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We present precision Monte Carlo calculations solving the QCD evolu-
tion equations up to the next-to-leading-order (NLO) level. They employ
forward Markovian Monte Carlo (FMC) algorithms, which provide the rig-
orous solutions of the QCD evolution equations. Appropriate Monte Carlo
algorithms are described in detail. They are implemented in the form of
the Monte Carlo program EvolFMC, which features the NLO kernels for the
QCD evolution. The presented numerical results agree with those from in-
dependent, non-MC, programs (QCDNum16, APCheb33) at the level of 0.1%.
In this way we have demonstrated the feasibility of the precision MC cal-
culations for the QCD evolution and provided very useful numerical tests
(benchmarks) for other, non-Markovian, MC algorithms developed recently.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

It is commonly known that the so-called evolution equations of the quark
and gluon distributions in the hadron, derived in QED and QCD using the
renormalization group or diagrammatic techniques [1], can be interpreted
probabilistically as a Markovian process, see e.g. Ref. [2]. Such a process
can be modeled using Monte Carlo (MC) methods. The corresponding MC
algorithm, called in the following the Markovian MC, provides, in principle,
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an exact solution of the evolution equations for parton distribution func-
tions (PDFs). In practice, the main limitation of a such solution is the size
of a generated MC sample, i.e. corresponding statistical errors of numeri-
cal results. This is probably the main reason why this possibility has not
been exploited until recently. Instead, alternative numerical methods and
programs solving the QCD evolution equations much faster than the Marko-
vian MC have been used. Typical examples of such non-MC programs are
QCDNum16 [3] and APCheb33 [4], see also Ref. [5].

Feasibility of solving efficiently the DGLAP equations [1] at the leading-
order (LO) approximation with the Markovian MC was demonstrated for the
first time by two of us (S.J. and M.S.) in Ref. [6]. There, the basic formalism
was briefly sketched and the first numerical results were presented. Good
agreement between the constructed Markovian MC program and QCDNum16

for gluon and quark singlet distribution functions was achieved. However,
some small residual differences, at the level of 0.2%, between the two pro-
grams were found. Their origin was not understood at that time. Here
we repeat the above comparisons, explain the source of these discrepancies
and show the corrected results which agree at the level of 0.1%. The main
conclusion of Ref. [6] was that the currently available computer CPU power
allows to solve efficiently and precisely (at the per-mill level) the QCD evo-
lution equations with the use of the Markovian MC algorithm. Of course,
this method will always be slower in CPU time than non-MC techniques.
However, it has several advantages, such as: no biases and/or numerical in-
stabilities related to finite grids of points, use of quadratures, decomposition
into finite series of polynomials, accumulation of rounding errors, etc. It is
also more flexible in treatment of PDFs (e.g. no need to split them into
singlet and non-singlet components) and easier to extend into higher orders,
new contributions, etc.

The above Markovian algorithm can be a basis for the final-state radi-
ation (FSR) parton shower MC program that not only solves numerically
the evolution equations but also generates events in terms of parton flavours
and four-momenta. Moreover, this algorithm can be a starting point and
a testing tool for various kinds of constrained MC algorithms [7–10] being
developed for the initial-state radiation (ISR).

This paper is devoted to the Markovian MC solution of the DGLAP evo-
lution equations up to the next-to-leading order (NLO) in the perturbative
QCD. It is organized as follows: In Sec. 2 we present a general structure
of the DGLAP equations and discuss their basic features up to the next-to-
next-to-leading order (NNLO). In Sec. 3 we describe in detail the Markovian
MC algorithm for parton density distributions. We start from a classic iter-
ative solution of the DGLAP equations and show how it can be expressed
in terms of Markovian transition probabilities. Then we provide a method
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for generation of a single Markovian step according to these probabilities.
Subsec. 3.4 is devoted to construction of a weighted Markovian MC algo-
rithm, where some importance sampling is used to generate evolution vari-
ables. In the last subsection we show how the above algorithm can be modi-
fied in order to account for the running QCD coupling constant. In Sec. 4 we
present the Markovian MC algorithm for parton-momentum distributions.
It has certain advantages over the previous algorithm due to momentum sum
rules that can be applied to evolution kernels. Both the above algorithms
have been implemented in the MC program called EvolFMC [11]. Numerical
results from EvolFMC at the LO a nd the NLO are presented in Sec. 5. They
are compared with the results of non-MC programs QCDNum16 and APCheb33.
Sec. 6 summarizes the paper and gives some outlook for the future. In Ap-
pendix A we collect formulae for the QCD kernels (splitting functions) up
to the NLO as well as explicit expressions for the NLO Sudakov form-factor.
Appendices B and C contain formulae for simplified evolution kernels that
are used for importance sampling in the weighted Markovian algorithm.
Finally, in Appendix D we discuss a generic discrete Markovian process. It
can be seen as an illustration of basic features of the DGLAP-like evolution
equations and their solution in terms of the Markovian MC algorithm.

2. QCD evolution equations

2.1. General structure of DGLAP equations

The DGLAP evolution equations for quark, antiquark and gluon distri-
butions,

{q1, . . . , qnf
, q1, . . . , qnf

, G}(µ, x) , (1)

take the following general form [1,12]

∂

∂ ln µ2
qi =

∑

j

(

Pqiqj
⊗ qj + Pqiqj

⊗ qj

)

+ PqiG ⊗G ,

∂

∂ ln µ2
qi =

∑

j

(

Pqiqj
⊗ qj + Pqiqj

⊗ qj

)

+ PqiG ⊗G ,

∂

∂ ln µ2
G =

∑

j

(

PGqj
⊗ qj + PGqj

⊗ qj

)

+ PGG ⊗G , (2)

where the summation is performed over quark flavours, j = 1, . . . , nf . The
parton distributions are functions of the Bjorken variable x and the factor-
ization scale µ, identified with a hard scale in a given process (e.g. µ =

√

Q2

in deep inelastic scattering). The functions P = P (µ, x) are splitting func-
tions to be discussed below. The integral convolution denoted by ⊗ involves
only longitudinal momentum fractions
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(P ⊗ q)(µ, x)=

1
∫

0

dy

1
∫

0

dz δ(x− zy)P (αs, z) q(µ, y)

=

1
∫

x

dz

z
P (αs, z) q

(

µ,
x

z

)

=

1
∫

x

dz

z
P
(

αs,
x

z

)

q(µ, z) . (3)

The splitting functions P (αs, z) depend on µ through the strong coupling
constant αs = αs(µ):

P (αs, z) =
αs

2π
P (0)(z) +

(αs

2π

)2
P (1)(z) +

(αs

2π

)3
P (2)(z) + . . . . (4)

The superscripts (0), (1), (2) refer, respectively, to the leading (LO), next-to-
leading (NLO) and next-to-next-to-leading order (NNLO) approximations in
which the splitting functions are computed1.

From charge conjugation and SU(nf) symmetry the splitting functions P
have the following general structure which is independent of the approxima-
tion in which they have been computed

Pqiqj
= Pqiqj

= δijP
V
qq + PS

qq ,

Pqiqj
= Pqiqj

= δijP
V
qq + PS

qq ,

PqiG = PqiG = PFG ,

PGqi
= PGqi

= PGF . (5)

Substituting these relations to (2), we find

∂

∂ ln µ2
qi = P V

qq ⊗ qi + P V
qq ⊗ qi + PS

qq ⊗
∑

j

qj + PS
qq ⊗

∑

j

qj + PFG ⊗G ,

∂

∂ ln µ2
qi = P V

qq ⊗ qi + P V
qq ⊗ qi + PS

qq ⊗
∑

j

qj + PS
qq ⊗

∑

j

qj + PFG ⊗G ,

∂

∂ ln µ2
G = PGF ⊗

∑

j

(qj + qj) + PGG ⊗G . (6)

1 We adopt the convention of Curci, Furmanski and Petronzio [13, 14] in which the
expansion parameter equals αs/(2π). The NNLO analysis of Moch and Vogt [15,16]
uses αs/(4π).
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This is the basic form of the DGLAP evolution equations.
Within a given approximation some splitting functions may vanish or be

equal. In particular,

• in the LO [1]

P
V (0)
qq = P

S(0)
qq = PS(0)

qq = 0 , (7)

• in the NLO [13,14]

PS(1)
qq = P

S(1)
qq , (8)

• but in the NNLO [15,16]

PS(2)
qq 6= P

S(2)
qq . (9)

Eqs. (6) can be rewritten in an alternative form which involves quark
singlet and non-singlet distributions. We will present this form below.

2.1.1. Singlet case

The quark singlet distribution is defined as

Σ(µ, x) =

nf
∑

j=1

(

qj(µ, x) + qj(µ, x)
)

. (10)

Performing summation over quark flavours in the first two equations (6), we
find

∂

∂ ln µ2
Σ =

{

P V
qq + P V

qq + nf(P
S
qq + PS

qq)
}

⊗ Σ + (2nfPFG)⊗G . (11)

Introducing the notation

PFF =P V
+ + nfP

S
+ , (12)

P V,S
+ =P V,S

qq + P V,S
qq , (13)

the following closed set of equations is obtained for the quark singlet and
gluon distributions

∂

∂ ln µ2
Σ = PFF ⊗ Σ + (2nfPFG)⊗G , (14)

∂

∂ ln µ2
G = PGF ⊗Σ + PGG ⊗G . (15)
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The splitting functions in these equations obey the general relations

1
∫

0

dz { zPFF (µ, z) + zPGF (µ, z) }

=

1
∫

0

dz { 2nfzPFG(µ, z) + zPGG(µ, z) } = 0 . (16)

They immediately leads to the momentum sum rule

1
∫

0

dx {xΣ(µ, x) + xG(µ, x)} = const (17)

which is conserved during the evolution. In the parton model interpre-
tation the constant is set to one by normalizing the initial conditions for
Eqs. (14), (15): Σ(µ0, x) and G(µ0, x).

2.1.2. Non-singlet case

Introducing the quark non-singlet distribution

V (µ, x) =

nf
∑

j=1

(qj(µ, x)− qj(µ, x)) , (18)

the following evolution equation is obtained from Eqs. (6)

∂

∂ ln µ2
V = P V

NS ⊗ V , (19)

where the new splitting function reads

P V
NS =P V

− + nfP
S
− , (20)

P V,S
− =P V,S

qq − P V,S
qq . (21)

Similarly, for the non-singlet quark distributions

q−i (µ, x)=qi(µ, x)− qi(µ, x)−
1

nf
V (µ, x) , (22)

q+
i (µ, x)=qi(µ, x) + qi(µ, x)−

1

nf
Σ(µ, x) , (23)
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we find from Eqs. (6), (14) and (19) the following equations

∂

∂ ln µ2
q−i =P V

− ⊗ q−i , (24)

∂

∂ ln µ2
q+
i =P V

+ ⊗ q+
i . (25)

Notice that there is no gluon distribution in the derived equations.

