case, we have coupling constant as between gf0ωγ=
1.34 ± 0.6 and gf0ωγ= 2.59 ± 0.6. In Fig. 4, we also showed the dependence

Fig. 3. The dependence of the coupling constant gf0ωγ on parameter M2 at constant

value of the continuum threshold as s0 = 2.0 GeV2 in the light-cone sum rules

calculation.

of the coupling constant gf0ωγ on parameter M2 at some different values of
the continuum threshold as s0 = 1.6, 1.8 and 2.0 GeV2 at θ = 30◦. Since
the Borel masses M2

1 and M2
2 are the auxiliary parameters and the physical

quantities should not depend on them, one must look for the region where
gf0ωγ is practically independent of M2

1 and M2
2 . We determined that this

condition is satisfied in the interval 1.2 GeV2 ≤ M2
1 ≤ 1.4 GeV2. Choosing

the middle value M2 = 1.3 GeV2 for the Borel parameter in this interval of
variation and we have the coupling constant of gf0ωγ for different s0 values
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as between gf0ωγ= 1.31±0.6 and gf0ωγ= 1.34±0.6 in the calculation of light-
cone sum rules. The variation of the coupling constant gf0ωγ as a function
of different values M2 and θ are given in Fig. 5. Examination of this figure
points out that the sum rule is rather stable with these reasonable variations
of M2.

Fig. 4. The dependence of the coupling constant gf0ωγ on parameter M2 at some

different values of the continuum threshold as s0 = 1.6, 1.8 and 2.0 GeV2 at θ = 30◦

in the light-cone sum rules calculation.

Fig. 5. Coupling constant gf0ωγ as a function of M2 and sin θ.
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4. Conclusions

In this study we calculated coupling constant gf0ωγ in the two different
ways in which we took account u- and d-quark contribution. As is known,
generally 3-point QCD sum rules is used for light quarks, while light-cone
sum rules works much better for heavy quarks. We applied both of the
methods by using the most correct wavefunctions. In order to compare and
to find the relation between the two models, we investigated the coupling
constant within both approaches. In spite of lacking experimental data on
gf0ωγ , we found estimated values for the coupling constant gf0ωγ in three-
point QCD sum rules and light-cone sum rules. It is seen that the result
of the light-cone sum rules has found bigger than 3-point QCD sum rules
calculation. The results depend on mixing angle θ and s0 parameter. When
one is used reasonable data respect to analytical expressions, it is clear that
one has better agreement to experimental results. For the time being there
is no experimental data on f0ωγ-vertex, then our calculations behave only
a theoretical suggestion.

We are grateful to Prof. T.M. Aliev for careful reading of the manuscript
and helpful suggestions about its revision. We also thank Prof.V.M. Braun
for his useful explanations.
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