2.2. Summary of the forms

With the splitting functions usually presented in the literature

{P V
± , PS

± , PFG, PGF , PGG} , (26)

the evolution equations for the parton distributions {q−i , q+
i , V, Σ, G} are

given by Eqs. (24), (25), (19), (14) and (15), respectively.
According to relations (7)–(9), the perturbative expansions for the ker-

nels P V
± and PS

± take the following form

P V
± (αs, z) =

αs

2π
P V (0)

qq (z) +
(αs

2π

)2
P

V (1)
± (z) +

(αs

2π

)3
P

V (2)
± (z) + . . . ,

PS
+ (αs, z) =

(αs

2π

)2
PS(1)

qq (z) +
(αs

2π

)3
P

S(2)
+ (z) + . . . ,

PS
− (αs, z) =

(αs

2π

)3
P

S(2)
− (z) + . . . . (27)

The remaining kernels {PFG, PGF , PGG} have the nonzero splitting func-
tions in each approximation.

Alternatively, the parton distributions {qi, qi, G} could be evolved with
the help of Eqs. (6) with the kernels

{P V,S
qq , P V,S

qq , PFG, PGF , PGG} , (28)

where P V,S
qq and P V,S

qq are computed by inverting relations (13) and (21):

P V,S
qq = 1

2

(

P V,S
+ + P V,S

−

)

, (29)

P V,S
qq = 1

2

(

P V,S
+ − P V,S

−

)

. (30)
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2.3. Behaviour at z → 1

Let us consider the splitting functions (26). All the kernels, except the
PS

+ , are divergent for z = 1.

The quark–quark and gluon–gluon splitting functions {P V
± , PS

−, PGG}
have the following form

P (αs, z) =
A(αs)

(1− z)+
+ B(αs) δ(1 − z) + P (αs, z) , (31)

where the “+” prescription regularizes the 1/(1 − z) singularity

[f(z)]+ = f(z) − δ(1 − z)

1
∫

0

dz′f(z′) , (32)

and the functions A(αs), B(αs) and P (αs, z) are computed in powers of αs,
see Eq. (4). In particular

P (αs, z) =
∑

k=0

αk+1
s D(k)(z) . (33)

In the LO approximation (k = 0) D(0)(z = 1) is finite [1] while in the NLO
(k = 1) and NNLO (k = 2) approximations, the coefficients are logarithmi-
cally divergent [13–16]:

D(k)(z) = Dk ln(1− z) +O(1) . (34)

Similarly, the quark–gluon and gluon–quark splitting functions {PFG, PGF }
contain logarithmically divergent terms for z = 1 [14, 16]:

P (αs, z) =
∑

k=0

αk+1
s

{

2k
∑

i=1

D
(k)
i lni(1− z) +O(1)

}

. (35)

Thus in the limit z → 1, we have for PFG and PGF :

P (αs, z) =























O(αs) in LO (k = 0) ,

O(α2
s ln2(1− z)) in NLO (k = 1) ,

O(α3
s ln4(1− z)) in NNLO (k = 2) .

(36)
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2.4. Behaviour at z → 0

As in the previous section, let us consider the splitting functions (26).
The splitting functions {P V

± , PS
−} are logarithmically divergent at z = 0

starting from the NLO approximation: [13–16]:

P (αs, z) =
∑

k=0

αk+1
s

{

2k
∑

i=1

D
(k)
i lni z +O(1)

}

. (37)

Thus for z → 0, we find for P V
± and PS

−:

P (αs, z) =























O(αs) in LO (k = 0) ,

O(α2
s ln2 z) in NLO (k = 1) ,

O(α3
s ln4 z) in NNLO (k = 2) .

(38)

The remaining splitting functions {PS
+, PFG, PGF , PGG} have the fol-

lowing behaviour for z → 0 [14, 16]:

P (αs, z) = E1(αs)
ln z

z
+ E2(αs)

1

z
+O(ln2kz) . (39)

The logarithmic term is present starting from the NLO (k = 1) approxima-
tion:

E1(αs) = α2
s E

(1)
1 + α3

s E
(2)
1 + . . . , (40)

while the 1/z term is present from the LO (k = 0) approximation:

E2(αs) = αs E
(0)
2 + α2

s E
(1)
2 + α3

s E
(2)
2 . . . . (41)

2.5. Monte Carlo form of DGLAP equations

The z = 1 singularity in Eq. (31) needs special treatment in the Monte
Carlo formulation of the DGLAP equations. Rewritting Eqs. (6) for the
parton distributions multiplied by x, denoted in the matrix form as

{

xq1, . . . , xqnf
, xq1, . . . , xqnf

, xG
}

(µ, x) ≡ xD(µ, x) ≡ Q(µ, x) ,

we have

∂

∂ ln µ2
Q(µ, x) =

1
∫

x

dz P (αs, z)Q (µ, (x/z)) , (42)

where P is the matrix of the splitting functions, which can be easily read
off from Eqs. (6).
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Based on the results of Sec. 2.3, we can write the general structure of
the splitting functions in the following form

P (αs, z) =
A(αs)

(1− z)+
+ B(αs) δ(1 − z) + P (αs, z) , (43)

where A, B, P are computed in powers of αs. The function P (αs, z) may
contain singular terms in the limit z → 1, proportional to powers of ln(1−z).

For simplicity of the notation we suppress the µ-dependence of the parton
distribution and the splitting functions in the following. Substituting (43)
to Eq. (42) and using definition (32), we find

∂

∂ ln µ2
Q(x) =

1
∫

x

dz

{

A
Q(x/z) −Q(x)

1− z
+ P (z)Q(x/z)

}

+ {A ln(1− x) + B }Q(x) . (44)

Now, we introduce a small cutoff in the upper limit of the integration,
1 → (1 − ε), which isolates the z = 1 singularity. Performing the inte-
gration,

1−ε
∫

x

dz A
−Q(x)

1− z
= {A ln ε − A ln(1− x)}Q(x) ,

we find for Eq. (44)

∂

∂ ln µ2
Q(x) =

1−ε
∫

x

dz A
Q(x/z)

1− z
+

1
∫

x

dz P (z)Q(x/z)

+ {A ln ε + B}Q(x) . (45)

Inserting back the µ-dependence, the equation above can be written as

∂

∂ ln µ2
Q(µ, x) =

1
∫

x

dz P (αs, z, ε)Q(µ, x/z) (46)

with the kernel

P (αs, z, ε) =
A(αs)

1− z
Θ(1−z−ε)+{A(αs) ln ε + B(αs)} δ(1−z)+P (αs, z) .

(47)
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This form of the DGLAP equations is a starting point for the Monte
Carlo generation. Let us notice that the presented formulae are valid for both
representations of the parton distributions and splitting functions discussed
in Sec. 2.2. Explicit expressions for the splitting functions up to the NLO
are given in Appendix A.

3. Markovian algorithm for parton distributions

In the following we show how to transform the QCD evolution equa-
tion (DGLAP type) into an integral homogeneous equation and solve it by
means of iteration. The general properties of the evolution equations and
the related diffusion equations are discussed in Appendix D using simple en-
vironment of the discrete space. Below we discuss a more complicated case
of the mixed, discrete-continuous, space of the QCD evolution equations.

3.1. Classic iterative solution

Introducing the variable

t = ln µ ≡ ln Q , (48)

the evolution equations (42) in the component form read

∂

∂t
DK(t, x) =

∑

J

(PKJ ⊗DJ)(t, x)

=
∑

J

1
∫

x

dz

z
PKJ(t, z)DJ

(

t, (x/z)
)

. (49)

Notice that due to the definition of the evolution variable t, the splitting
functions PKJ are related to those from Sec. 1, Eqs. (4), by

PKJ(t, z) = 2PKJ(αs(t), z) (50)

with a possible dependence of αs(t) also on z in order to accommodate
coherence effects.

The next important step is to introduce the infra-red (IR) cut ε and to
isolate a part of the kernel P diagonal both in the parton (flavour) index
and in the z-variable2

PKJ(t, z) = −P
δ
KK(t, ε(t)) δKJ δ(1− z) + P

Θ
KJ(t, z),

P
Θ
KJ(t, z) = PKJ(t, z)Θ(1 − z − ε(t))Θ(z − ε′) , (51)

2 All components proportional to δ(1 − z) reside in the diagonal part of the matrix
PKJ anyway.
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where we also introduced a facultative lower limit ε′ on z-variable, equivalent
to the minimal global x of the evolution. Note that in the DGLAP case
there is no reason for the IR regulator ε to be t-dependent. However, for
applications in the context of parton-shower algorithms and of the CCFM
equations [17] it is worthwhile to keep this option open. In any case we
always assume that ε and ε(t) are small. A more detailed discussion of the
LO kernels is given in Appendix B. After the above splitting of the kernels
the evolution equation becomes inhomogeneous

∂

∂t
DK(t, x) + P

δ
KK(t) DK(t, x) =

∑

J

(PΘ
KJ ⊗DJ )(t, x) . (52)

It is easily made again homogeneous

e−ΦK(t,t0) ∂

∂t

(

eΦK(t,t0)DK(t, x)
)

=
∑

J

(PΘ
KJ ⊗DJ)(t, x) ,

ΦK(t, t0) =

t
∫

t0

dt′ Pδ
KK(t′, ε(t′)) , (53)

and turned into an integral equation

eΦK(t,t0)DK(t, x) = DK(t0, x) +

t
∫

t0

dt1e
ΦK(t1,t0)

∑

j

(PΘ
KJ ⊗DJ)(t1, x) . (54)

Its another equivalent form, which is more convenient for iteration, reads

DK(t, x)=e−ΦK (t,t0)DK(t0, x)+

t
∫

t0

dt1e
−ΦK(t,t1)

∑

J

(PΘ
KJ ⊗DJ)(t1, x) . (55)

The iteration of the above equation provides a solution in terms of a series
of integrals

DK(t, x) = e−ΦK(t,t0)DK(t0, x) (56)

+
∞
∑

n=1

∑

K0,...,Kn−1

n
∏

i=1





t
∫

t0

dti Θ(ti − ti−1)

1
∫

0

dzi



 e−ΦK(t,tn)

×

1
∫

0

dx0

n
∏

i=1

[

P
Θ
KiKi−1

(ti, zi)e
−ΦKi−1

(ti,ti−1)

]

DK0
(t0, x0)δ

(

x− x0

n
∏

i=1

zi

)

,
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where kn ≡ k. At this point we have many options for the MC implementa-
tion of the multidimensional integrals given by the above expression. Quite
generally, they can be divided into Markovian and non-Markovian groups
of the MC implementations. In the following we shall describe solutions of
the Markovian type. However, it will be done such that the mechanism to
switch to a non-Markovian method will be as easy as possible.

3.2. Markovianization

Contrary to the evolution of the non-singlet PDF or of the singlet one-
component PDF, in the most general case represented by the Eq. (56) one
cannot express its integrand as an exact product of the Markovian single-
step probabilities, each normalized to 1. However, the general iterative
solution of the evolution equation in Eq. (56) can be expressed in terms of
the (unnormalized) transition density

Ω(ti, xi,Ki|ti−1, xi−1,Ki−1) ≡ Θ(ti − ti−1) P
Θ
KiKi−1

(ti, xi/xi−1)

× e−ΦKi−1
(ti,ti−1) , (57)

as follows

DK(t, x) = e−ΦK(t,t0)DK(t0, x)

+

∞
∑

n=1

∑

K0,...,Kn−1

1
∫

0

dx0

n
∏

i=1





t
∫

t0

dti

1
∫

0

dzi



 e−ΦK(t,tn)

×

n
∏

i=1

Ω(ti, xi,Ki|ti−1, xi−1,Ki−1)δ

(

x− x0

n
∏

i=1

zi

)

DK0
(t0, x0) . (58)

The above expression looks almost as a product of Markovian transition
probabilities, except that Ω lacks a proper normalization

∞
∫

ti−1

dti

1
∫

0

dzi

∑

Ki

Ω(ti, xi,Ki|ti−1, xi−1,Ki−1)

=

∞
∫

0

d(TKi−1
(ti, ti−1)) e−ΦKi−1

(ti,ti−1) 6= 1 , (59)

where

TK(t, t0) =

t
∫

t0

dt′
1
∫

0

dz
∑

J

P
Θ
JK(t′, z) . (60)



1798 K. Golec-Biernat et al.

The above problem cannot be cured by changing integration variables or
normalization of the PDFs. On the other hand, one can define a properly
normalized transition probability

ω(ti, xi,Ki|ti−1, xi−1,Ki−1) ≡ Θ(ti − ti−1)P
Θ
KiKi−1

(ti, xi/xi−1)

× e−TKi−1
(ti,ti−1) ,

∞
∫

ti−1

dti

1
∫

0

dzi

∑

Ki

ω(ti, xi,Ki|ti−1, xi−1,Ki−1) ≡ 1 , (61)

and express

Ω(ti, xi,Ki|ti−1, xi−1,Ki−1) = e∆Ki−1
(ti,ti−1)

×ω(ti, xi,Ki|ti−1, xi−1,Ki−1) , (62)

where

∆K(t, t0) = TK(t, t0)− ΦK(t, t0) =

t
∫

t0

dt′
1
∫

0

dz
∑

J

PJK(t′, z) , (63)

which is independent of the IR regulator ε(t). This opens a way to the Monte
Carlo algorithm with weighted events, in which the Markovian algorithm is
based on the ω distributions and the correcting weight w =

∏

(Ω/ω) brings
back the MC distributions to the original ones.

As usual, Markovianization cannot be accomplished without adding one
extra integration variable. We do this starting from the identity

∞
∫

t

dti

1
∫

0

dzi

∑

Ki

ω(ti, xi,Ki|ti−1, xi−1,Ki−1) = e−TKi−1
(t,ti−1) , (64)

and then we add the (n + 1)-th “spill-over” variables in the integrals using

e∆Kn (t,tn)

∞
∫

t

dtn+1

1
∫

0

dzn+1

∑

Kn+1

ω(tn+1, xn+1,Kn+1|tn, xn,Kn)=e−ΦKn (t,tn) .

(65)
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Summarizing all the above discussion, we transform Eq. (56) into a new
equivalent form

DK(t, x) = e∆K(t,t0)

∫

t1>t

dt1dz1

∑

K1

ω(t1, x1,K1|t0, x,K) DK(t0, x)

+

∞
∑

n=1

1
∫

0

dx0

∫

tn+1>t

dtn+1dzn+1

∑

Kn+1

∑

K0,...,Kn−1

n
∏

i=1

∫

ti<t

dtidzi

× e∆Kn (t,tn)ω
(

tn+1, xn+1,Kn+1|tn, xn,Kn

)

×

n
∏

i=1

e∆Ki−1
(ti,ti−1)ω

(

ti, xi,Ki|ti−1, xi−1,Ki−1

)

× δ

(

x− x0

n
∏

i=1

zi

)

DK0
(t0, x0) . (66)

In the Markovian Monte Carlo algorithm implementing exactly the above
series of the integrals we neglect primarily the factor

w = e∆Kn (t,tn)
n
∏

i=1

e∆Ki−1
(ti,ti−1) , (67)

such that the whole series of integrals can be implemented readily as
a Markovian chain of steps with the normalized transition probability
ω(ti, xi,Ki|ti−1, xi−1,Ki−1) for each single step. The original integrals and
distributions can be recovered by means of applying the MC correcting
weight w defined above. The only technical problem is that w ≥ 1 and one
may struggle to find the maximum weight, in order to turn weighted events
into unweighted ones. It is an unavoidable price to pay in this method.

In the case of the single-component evolution (singlet or non-singlet) we
recover automatically the constant-weight algorithm

w = e∆(t,tn)
n
∏

i=1

e∆(ti,ti−1) = e∆(t,t0) . (68)

In the case of the non-singlet evolution we even have w = 1.

3.3. Generation of a single Markovian step

The description of the Markovian algorithm of the previous section is
incomplete without providing at least one method to generate exactly the
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distribution of a single step forward, (t0, x0,K0) → (t1, z1x0,K1), in the
primary Markovian algorithm

dω(t1, z1x0,K1|t0, x0,K0)=Θ(t1−t0) P
Θ
K1K0

(t1, z1) e−TK0
(t1,t0)dt1dz1 . (69)

The natural method of generating the above 3-dimensional distribution (in-
cluding one discrete variable) can be read from the reorganized normalization
integral

1 ≡

∞
∫

t0

dt1
∑

K1

1
∫

0

dz1 ω(t1, z1x0,K1|t0, x0,K0)

=

1
∫

0

d
(

e−TK0
(t1,t0)

)

∑

K1

∫

dz′ PΘ
K1K0

(t1, z
′)

∑

X=q,g

∫

dz′ PΘ
XK0

(t1, z′)

1
∫

0

dz1

PΘ
K1K0

(t1, z1)
∫

dz′ PΘ
K1K0

(t1, z′)

=

1
∫

0

dr(t1)
∑

K1

p(K1|t1)

1
∫

0

dz1 p(z1|K1, t1) , (70)

where the two final integrals and the parton sum are each equal to 1 sepa-
rately.

One may generate the first variable t1 by inverting the cumulative distri-
bution r(t1). Because of the possible t-dependence of the coupling constant
and the cut-off parameters, this requires inverting the distribution r(t1) nu-
merically or preparing look-up tables for TK(t1, t0) form factors and their
inverse, for each parton type K separately.

Knowing t1, one can generate the parton type K1 according to the prob-
ability πK1K0

proportional to
∫

dz PΘ
K1K0

(t1, z). Look-up tables of the t1
dependent πK1K0

branching ratios are needed for better efficiency.

Finally, knowing t1 and K1 one can generate the variable z1 according
to the probability distribution proportional to PΘ

K1K0
(t1, z1). Here one can

generate z1 starting from some approximate distribution and execute an
internal rejection loop with the correcting weight, about which the external
part of the MC algorithm knows nothing.

As one can see, ω(t1, z1x0,K1|t0, x0,K0) can be generated exactly. How-
ever, because of the need to pretabulate the form factors and the branching
probabilities there will always be some irreducible numerical bias in the MC
results. This requires some extra effort to control quantitatively and reduce,
if necessary.
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3.4. Weighted Markovian algorithm

The above Markovian scenario is close to what is used in the standard
parton-shower MCs. Here we shall describe another class of MC solutions
for Eq. (56). We shall stay within the class of the Markovian algorithms,
but our aim will be to use a MC implementation which allows for easy and
quick transition to constrained Markovian algorithms. Quite generally, in
the MC algorithm described above, there is a tendency of “micromanaging”
the generation of the component sub-distributions (i.e. ω distributions) such
that they are generated exactly and there is only one extra global MC weight
of Eq. (67). This is an efficient method but the efficiency comes at a price
of using look-up tables for generation of the ω distributions.

The alternative (implemented in the MC program EvolFMC [11]) is to
simplify intelligently the kernels, phase space boundaries, coupling constant,
etc., such that all component distributions in the MC algorithm are easily
generated. The compensating weight is applied at a later stage to exactly
retrieve the original distributions and integrals. This also comes at a price
because an extra weight will lead to a wider weight distribution and a less
efficient algorithm, especially if one wants to turn weighted events into un-
weighted ones at the end of the MC generation. These negative aspects can
be minimized by a better choice of approximations and the use of internal
rejection loops, wherever possible. On the positive side, there is no need to
deal with annoying procedures of controlling quantitatively the numerical
bias due to the use of the look-up tables. Moreover, since the approximate
distributions reflect well the singularity structure of the integrand, we have
better insight into the physics and a better chance to move away from the
Markovian algorithm (if we find it profitable for some other reasons).

Looking into the LO and NLO evolution kernels in QCD, one can see
that they all have the following structure

PIK(t, z) =
1

(1− z)+
δIKAKK(t) + δ(1− z) δIKBKK(t)

+
1

z
CIK(t) + DIK(t, z) , (71)

where DIK(z) is completely regular. The coefficient constants AKK, BKK ,
CIK and the coefficient functions DIK(z) can be decomposed into the LO
and NLO parts:
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AKK(t) =
αs(t)

2π
A

(0)
KK +

(

αs(t)

2π

)2

A
(1)
KK ,

BKK(t) =
αs(t)

2π
B

(0)
KK +

(

αs(t)

2π

)2

B
(1)
KK ,

CIK(t) =
αs(t)

2π
C

(0)
IK +

(

αs(t)

2π

)2

C
(1)
IK ,

DIK(t, z) =
αs(t)

2π
D

(0)
IK(z) +

(

αs(t)

2π

)2

D
(1)
IK(z) . (72)

Once we have made the above decomposition, we may readily express all the
form factors and constants entering into our integrals of Eqs. (56) and (58).

The virtual diagonal IR-divergent elements in the kernel matrix and the
corresponding form factor read as follows

P
δ
KK(t) = 2

(

AKK(t) ln
1

ε(t)
−BKK(t)

)

,

ΦK(t, t0) =

t
∫

t0

dt′Pδ
KK(t′)=

t
∫

t0

dt′2

(

AKK(t′) ln
1

ε(t′)
−BKK(t′)

)

, (73)

The integrated real-emission off-diagonal elements needed to generate the
parton type in the Markovian MC is now

πIK(t) =

1
∫

0

dz P
Θ
IK(t, z)

= 2



δIKAKK(t) ln
1

ε(t)
+ CIK(t) ln

1

ε′
+

1
∫

0

dz DIK(t, z)



. (74)

The real-emission form factors TK ,K = q, g, are given by

TK(t, t0) =

t
∫

t0

dt′
∑

X

πXK(t′) (75)

=

t
∫

t0

dt′ 2



AKK(t′) ln
1

ε(t′)
+
∑

X

CXK(t′) ln
1

ε′
+
∑

X

1
∫

0

dz DXK(t′, z)



 .
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Finally, the form factors ∆K , needed in the final MC weight for the correct
overall normalization, read

∆K(t, t0) =

t
∫

t0

dt′
∑

X

∫

dz PXK(t′) =

t
∫

t0

dt′
{

− P
δ
KK(t′) +

∑

X

πXK(t′)

}

=

t
∫

t0

dt′ 2



BKK(t′) +
∑

X

CXK(t′) ln
1

ε′
+
∑

X

1
∫

0

dz DXK(t′, z)



 .

(76)

Having expressed all the elements in Eq. (66) of the standard Markovian
algorithm, let us construct an alternative MC Markovian scenario starting
from Eq. (56) (before Markovianization). First, we simplify the kernel matrix
elements

P
Θ
IK(t, z)→ P̂

Θ
IK(t0, z) = Θ(z − ε′)Θ(1 − z − ε̂)

αs(t0)

π

×

{

1

1− z
δIKA

(0)
KK +

1

z
C

(0)
IK + D̂IK

}

, (77)

where D is replaced by the constant D̂, which is chosen to be zero when

A(0), B(0) are nonzero or equal the maximum (positive) value of D
(0)
IK(z); see

Appendix B. The above simplification is of course compensated by the MC
weight

wP =

n
∏

i=1

PΘ
KiKi−1

(ti, zi)

P̂Θ
KiKi−1

(t0, zi)
. (78)

Let us remark that the replacement αs(ti)→ αs(t0) of the running coupling
which stands in front of the LO kernel might cause poor overall MC efficiency.
This problem is addressed separately in the next section.

The above reorganization leads us to the following new formula

DK(t, x) = e−ΦK(t,t0)DK(t0, x)

+

∞
∑

n=1

∑

K0,...,Kn−1

1
∫

0

dx0

n
∏

i=1





t
∫

t0

dti Θ(ti − ti−1)

1
∫

0

dzi





× e−ΦK(t,tn)
n
∏

i=1

[

P̂
Θ
KiKi−1

(t0, zi)e
−ΦKi−1

(ti,ti−1)

]

×DK0
(t0, x0)δ

(

x− x0

n
∏

i=1

zi

)

wP , (79)
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completely equivalent to Eq. (56). Markovianization is now done for the
variant of the above formula in which wP is neglected. We define a new
transition probability as follows

ω̂
(

ti, xi,Ki|ti−1, xi−1,Ki−1

)

≡ Θ(ti − ti−1) P̂
Θ
KiKi−1

(t0, xi/xi−1)

× e−T̂Ki−1
(ti,ti−1) ,

∞
∫

ti−1

dti

1
∫

0

dzi

∑

Ki

ω̂
(

ti, xi,Ki|ti−1, xi−1,Ki−1

)

≡ 1 , (80)

where

T̂K(ti, ti−1) =

ti
∫

ti−1

dt′
1
∫

0

dz
∑

J

P̂
Θ
JK(t′, z)

= (ti−ti−1)
αs(t0)

π

[

A
(0)
KK ln

1

ε̂
+
∑

X

C
(0)
XK ln

1

ε′
+
∑

X

D̂
(0)
XK

]

=

ti
∫

ti−1

dt′
∑

X

π̂XK =(ti−ti−1)
∑

X

π̂XK =(ti−ti−1)RK , (81)

and the probability rate of the parton transition K → I is now constant

π̂IK =

1
∫

0

dz P̂
Θ
IK(t0, z)

=
αs(t0)

π

[

δIKA
(0)
KK ln

1

ε̂
+ C

(0)
IK ln

1

ε′
+ D̂IK

]

, (82)

independent of t; see Appendix B for explicit formulae. Summarizing, the
transition probability

ω̂(ti, xi,Ki|ti−1, xi−1,Ki−1) ≡ Θ(ti − ti−1) P̂
Θ
KiKi−1

(t0, xi/xi−1)

× e−(ti−ti−1)RKi−1 (83)

is now such a simple function that can be generated using elementary MC
methods, without any pretabulation. The last thing necessary, as usual,
for the Markovianization is introduction of the “spill-over” variable. This is
done with the help of the identity
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e−ΦKn (t,tn) = e∆̂Kn(t,tn)

∞
∫

t

dtn+1

1
∫

0

dzn+1

×
∑

Kn+1

ω̂
(

tn+1, xn+1,Kn+1|tn, xn,Kn

)

, (84)

where

∆̂K(ti, ti−1)= T̂K(ti, ti−1)−ΦK(ti, ti−1)=(ti − ti−1)RK−ΦK(ti, ti−1) . (85)

Let us stress that now, contrary to the previous standard Markovian sce-
nario, ∆̂ has an explicit residual dependence on the IR cut ε̂ which is nec-
essary to cancel exactly the analogous dependence of the average weight wP

(similarly as in a typical MC algorithm for QED exponentiation).
Summarizing all the above discussion, we transform Eq. (79) in a new

equivalent form

DK(t, x) = e∆̂K(t,t0)

∫

t1>t

dt1dz1

∑

K1

ω̂(t1, x1,K1|t0, x,K) DK(t0, x)

+

∞
∑

n=1

1
∫

0

dx0

∫

tn+1>t

dtn+1dzn+1

∑

Kn+1

∑

K0,...,Kn−1

n
∏

i=1

∫

ti<t

dtidzi

× ω̂(tn+1, xn+1,Kn+1|tn, xn,Kn)

n
∏

i=1

ω̂(ti, xi,Ki|ti−1, xi−1,Ki−1)

× δ

(

x− x0

n
∏

i=1

zi

)

DK0
(t0, x0) wP w∆ , (86)

where

w∆ = e∆̂Kn (t,tn)
n
∏

i=1

e∆̂Ki−1
(ti,ti−1) . (87)

In the MC generation we proceed as before. Neglecting the weight w =
wP w∆, we generate primary MC events using the Markovian algorithm with
the simplified transition probability ω̂. The original distributions and inte-
grals are recovered by applying the correction weight w. As already stressed,
the MC efficiency will be worse than in the previous case, but the whole MC
program is now much simpler and most likely provides better control of the
technical precision.

Let us note that we shall still need a precise 1-dimensional pretabulation
of all the form factors ΦK(t, t0), entering into w∆ through ∆̂K .
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3.5. Importance sampling for running αs(t)

In the above we took into account the t-dependence (t = ln Q), that is
running, of the strong coupling constant αs(t) by reweighting MC events.
This is very inefficient and it is rather easy to introduce the relevant
t-dependence of αs(t) at least at the one-loop level

α(0)
s (t) =

4π

β0(2t− 2 ln Λ0)
(88)

already in the underlying MC distributions.
One can see that in the t-integration in Eq. (79) we have effectively

∫

dti α(0)
s (ti) =

∫

dti
2π

β0(ti − ln Λ0)
=

2π

β0

∫

d ln(ti − ln Λ0) . (89)

It is, therefore, natural to introduce the variable τi,

τi = ln(ti − ln Λ0) , ti = ln Λ0 + exp(τi) ,

dti = (ti − ln Λ0) dτi = eτidτi , (90)

instead of3 ti. This change of variables will lead to the Jacobian factor
eτi = ti − ln Λ0 in the integrand, which will cancel the unwanted factor
e−τi = (t − ln Λ0)

−1 present in αs(t) in the MC weight. The two-loop and
more complicated contributions to αs(t) may still be added by reweighting
events, without spoiling much the efficiency.

We start again from Eq. (56) (before Markovianization). The kernel
matrix elements are now simplified more “gently” with respect to Eq. (77)

P
Θ
IK(t, z)→ P̄

Θ
IK(t, z) = Θ(z − ε′)Θ(1− z − ε̄)

α
(0)
s (t)

π

×

{

1

(1− z)+
δIKA

(0)
KK +

1

z
C

(0)
IK + D̄IK

}

, (91)

where D̄IK = D̂IK and ε(t)→ ε̄. The new compensating MC weight is

w̄P =

n
∏

i=1

PΘ
KiKi−1

(ti, zi)

P̄Θ
KiKi−1

(ti, zi)
. (92)

3 Of course, we are aware of a possibility of introducing τ as an evolution “time” in the
original differential equation from the very beginning. We proceed this way in order
to get more insight into various versions of the MC algorithm.
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The above reorganization leads us to the following new formula, com-
pletely equivalent to Eq. (56),

DK(τ, x) = e−ΦK(τ,τ0)DK(τ0, x)

+

∞
∑

n=1

∑

K0,...,Kn−1

n
∏

i=1





τ
∫

τ0

dτi Θ(τi − τi−1)

1
∫

0

dzi





× e−ΦK(τ,τn)

1
∫

0

dx0

n
∏

i=1

[

eτi P̄
Θ
KiKi−1

(τi, zi)e
−ΦKi−1

(τi,τi−1)

]

×DK0
(τ0, x0)δ

(

x− x0

n
∏

i=1

zi

)

w̄P . (93)

In the following we shall use a new function

¯̄
P

Θ
KiKi−1

(zi) = eτi P̄
Θ
KiKi−1

(τi, zi) , (94)

because it does not depend on τi anymore. This is the whole point of the
ti → τi change of variables.

Omitting w̄P , we proceed to Markovianization following the example of
the previous section

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1) ≡ Θ(τi−τi−1)
¯̄
P

Θ
KiKi−1

(xi/xi−1)

× e−T̄Ki−1
(τi,τi−1) ,

∞
∫

τi−1

dτi

1
∫

0

dzi

∑

Ki

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1)≡ 1 , (95)

where

T̄K(τi, τi−1) =

τi
∫

τi−1

dτ ′
1
∫

0

dz
∑

J

¯̄
P

Θ
JK(z) (96)

= (τi − τi−1)
2

β0

[

A
(0)
KK ln

1

ε̄
+
∑

X

C
(0)
XK ln

1

ε′
+
∑

X

D̄
(0)
XK

]

= (τi − τi−1)R̄K ,

R̄K =
∑

X

π̄XK ,
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and the probability rate of the parton transition K → I is now a constant

π̄IK =

1
∫

0

dz ¯̄
P

Θ
IK(z) =

2

β0

[

δIKA
(0)
KK ln

1

ε̄
+ C

(0)
IK ln

1

ε′
+ D̄IK

]

, (97)

again independent of t. The final transition probability to be generated in
each step of the Markovian algorithm reads

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1) ≡ Θ(τi − τi−1)
¯̄
P

Θ
KiKi−1

(xi/xi−1)

× e−(τi−τi−1)R̄Ki−1 , (98)

where

¯̄
P

Θ
IK(z) = Θ(z−ε′)Θ(1− z − ε̄)

2

β0

{

1

1− z
δIKA

(0)
KK +

1

z
C

(0)
IK +D̄IK

}

(99)

is again a simple function which can be generated, without any pretabula-
tion, using elementary MC methods. The overall recipe, as compared with
the previous MC algorithm, is to replace: ti → τi and αs(t0)/π → 2/β0 in
the generation of the primary MC distribution ω̄, before applying w̄P .

Inevitably, to complete the Markovianization, the integral over a “spill-
over” variable τn+1 is added with the usual identity

e−ΦKn (τ,τn) = e∆̄Kn (τ,τn)

∞
∫

τ

dτn+1

1
∫

0

dzn+1

×
∑

Kn+1

ω̄
(

τn+1, xn+1,Kn+1|τn, xn,Kn

)

, (100)

where

∆̄K(τi, τi−1) = T̄K(ti, τi−1)− ΦK(τi, τi−1)

= (τi − τi−1)R̄K − ΦK(τi, τi−1) . (101)

The final formula, equivalent to original Eq. (79), for this MC scenario
with the importance sampling for the running αs reads as follows
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DK(τ, x) = e∆̄K(τ,τ0)

∫

τ1>τ

dτ1dz1

∑

K1

ω̄(τ1, x1,K1|τ0, x,K) DK(τ0, x)

+

∞
∑

n=1

1
∫

0

dx0

∫

τn+1>τ

dτn+1dzn+1

∑

Kn+1

∑

K0,...,Kn−1

n
∏

i=1

∫

τi<τ

dτidzi

× ω̄(τn+1, xn+1,Kn+1|τn, xn,Kn)

n
∏

i=1

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1)

× δ

(

x− x0

n
∏

i=1

zi

)

DK0
(τ0, x0) w̄P w̄∆ , (102)

where

w̄∆ = e∆̄Kn (τ,τn)
n
∏

i=1

e∆̄Ki−1
(τi,τi−1) . (103)

The above formula looks almost identical to Eq. (86).

4. Markovian MC for parton-momentum distributions

The factor 1/z in the bremsstrahlung kernels causes a significant loss of
MC efficiency due to exp(∆K) which contains uncompensated ln(ε′). We can
get rid of this annoying phenomenon by switching to the xD(x) which evolve
with the kernels zP (z). The reason for improvement is that kernels zP (z)
fulfill the momentum-conservation sum rules. The evolution equations for
xD(x) read

∂t xDK(t, x) =
∑

J

1
∫

x

dz

z
zPKJ(t, z)

x

z
DJ

(

t, (x/z)
)

. (104)

The iterative solution can be obtained from the above formulae, or equiv-
alently by multiplying both sides of Eq. (56) by x,
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xDK(t, x) = e−ΦK(t,t0)xDK(t0, x)

+

∞
∑

n=1

1
∫

0

dx0

∑

K0,...,Kn−1

n
∏

i=1





t
∫

t0

dti Θ(ti − ti−1)

1
∫

0

dzi





× e−ΦK(t,tn)
n
∏

i=1

[

ziP
Θ
KiKi−1

(ti, zi)e
−ΦKi−1

(ti,ti−1)

]

×x0DK0
(t0, x0) δ

(

x− x0

n
∏

i=1

zi

)

, (105)

where K ≡ Kn. It was essential to exploit the condition x = x0
∏n

i=1 zi

imposed by the overall δ-functions4. We also feel free to introduce such an
overall factor x in the xD(x), because our ultimate aim is to use a con-
strained Markovian algorithm, hence such a factor will be dealt in the MC
separately and independently with other dedicated MC methods. At the
technical level, we may multiply both sides of the above equation by 1/x
and absorb 1/x in the MC weight, pretending that we generate D(x) dis-
tribution as before; in such a case the fluctuations of the weight in the
histograms of x will change but the distribution of x will be the same. The
main change will be in the probability distribution ω for the forward leap in
the Markovian random walk.

Before we enter into details of the Markovian MC, let us introduce the
evolution variable τ , similarly as in the previous section

τ ≡
1

αs(tA)

t
∫

tA

dt1 αs(t1) ,
∂t

∂τ
=

αs(tA)

αs(t)
. (106)

In the above transformation we may use various choices of tA and of αs(t).
For instance, we may employ the same αs(t) as in the evolution equations

(LO or NLO) or we may stay with the one-loop LO: α
(0)
s (t) = 2π/(β0

(t − ln Λ0)). In the latter case, with tA chosen such that α
(0)
s (tA) = 2π/β0

(e.g. tA−lnΛ0 = 1, tA = ln(eΛ0)), we recover the definition τ = ln(t−lnΛ0)
of the previous section. Let us adjust tA = t0 to the starting point of the

evolution and use α
(0)
s (t) in the definition of τ . With such a choice we have:

4 This way we could introduce any power of x, say xα, in front of D(x) and zα in the
kernels.
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xDK(τ, x) = e−ΦK(τ,τ0)xDK(τ0, x)

+
∞
∑

n=1

1
∫

0

dx0

∑

K0,...,Kn−1

n
∏

i=1





τ
∫

τ0

dτi Θ(τi − τi−1)

1
∫

0

dzi





× e−ΦK(τ,τn)
n
∏

i=1

[

PΘ
KiKi−1

(τi, zi)e
−ΦKi−1

(τi,τi−1)

]

×x0DK0
(τ0, x0) δ

(

x− x0

n
∏

i=1

zi

)

, (107)

where K ≡ Kn, and

PΘ
KiKi−1

(τi, zi) =
α

(0)
s (t0)

α
(0)
s (ti)

ziP
Θ
KiKi−1

(τi, zi) , (108)

which depends on τi very weakly. In the LO case it is completely independent
of τi.

In the general (NLO) case we may decompose the evolution kernels mul-
tiplied by z as follows

1

2
zPIK(t, z) ≡ zPIK(t, z) (109)

=
1

(1− z)+
δIKAKK(t) + δ(1 − z)δIKBKK(t) + FIK(t, z) ,

where the finite part F can be expressed in terms of the previously defined
functions A, C and D as follows

FIK(t, z) = zDIK(t, z) + CIK(t)− δIKAKK(t) . (110)

In the MC we replace, as before, the full kernels for the real emission
with the LO approximation with the constant IR regulator ε̄ ≤ ε(t):

PΘ
IK(τ, z)→ P̄Θ

IK(τ0, z) = Θ(1− z − ε̄)
α

(0)
s (t0)

π
zP

(0)
IK (z) ,

zP
(0)
IK (z) =

1

(1− z)+
δIKA

(0)
KK + δ(1 − z)δIKB

(0)
KK + F

(0)
IK (z) . (111)

The approximate kernels do not depend on τ . The corresponding compen-
sating weight is now

w̄P =
n
∏

i=1

PΘ
KiKi−1

(τi, zi)

P̄Θ
KiKi−1

(τ0, zi)
. (112)
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The probability of the forward Markovian leap reads now as follows

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1) ≡ Θ(τi − τi−1)

×P̄Θ
KiKi−1

(τ0, xi/xi−1) e−T̄Ki−1
(τi,τi−1) ,

∞
∫

τi−1

dτi

1
∫

0

dzi

∑

Ki

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1) ≡ 1 ,

zi = xi/xi−1 , (113)

where the new real-emission form factor is defined as follows

T̄K(τi, τi−1) =

τi
∫

τi−1

dτ ′
1
∫

0

dz
∑

J

P̄Θ
JK(τ0, z)

= (τi − τi−1)
α

(0)
s (t0)

π



A
(0)
KK ln

1

ε̄
+
∑

J

1
∫

0

F
(0)
JK(z)dz





= (τi − τi−1)
∑

J

π̄JK = (τi − τi−1) R̄K . (114)

The rate of the parton transition K → I is now

π̄IK =

1
∫

0

dz P̄Θ
IK(τ0, z) =

α
(0)
s (t0)

π



δIKA
(0)
KK ln

1

ε̄
+

1
∫

0

F
(0)
IK (z)dz



 . (115)

On the other hand, the exact virtual form factor is

ΦK(τ, τ0) =

τ
∫

τ0

dτ ′
α

(0)
s (t0)

α
(0)
s (t′)

2

[

AKK(τ ′) ln
1

ε(τ ′)
−BKK(τ ′)

]

. (116)

In the LO, for the one-loop α
(0)
s and if, in addition, we choose ε(τ) = ε

=const, then the virtual form factor becomes simply

ΦK(τ, τ0) = (τ − τ0)
α

(0)
s (t0)

π

(

A
(0)
KK ln

1

ε
−B

(0)
KK

)

. (117)

Summarizing, the final transition probability to be generated in each
step of the Markovian algorithm reads

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1) ≡ Θ(τi − τi−1)

×P̄Θ
KiKi−1

(τ0, xi/xi−1) e−(τi−τi−1)R̄Ki−1 , (118)

where
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P̄Θ
IK(τ0, z) = Θ(1− z − ε̄)

α
(0)
s (t0)

π

{

1

1− z
δIKA

(0)
KK + F

(0)
IK (z)

}

. (119)

To complete the Markovianization, the integral over the “spill-over” vari-
able τn+1 is added with the help of the usual identity

e−ΦKn (τ,τn) = e∆̄Kn (τ,τn) (120)

×

∞
∫

τ

dτn+1

1
∫

0

dzn+1

∑

Kn+1

ω̄(τn+1, xn+1,Kn+1|τn, xn,Kn) ,

where zn+1 = xn+1/xn, and

∆̄K(τi, τi−1) = T̄K(τi, τi−1)− ΦK(τi, τi−1)

= (τi − τi−1)R̄K − ΦK(τi, τi−1) . (121)

The advantage of the method outlined in this section is that at the LO level
we obtain for ε = ε̄

∆̄K = 0 (122)

due to the fact that the kernels obey the momentum sum rules. In most
renormalization schemes (e.g. MS) this will be also valid at the NLO level5.

The final formula for this MC scenario with the importance sampling for
the running αs reads:

xDK(τ, x) = e∆̄K(τ,τ0)

∫

τ1>τ

dτ1dz1

∑

K1

ω̄(τ1, z1x,K1|τ0, x,K) xDK(τ0, x)

+

∞
∑

n=1

1
∫

0

dx0

∫

τn+1>τ

dτn+1dzn+1

∑

Kn+1

∑

K0,...,Kn−1

n
∏

i=1

t
∫

τi<τ

dτidzi

× ω̄(τn+1, xn+1,Kn+1|τn, xn,Kn)
n
∏

i=1

ω̄(τi, xi,Ki|τi−1, xi−1,Ki−1)

× δ

(

x− x0

n
∏

i=1

zi

)

x0DK0
(τ0, x0) w̄P w̄∆ , (123)

where zi = xi/xi−1, K ≡ Kn and

w̄∆ = e∆̄Kn (τ,τn)
n
∏

i=1

e∆̄Ki−1
(τi,τi−1) . (124)

5 A small non-zero value of ∆̄K may be present for technical reasons, that is, if we use
slightly simplified kernels at the low MC generation level.
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5. Numerical tests

We have performed comparisons of the MC solution of the DGLAP evo-
lution equations implemented in the program EvolFMC [11] with another
solution provided by the non-MC program QCDnum16 [3]. In both cases we
have evolved singlet PDF for gluons and three doublets of massless quarks
from Q0 = 1GeV to Q = 10, 100, 1000GeV. The comparisons have been
done both for the LO and the NLO evolution, including the running αs in
the corresponding approximation.

In our test, we have used the following parameterization of the starting
parton distributions in the proton at Q0 = 1GeV:

xDG(x) = 1.9083594473 x−0.2(1− x)5.0 ,

xDq(x) = 0.5 xDsea(x) + xD2u(x) ,

xDq̄(x) = 0.5 xDsea(x) + xDd(x) ,

xDsea(x) = 0.6733449216 x−0.2(1− x)7.0 ,

xD2u(x) = 2.1875000000 x0.5(1− x)3.0 ,

xDd(x) = 1.2304687500 x0.5(1− x)4.0 . (125)
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Fig. 1. The upper plot shows the gluon distribution xDG(x, Qi) evolved from

Q0 = 1 GeV (black) to Qi = 10 (red), 100 (green) and 1000 (blue) GeV, obtained

in the LO approximation from EvolFMC (solid lines) and QCDnum16 (dashed lines),

while the lower plot shows their ratio.
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Fig. 2. The upper plot shows the singlet quark distribution xDq̄(x, Qi) evolved from

Q0 = 1 GeV (black) to Qi = 10 (red), 100 (green) and 1000 (blue) GeV, obtained

in the LO approximation from EvolFMC (solid lines) and QCDnum16 (dashed lines),

while the lower plot shows their ratio.

The first results of these comparisons for the LO evolution were presented
in Ref. [6]. They showed a 0.2% discrepancy for the gluon distributions
between EvolFMC and QCDnum16. This numerical bias is eliminated in this
paper. In Figs. 1 and 2 we show the resulting gluon and quark distributions
evolved to Q = 10, 100, 1000GeV in the LO approximation. As one can see,
these two calculations agree to within 0.1% for the gluon as well as for the
quark singlet distributions. The origin of the previous 0.2% discrepancy for
gluon was identified as a result of too high values of the dummy IR cut-offs:
ε = ε̄ = 10−3. The new results have been obtained for ε = ε̄ = 10−4. In
the small-x region (x < 0.1), we have found a similar agreement with the
program APCheb33 [4], which uses the Chebyshev-polynomial technique to
solve the DGLAP equations.

In Figs. 3 and 4 we present the results of similar comparisons for the
NLO evolution. In the NLO, there is some ambiguity in calculation of the
running αs. In EvolFMC we use a definition of αs given in Appendix A.
However, in the original version of QCDnum16 a different definition of αs at
the NLO was employed. For the sake of our comparisons, we have replaced
in the QCDnum16 code the routine for αs evaluation with the appropriate
routine from EvolFMC. We have checked for several values of Q2, that after
replacement the two programs give numerically the same values of αs(Q

2).
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Fig. 3. The upper plot shows the gluon distribution xDG(x, Qi) evolved from Q0 =

1 GeV (black) to Qi = 10 (red), 100 (green) and 1000 (blue) GeV, obtained in the

NLO approximation from EvolFMC (solid lines) and QCDnum16 (dashed lines), while

the lower plot shows their ratio.

The NLO results for the gluon and quark singlet distributions from EvolFMC

and QCDnum16 agree within ∼ 0.1%, as in the LO case. Again, for x < 0.1
we have found a similar agreement with APCheb33.

The MC calculation for the NLO evolution is, of course, slower and less
efficient than for the LO one but not very much. In comparison with the LO
results given above, the NLO results were obtained for the statistics about
2 times higher and their computation required about 3 times more CPU time.

All the above results were obtained in the weighted-event mode of
EvolFMC. In the LO case the weighted events can be turned into the un-
weighted (weight = 1) ones without difficulty — the event weight is well-
behaved, non-negative and bounded from above. At the NLO, however, the
situation is problematic. As was described in Sec. 2.3, the PFG and PGF

splitting functions at the NLO acquire logarithmic singularities at z = 1.
In our MC algorithm this leads to large positive weights for the F → G
transitions and to negative weights for the G → F transitions in the re-
gion of z & 0.95. While the problem of large positive weights can be
cured with appropriate importance sampling, there is no technical method to
turn negative-weight events into unweighted events. The current version of
EvolFMC implements only the weighted-event solution for the NLO DGLAP
evolution. These problems will be addressed in our future works.
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Fig. 4. The upper plot shows the singlet quark distribution xDq̄(x, Qi) evolved from

Q0 = 1 GeV (black) to Qi = 10 (red), 100 (green) and 1000 (blue) GeV, obtained in

the NLO approximation from EvolFMC (solid lines) and QCDnum16 (dashed lines),

while the lower plot shows their ratio.

6. Summary and outlook

In this paper we have presented in detail two Markovian MC algorithms
for solving the DGLAP equations up to the NLO accuracy. The one of them
is based directly on the evolution of the PDFs and the other one instead of
pure PDFs uses the parton-momentum distributions. The latter algorithm is
more efficient due to the momentum-conservation sum rules. The evolution
is done in parton flavour space, in the current version for gluons and three
light quarks but it can be easily extended to include more flavours. Both
the above algorithms have been implemented in the MC generator EvolFMC
(written in C++). This program has been cross-checked against two inde-
pendent non-MC programs: QCDnum16 and APCheb33. The numerical tests
show that with today computer CPU power the Markovian MC is able to
solve efficiently and precisely (to the per-mil level) the QCD evolution equa-
tion up to the NLO. Therefore, it can be used to cross-check other, non-MC
methods or even as an alternative to them. As was pointed out in Introduc-
tion, the MC method is not competitive with other techniques in terms of
the CPU time but is has certain advantages that may be important in some
cases – it is usually less biased and more stable numerically as well as more
flexible for possible extensions.
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So far we have included only light (massless) quarks in our MC algorithm,
however, extending it to heavy quarks does not pose any problem. It can
be realized either by simple rejection of extra massless quarks below mass
thresholds or by some importance sampling that accounts for these thresh-
olds. Also extension to the NNLO seems straightforward — one only needs
to implement the NNLO evolution kernels [15, 16]. A more serious problem
concerns the divergences of the NLO kernels at z → 1 which for some tran-
sitions lead to negative weights. This indicates that some resummation in
this region might be necessary.

As was mentioned in Introduction, we do not consider the Markovian MC
algorithm described in this paper to be only a tool for solving numerically the
evolution equations for parton densities. It can be also used as the basis for
constructing the FSR parton shower MC event generator which would gener-
ate physical events in terms of particle flavours and four-momenta. This al-
gorithm cannot be directly used for the ISR evolution (parton shower), since
in that case one needs to impose some energy-momentum constraints on the
partons entering the hard process. However, it can be used as a starting
point for developing any kind of constraint MC algorithms as well as it can
play a role of a testing tool for corresponding MC programs, see Refs. [7–10].

Yet another way of development of the above Markovian MC algorithm
can go into the direction of solving the CCFM equations [17]. In this case one
deals with the so-called unintegrated parton distribution functions, which
in addition to x and Q2 depend on the partonic transverse momenta kT.
This may be important for better modeling physical events in deep inelastic
scattering as well as hadron–hadron collisions, see e.g. Ref. [18]. We have
already implemented the so-called one-loop approximation of the CCFM
equation [19–21] which will be reported in our forthcoming paper [22].

We would like to thank P. Stephens and Z. Was for the useful discussions.
We acknowledge the warm hospitality of the CERN Physics Department
where part of this work was done. KG-B acknowledges the grant from the
Polish State Committee for Scientific Research (KBN) No. 1 P03B 028 28.
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Appendix A

QCD kernels at NLO

A general parton–parton transition matrix for a gluon and three quark
flavours (d, u, s) can be written as

P (αs, z)=



















PG←G, PG←d, PG←u, PG←s, PG←d̄, PG←ū, PG←s̄

Pd←G, Pd←d, Pd←u, Pd←s, Pd←d̄, Pd←ū, Pd←s̄

Pu←G, Pu←d, Pu←u, Pu←s, Pu←d̄, Pu←ū, Pu←s̄

Ps←G, Ps←d, Ps←u, Ps←s, Ps←d̄, Ps←ū, Ps←s̄

Pd̄←G, Pd̄←d, Pd̄←u, Pd̄←s, Pd̄←d̄, Pd̄←ū, Pd̄←s̄

Pū←G, Pū←d, Pū←u, Pū←s, Pū←d̄, Pū←ū, Pū←s̄

Ps̄←G, Ps̄←d, Ps̄←u, Ps̄←s, Ps̄←d̄, Ps̄←ū, Ps̄←s̄



















,

(A.1)

where PJ←I ≡ PJ←I(αs, z). At the NLO, the kernels can be decomposed
as follows

P (αs, z) =
αs(t)

2π
P (0)(z) +

(

αs(t)

2π

)2

P (1)(z) , (A.2)

where the NLO QCD coupling in the MS-scheme is

αs(t) = α(0)
s (t)

{

1− α(0)
s (t)

b1

b0
ln
(

2[t− ln ΛMS ]
)

}

,

b0 =
β0

4π
, b1 =

β1

(4π)2
,

β0 = 11−
2

3
nf , β1 = 102−

38

3
nf , (A.3)

and t = ln Q (nf is the number of active flavours).

The LO kernel matrix takes a simple form

P (0)(z) =

























P
(0)
GG, P

(0)
GF , P

(0)
GF , P

(0)
GF , P

(0)
GF , P

(0)
GF , P

(0)
GF

P
(0)
FG, P

(0)
FF , 0, 0, 0, 0, 0

P
(0)
FG, 0, P

(0)
FF , 0, 0, 0, 0

P
(0)
FG, 0, 0, P

(0)
FF , 0, 0, 0

P
(0)
FG, 0, 0, 0, P

(0)
FF , 0, 0

P
(0)
FG, 0, 0, 0, 0, P

(0)
FF , 0

P
(0)
FG, 0, 0, 0, 0, 0, P

(0)
FF

























, (A.4)
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where

P
(0)
GG(z) = 2CA

[

1

(1− z)+
− 2 + z(1 − z) +

1

z

]

+
11CA − 4Tf

6
δ(1 − z) ,

P
(0)
FG(z) = TR [z2 + (1− z)2] ,

P
(0)
GF (z) = CF

1 + (1− z)2

z
,

P
(0)
FF (z) = CF

[

1 + z2

(1− z)+
+

3

2
δ(1 − z)

]

,

(A.5)

and the colour-group factors are: CA = Nc = 3, CF = (N2
c − 1)/2Nc = 4/3,

TR = 1/2.
The NLO contribution to the kernel matrix can be expressed in the

following form

P (1)(z) =

























P
(1)
GG, P

(1)
GF , P

(1)
GF , P

(1)
GF , P

(1)
GF , P

(1)
GF , P

(1)
GF

P
(1)
FG, P

V +S (1)
qq , P

S (1)
qq , P

S (1)
qq , P

V +S (1)
qq̄ , P

S (1)
qq̄ , P

S (1)
qq̄

P
(1)
FG, P

S (1)
qq , P

V +S (1)
qq , P

S (1)
qq , P

S (1)
qq̄ , P

V +S (1)
qq̄ , P

S (1)
qq̄

P
(1)
FG, P

S (1)
qq , P

S (1)
qq , P

V +S (1)
qq , P

S (1)
qq̄ , P

S (1)
qq̄ , P

V +S (1)
qq̄

P
(1)
FG, P

V +S (1)
qq̄ , P

S (1)
qq̄ , P

S (1)
qq̄ , P

V +S (1)
qq , P

S (1)
qq , P

S (1)
qq

P
(1)
FG, P

S (1)
qq̄ , P

V +S (1)
qq̄ , P

S (1)
qq̄ , P

S (1)
qq , P

V +S (1)
qq , P

S (1)
qq

P
(1)
FG, P

S (1)
qq̄ , P

S (1)
qq̄ , P

V +S (1)
qq̄ , P

S (1)
qq , P

S (1)
qq , P

V +S (1)
qq

























,

(A.6)

where P
(1)
IJ ≡ P

(1)
IJ (z) and we have used a short-hand notation P

V +S (1)
IJ ≡

P
V (1)
IJ + P

S (1)
IJ . The above matrix can be simplified by exploiting the iden-

tity (8)

PS (1)
qq = P

S (1)
qq̄ , (A.7)

which is true up to the NLO. However, we prefer to keep a more general form
of the kernel matrix which can be useful for some tests and possible future
extensions. The above kernel matrices can be easily extended to include
more quark flavours.

The non-singlet and singlet-quark kernels can be expressed in terms of
the basic NLO splitting functions P+, P− and PFF , defined in Refs. [13,14],
as follows:
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P V (1)
qq =

1

2

[

P
(1)
+ + P

(1)
−

]

,

P
V (1)
qq̄ =

1

2

[

P
(1)
+ − P

(1)
−

]

,

PS (1)
qq =

1

2nf

[

P
(1)
FF − P

(1)
+

]

. (A.8)

Finally, all the elements of the above kernel matrix can be calculated
(e.g. numerically) from the six basic NLO splitting functions of Refs. [13,14]

[

P
(1)
+ , P

(1)
− , P

(1)
FF , P

(1)
FG, P

(1)
GF , P

(1)
GG

]

. (A.9)

These basic splitting functions are given at the NLO by the following ex-
pressions:

P
(1)
± (z, ε)=

A
(1)
± (z)

1− z
Θ(1−z−ε)+B

(1)
± (z)+

[

C
(1)
S + A

(1)
S ln ε

]

δ(1− z) , (A.10)

P
(1)
FF (z, ε) =

A
(1)
S

1− z
Θ(1−z−ε)+B

(1)
S (z)+

[

C
(1)
S + A

(1)
S ln ε

]

δ(1−z) , (A.11)

P
(1)
GG(z, ε) =

A
(1)
G

1− z
Θ(1−z−ε)+B

(1)
G (z)+

[

C
(1)
G + A

(1)
G ln ε

]

δ(1−z), (A.12)

P
(1)
FG(z) =

1

2
CF TR

{

4− 9z + (4z − 1) ln z+(2z − 1) ln2 z+4 ln(1− z)

+

[

10−
2

3
π2 + 2 ln2

(

1− z

z

)

− 4 ln

(

1− z

z

)]

[

z2 + (1− z)2
]

}

+
1

2
CA TR

{

182

9
+

14

9
z +

40

9z
+

(

136

3
z −

38

3

)

ln z − 4 ln(1− z)

− (2 + 8z) ln2 z + 2
[

z2 + (1 + z)2
]

S2(z) +

[

π2

3
−

218

9
+

44

3
ln z

− ln2 z + 4 ln(1− z)− 2 ln2(1− z)

]

[

z2 + (1− z)2
]

}

,

(A.13)
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P
(1)
GF (z) = C2

F

{

−
5

2
−

7

2
z−2z ln(1− z)−

1+(1−z)2

z
ln(1−z) [3+ln(1−z)]

+

(

2 +
7

2
z

)

ln z −

(

1−
1

2
z

)

ln2 z

}

+ CF CA

{

28

9
+

65

18
z +

44

9
z2 −

(

12 + 5z +
8

3
z2

)

ln z + (4 + z) ln2 z

+ 2z ln(1− z) +
1 + (1− z)2

z

[

1

2
−

π2

6
+

11

3
ln(1− z)

+ ln2(1− z)− 2 ln z ln(1− z) +
1

2
ln2 z

]

−
1 + (1 + z)2

z
S2(z)

}

− CF Tf

{

4

3
z +

1 + (1− z)2

z

[

20

9
+

4

3
ln(1− z)

]}

,

(A.14)

where

C
(1)
S = C2

F

(

3

8
−

π2

2
+6ζ3

)

+
1

2
CF CA

(

17

12
+

11π2

9
−6ζ3

)

−CF Tf

(

1

6
+

2π2

9

)

,

A
(1)
S = CF

{

CA

(

67

9
−

π2

3

)

−
20

9
Tf

}

,

C
(1)
G = C2

A

(

8

3
+3ζ3

)

−

(

4

3
CA+CF

)

Tf ,

A
(1)
G = CA

{

CA

(

67

9
−

π2

3

)

−
20

9
Tf

}

,

(A.15)

with ζ3 ≡ ζ(3) ≈ 1.2020569.

The non-singlet coefficients take the form

A
(1)
± (z) = C2

F

[

−2(1 + z2) ln z ln(1− z)− 3 ln z
]

+
1

2
CF CA

[

ln2 z +
11

3
ln z +

67

9
−

π2

3

]

(1 + z2)

−CF Tf
2

3

[

ln z +
5

3

]

(1 + z2) , (A.16)
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B
(1)
± (z = C2

F

[

−2z ln z −
1

2
(1 + z) ln2 z − 5(1 − z) ± PA(z)

]

+
1

2
CF CA

[

2(1 + z) ln z +
40

3
(1− z)∓ PA(z)

]

− CF Tf
4

3
(1− z) ,

(A.17)

where

PA(z) = 2
1 + z2

1 + z
S2(z) + 2(1 + z) ln z + 4(1 − z) . (A.18)

Notice that, as it should be, A
(1)
± (1) = A

(1)
S . The function S2 is defined in

the interval (0, 1]

S2(z) =

1/(1+z)
∫

z/(1+z)

dy

y
ln

1− y

y
= −2Li2(−z) +

1

2
ln2 z − 2 ln z ln(1 + z) −

π2

6
,

(A.19)
where the dilogarithm function Li2 is given by

Li2(z) =
∞
∑

k=1

zk

k2
=

0
∫

z

dt

t
ln(1− t), (A.20)

with a branch point discontinuity on a complex plane along [1,+∞].

For the singlet and gluon coefficients we have

B
(1)
S (z) = C2

F

{

− 1 + z +
1

2
[1− 3z − (1 + z) ln z] ln z

− 2

(

1 + z2

1− z

)[

3

4
+ ln(1− z)

]

ln z + 2
1 + z2

1 + z
S2(z)

}

+ CF CA

{

−

(

67

18
−

π2

6

)

(1 + z) +
14

3
(1− z)

+
1

2

(

1 + z2

1− z

)(

11

3
+ ln z

)

ln z −
1 + z2

1 + z
S2(z)

}

+ CF Tf

{

−
16

3
+

10

9
(1 + z) +

40

9z
+

40z

3
−

112z2

9

−
2

3

(

1+z2

1−z

)

ln z+

(

2+10z+
16

3
z2

)

ln z−2(1 + z) ln2 z

}

,

(A.21)
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B
(1)
G (z) = C2

A

{

27

2
(1− z) +

67

9
(z2 − z−1)−

1

3

(

25− 11z + 44z2
)

ln z

+ 4(1 + z) ln2 z +
[

ln2 z − 4 ln z ln(1− z)
] 1

1− z

+

[

ln2 z − 4 ln z ln(1− z) +
67

9
−

π2

3

] [

1

z
− 2 + z(1− z)

]

+ 2

(

1

1 + z
−

1

z
− 2− z − z2

)

S2(z)

}

+ CA Tf

{

2(1−z) +
26

9
(z2−z−1)−

4

3
(1 + z) ln z−

20

9

[

1

z
−2 + z(1−z)

]}

+ CF Tf

{

8(z − 2) +
20

3
z2 +

4

3z
− (6 + 10z) ln z − 2(1 + z) ln2 z

}

. (A.22)

It is easy to check that the above functions have no singularity at z = 1.
It is worth noticing that the non-singlet quark kernels have particularly

simple analytical representations

P V (1)
qq (z, ε) =

[

C
(1)
S + A

(1)
S ln ε

]

δ(1 − z) +
A

(1)
+ (z)

1− z
Θ(1− z − ε)

+ C2
F

[

−2z ln z −
1

2
(1 + z) ln2 z − 5(1 − z)

]

+
1

2
CF CA

[

2(1 + z) ln z +
40

3
(1− z)

]

− CF Tf
4

3
(1− z) ,

P
V (1)
qq̄ (z) = CF

(

CF −
1

2
CA

)

PA(z) . (A.23)

Using these analytical formulae in numerical evaluations of the kernels P
V (1)
qq

and P
V (1)
qq̄ can be faster and more stable numerically than computing them

indirectly from the splitting functions P
(1)
± .

In the Monte Carlo implementation, the above kernel matrices are used
for generation of real-parton radiation, i.e. for z < 1 − ε. This has to be
compensated by the appropriate Sudakov form factor summing up virtual
and soft-parton corrections, i.e. terms proportional to δ(1−z). At the NLO,
the Sudakov exponent ΦK takes the form

ΦK(t2, t1) = 2

t2
∫

t1

dt

{

αs(t)

2π
P

δ (0)
KK (z) +

(

αs(t)

2π

)2

P
δ (1)
KK (z)

}

, (A.24)
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where the NLO αs(t) has to be taken for both terms. The factor of 2 in
front of the integral is due to the fact that our evolution “time” is t = ln Q.
Integrating over τ = ln(t− ln Λ), we obtain for gluons

ΦG(τ2, τ1) =
2

β0

{

[χ0(τ2)− χ0(τ1)]

[

2CA ln
1

ε
−

11

6
CA +

2

3
Tf

]

+ [χ1(τ2)− χ1(τ1)]

[

A
(1)
G ln

1

ε
− C

(1)
G

]} (A.25)

and for fermions (both quarks and anti-quarks)

ΦF (τ2, τ1) =
2

β0

{

[χ0(τ2)− χ0(τ1)]

[

2CF ln
1

ε
−

3

2
CF

]

+ [χ1(τ2)− χ1(τ1)]

[

A
(1)
S ln

1

ε
− C

(1)
S

]}

,

(A.26)

where

χ0(τ) = τ +
β1

2β2
0

(τ + ln 2 + 1) e−τ , (A.27)

and

χ1(τ) =−
1

β0

{

β1

2β2
0

(

β1

6β2
0

[

τ2 + 2

(

ln 2 +
1

3

)(

τ +
1

3

)

+ ln2 2

]

e−τ

− τ − ln 2−
1

2

)

e−τ + 1

}

e−τ .

(A.28)

Appendix B

Gluon and quark singlet kernels at LO

As already advocated, we isolate all singular parts from the kernels
(cf. Eq. (71))

PIK(t, z)=
1

(1− z)+
δIKAKK(t)+δ(1−z)δIKBKK(t)+

1

z
CIK(t)+DIK(t, z) .

(B.1)
After expanding to LO (see Eq. (72)) the resulting components A(0), B(0),
C(0),D(0) are listed in Table I.

Let us consider evolution of the simple two-component state consisting
of the gluon and the (singlet) quark with the LO evolution kernel

P (0)(z) =

[

P
(0)
GG(z), P

(0)
Gq (z)

P
(0)
qG (z), P

(0)
qq (z)

]

, (B.2)
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TABLE I

The elements of the singlet LO kernels (Tf = nfTR).

IK A
(0)
KK B

(0)
KK C

(0)
IK D

(0)
IK(z) D̂IK(z)

∫

dzD
(0)
IK(z)

GG 2CA
11
6 CA−

2
3Tf 2CA 2CA(−2+z−z2) 0 − 11

3 CA

qG − − 0 2Tf(z
2 + (1 − z)2) 2Tf

4
3Tf

qq 2CF
3
2CF 0 CF (−1− z) 0 − 3

2CF

Gq − − 2CF CF (−2 + z) 0 − 3
2CF

where

P
(0)
qG (z) = nfP

(0)
FG(z) ,

P (0)
qq (z) = P

(0)
FF ,

P
(0)
Gq (z) = P

(0)
GF , (B.3)

and P
(0)
GG, P

(0)
FG, P

(0)
FF , P

(0)
GF are given explicitly in Appendix A.

Let us concentrate now on the second (less standard) Markovian algo-
rithm described in Sec. 3.4. The definition of the simplified kernel matrix
elements, Eq. (77)

P̂
Θ
IK(t0, z) = Θ(z−ε′)Θ(1−z−ε̂)

αs(t0)

π

{

1

1−z
δIKA

(0)
KK +

1

z
C

(0)
IK +D̂IK

}

(B.4)

needs D̂IK , which are also provided in Table I.
In this simple case we may explicitly list the parton K → I transition

rates

π̂IK =
αs(t0)

π

[

δIKA
(0)
KK ln

1

ε̂
+ C

(0)
IK ln

1

ε′
+ D̂IK

]

(B.5)

as follows

[

π̂GG, π̂Gq

π̂qG, π̂qq

]

=
αs(t0)

π





2CA

(

ln 1
ε̂ + ln 1

ε′

)

, 2CF ln 1
ε′

2Tf , 2CF ln 1
ε̂



 , (B.6)

and also the characteristic decay rates RK =
∑

X π̂XK , K = g, q (in a pri-
mary MC)

RG =
αs(t0)

π

{

2CA

(

ln
1

ε̂
+ ln

1

ε′

)

+ 2Tf

}

,

Rq =
αs(t0)

π

{

2CF ln
1

ε′
+ 2CF ln

1

ε̂

}

. (B.7)
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Appendix C

LO kernels for parton-momentum distributions

We may decompose the evolution kernels for parton-momentum distri-
butions in the LO and NLO as follows, see Eq. (109)

zPIK(t, z)=
1

(1− z)+
δIKAKK(t)+δ(1 − z)δIKBKK(t)+FIK(t, z) , (C.1)

where q represents one quark flavour and the corresponding LO components
are listed in Table II. Comparing to the previous appendix, we have

FIK(t, z) = zDIK(t, z) + CIK(t)− δIKAKK(t) . (C.2)

In the MC we use the simplified kernels (Eq. (111))

P̄Θ
IK(τ0, z) = θ(1− z − ε̄)

α
(0)
s (t0)

π

{

1

1− z
δIKA

(0)
KK + F

(0)
IK (z)

}

. (C.3)

In this simple case we may explicitly list the parton transition K → I
rates (Eq. (115))

π̄IK(τ0) =

1
∫

0

dz P̄Θ
IK(τ0, z) =

α
(0)
s (t0)

π

[

δIKA
(0)
KK ln

1

ε̄
+ f

(0)
IK

]

, (C.4)

TABLE II

The elements of the LO kernels for parton-momentum distributions (Tf = nfTR).

IK A
(0)
KK B

(0)
KK F

(0)
IK (z) maxF

(0)
IK (z)

∫

F
(0)
IK (z)dz

G← G 2CA
11
6 CA −

2
3Tf 2CAz(−2 + z − z2) 0 − 11

6 CA

q ← G 0 0 TRz(z2 + (1− z)2) TR
1
3TR

q̄ ← G 0 0 TRz(z2 + (1− z)2) TR
1
3TR

G← q 0 0 CF (2 − 2z + z2) 2CF
4
3CF

q ← q 2CF
3
2CF CF (−2− z − z2) 0 − 17

6 CF

q̄ ← q 0 0 0 0 0

G← q̄ 0 0 CF (2 − 2z + z2) 2CF
4
3CF

q ← q̄ 0 0 0 0 0

q̄ ← q̄ 2CF
3
2CF CF (−2− z − z2) 0 − 17

6 CF
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where

f
(0)
IK ≡

1
∫

0

dz F
(0)
IK (z) (C.5)

are listed in the Table II.
The momentum-conservation sum rule reads

∑

X

1
∫

0

dz zPXK(t, z) = BKK(t) +
∑

X

1
∫

0

dz FXK(t, z) = 0 , (C.6)

which is manifest in Table II for the LO case but it also holds for the MS
NLO kernels. Note that the above sum rule determines unambiguously the
virtual part of the kernels

BKK = −
∑

X

fXK = −
∑

X

1
∫

0

dz FXK(z) , (C.7)

both in the case of the LO and the NLO.

Appendix D

Generic discrete Markovian process

Diffusion and evolution equations

Let us consider a general “evolution equation” for the multistate discrete

system

∂tNI(t) =
∑

L

PIL(t)NL(t) . (D.1)

Let us ask whether the time dependence of the above system can always be
interpreted (implemented) as a probabilistic stochastic Markovian process,
i.e. in terms of MC events with weight equal to 1. We shall see that this
is not true in the general case and we shall show under which restriction
on the transition matrix PIL the above conjecture on Markovianization is
true. Weighted MC events are excluded from the consideration, i.e. by the
Markovian process we understand the probabilistic process with weight=1
events. Without any loss of generality, in our starting Eq. (D.1) we have
chosen a discrete system in order to simplify the reasoning.

An answer is found by examining a general “diffusion” process in the dis-
crete space. We shall derive the evolution equation (D.1) finding restriction
on the transition matrix PIL. Following this path of reasoning we first define
a general transition probability of an object which is exactly in the state I
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at the initial time t0. The explicit transition probability (t0, I)→ (t1,K) at
the later time t1 > t0 into another state K 6= I is defined as follows

dp(K, t1|I, t0)
∣

∣

K 6=I
= θ(t1 − t0) PKI(t1) dt1 e

−
t1
R

t0

dt′
P

J 6=I

PJI(t′)

. (D.2)

It is properly normalized by the construction, i.e. it must fulfill

∫

t1>t0

∑

K 6=I

dp(k, t1|I, t0) ≡ 1 , (D.3)

for an arbitrary starting point (t0, I). The probability that the transition to
any other state occurs before some time t is obtained as

∫

t0<t1<t

∑

K 6=I

dp(K, t1|I, t0) = 1− e−ΦI(t,t0) , (D.4)

where we have denoted

ΦI(t, t0) =

t
∫

t0

dt′
∑

J 6=I

PJI(t
′). (D.5)

The probability that such a transition occurs after the time t1 = t is just
equal to

∫

t1>t

∑

K 6=I

dp(k, t1|I, t0) = e−ΦI(t,t0) . (D.6)

All the above is a repetition of the very standard description of the Poisso-
nian “decay mechanism” with the “time-dependent” transition (decay) con-
stants PJI(t) > 0; it describes precisely what we basically do understand as
a Markovian process6.

Let us now imagine a very large ensemble of identical objects, each of
them at a given time t in one well defined state k, and evolving statisti-
cally independently according to the transition probability distribution de-
fined above. Let us introduce the population NI(t) of the objects which are
at a given time t in the state I. Given the above probabilistic transition
rule, we may easily calculate the change of the population ∆NI(t) from the
time t to the time t + ∆t. The original population NI(t) is diminished to
NI(t)e

−ΦI (t+∆t,t). At the same time interval ∆t the population of the state I

6 In the literature one may find many different definitions of the Markovian process,
see e.g. [23–25].
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is also increased by the influx from all other states L 6= I by
∑

L6=I PILNL∆t.
Altogether we get

NI(t + ∆t) = NI(t)e
−ΦI (t+∆t,t) +

∑

L6=I

PIL(t)NL(t)∆t , (D.7)

and

∆NI(t) = NI(t + ∆t)−NI(t) = −NI(t)
∑

J 6=I

PJI(t)∆t +
∑

I 6=L

PIL(t)NL(t)∆t ,

(D.8)
or equivalently

∂tNI(t) = −
(

∑

J 6=I

PJI(t)
)

NI(t) +
∑

I 6=L

PIL(t)NL(t). (D.9)

We, therefore, conclude that the differential evolution equation (D.1) can
only be compatible with the probabilistic Markovian process if the following
property of the transition matrix is true

PII(t) ≡ −
∑

J 6=I

PJI(t). (D.10)

This is what we shall always assume to be true in the standard Markovian
process.

The QCD singlet evolution kernels do not fulfill the above condition.
Hence, perfect Markovianization (with weight = 1 events) is not possible in
this context and the use of the weighted events is mandatory, at least at the
internal level of the parton-shower MC. MC events can always be turned
into weight= 1 events with the usual rejection methods, but at some price.
The remedy is to use zPIK(z), which fulfill the above condition, instead of
PIK(z).

Iterative solution

For completness let us write down the iterative solution of the evolution
equation

∂tNI(t) = −RINI(t) +
∑

K 6=I

PIK(t)NK(t), RI ≡ −PII , (D.11)

in the discrete space. The above equation can be easily brought to a homo-
geneous form
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e−ΦI (t,t0)∂t

(

eΦI (t,t0)NI(t)
)

=
∑

K 6=I

PIK(t)NK(t) ,

ΦI(t, t0) ≡

t
∫

t0

dt1 RI(t1) , (D.12)

which then can be turned into an integral equation

NI(t) = e−ΦI (t,t0)NI(t0) +

t
∫

t0

dt1 e−ΦI(t,t1)
∑

K

P ′IK(t1) NK(t1) ,

P ′KJ ≡

{

PKJ , for K 6= J ,
0 , for K = J ,

(D.13)

and finally can be solved by means of multiple iteration

NK(t) = e−ΦK(t,t0)NK(t0) +

∞
∑

n=1

∑

K0,...,Kn−1

n
∏

i=1





t
∫

t0

dti Θ(ti − ti−1)





× e−ΦK(t,tn)
n
∏

i=1

[

P ′KiKi−1
(ti)e

−ΦKi−1
(ti,ti−1)

]

NK0
(t0) , (D.14)

where K ≡ Kn, for the brevity of the notation. The above series of integrals
with positively defined integrands (assuming PIK ≥ 0) can be interpreted in
terms of a random Markovian process starting at t0 and continuing until t.
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