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We have calculated the range of protons and alpha particles in NaI scin-
tillator which is a commonly used substance in scintillation detector manu-
facturing. The electronic stopping power of protons and alpha particles in
NaI is calculated first by using the theoretical formulation of Montenegro
et al. The range calculation has been performed by applying a technique
that we developed in the earlier works. The results are compared with
Monte Carlo simulation program SRIM2003 and PRAL. It is found that
the obtained results are in satisfactory agreement with the literature.

PACS numbers: 29.40.Mc, 78.70.–g

1. Introduction

A scintillator material is that it converts energy lost by ionizing radiation
into pulses of light. For most scintillation counting applications, the ionizing
radiation is in the form of X-rays, γ-rays and α- or β-particles ranging in
energy from a few thousand electron volts to several million electron volts.
Sodium Iodide Thallium doped, NaI (Tl) offers good compromise for all
these specifications but has a low stopping power. It is the most widely used
scintillator. For protons with energies of the order of 50 MeV, the response
of NaI(Tl) crystals is linear [1]. Therefore, NaI scintillators can also be used
for energy measurements of proton beams. The response of protons in a
NaI(Tl) crystal was studied by Romero et al. [2]. They parameterized the
differential light output as a function of the stopping power using the results
of various measurements.

The counting efficiency of a scintillator depends on the thickness, size,
and density of the scintillation material. Besides, energies and type of parti-
cles to be detected for a specific application is important in detector design.

(1847)
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The thickness of a scintillator also determines selected sensitivity of the
detector for a distinct type or energy of radiation. E.g., thin scintillation
crystals have a good sensitivity for low energy X-rays but are almost in-
sensitive to higher energy background radiation [3]. In order to determine
suitable NaI crystal thickness for detectors produced for proton or alpha
particles, it is required to find the penetration depth of these particles to
design suitable detectors.

In the present work, we aimed to find penetration depth of protons and
alpha particles by combining a suitable stopping power mechanism with an
ion range calculation method. We applied the electronic stopping power of
Montenegro et al. [4] to a range calculation method which is a technique
from our pervious work [5,6].

2. Theory

In calculating the ion ranges in solid targets, there are numerous tech-
niques and calculation methods [7,8]. SRIM program uses Monte Carlo
technique to find implanted ion distribution within the matter by tracking
individual trajectories of large number of ions [9]. Among these techniques,
one method was improved by Biersack for slowing down of ions in matter
based on the analysis of directional angular spread of ion motion as a func-
tion of energy [7]. Although this method has been widely used since 1982,
it was Bowyer et al. [10] who revised the projected range algorithm (PRAL)
and called this new set of equations to be Kent range algorithm (KRAL).
Kabadayi et al. [5,6] studied one of these equations by an approximation in
reducing the order of equation for fast numerical solution. In this approach,
the second order ODE is reduced to the first order by dropping off the sec-
ond order derivative. Then the first order differential equation, Eq. (1), is
combined with an universal electronic stopping power formulation of Mon-
tenegro et al. [4]. The first order differential equation to be used in the range
calculation is the following:
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In this equation, Rp stands for the projected range, E is the initial ion energy
and µ = M2/M1, where M1 is the ion mass and M1 is the target mass. Sn

and St stand for the nuclear stopping power and the total stopping power,
respectively. Qn is the second moment of the nuclear energy loss.

Eq. (1) is solved here numerically by using the high order Runge–Kutta
method by the use of the built-in functions in Maple 8 [11] symbolic com-
putation program. In order to solve Eq. (1) numerically, the coefficients
of differential equation must be determined first. These are mainly given
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by the electronic energy loss, nuclear energy loss and the second moment
of nuclear energy loss. In calculating the electronic stopping power Se, the
formulas derived by Montenegro et al. [4] for ions moving in solid targets at
non-relativistic velocities was applied to the coefficients in Eq. (1). These
formulas differ from those used by Ziegler et al. [8] applied to PRAL and
also from those previously used by Bowyer et al. [10] applied to KRAL. This
formula can be applied in a wide energy range with a single expression and
are easy to handle. However, Ziegler’s electronic stopping power expression
consists of different formulas for various energy regions and a number of
fitting parameters which is a time consuming process in the calculation.

The charge state of the projectile during the energy loss procedure have
been studied and has an extensive literature [12–14]. As the ion moves
through the medium, certain events such as excitation, charge exchange,
ionization occur. At high energies, ionization is the main source of energy
loss, however the other processes such as electron capture and loss and ex-
citations become important at low energies. As the Montenegro formula
combines all the probabilities from low, medium and high energy regions,
it takes into account all of the contributions depending on velocity of the
particles. Thus, this technique can be used even for the slow ions since Mon-
tenegro formula is designed for all energy regions and considers contributions
from all energy loss mechanisms [4].

In order to find the nuclear stopping power, we have used the expression
by Ziegler et al. though the contribution of nuclear stopping is small at higher
energies [8]. In order to obtain the projected range with high precision,
especially for low energies, it is necessary to consider higher energy loss
moments in the nuclear stopping. Since the low energy ions are slowed down
mainly by elastic collisions and lose their energy in relatively large amounts,
the electronic straggling is of minor influence at low energies and contributes
to range straggling only at high energy (E ≫ 1 MeV for light ions). Since the
electronic energy loss moment Qe mainly contributes to the range straggling,
and our aim is to find only the range, as for most applications, the second
moment of the electronic energy loss Qe might, therefore, be neglected as in
the Lindhard, Scharff, Schiott (1963), (LSS) calculations [15]. We neglect
the contributions from Qe to the ion range in order to increase computer
efficiency since electronic energy loss straggling mainly contributes to the
range straggling that here we are not interested in. The second moment Qn

of the nuclear energy loss is, however, considered in order to cover all the
energy regions except relativistic ones. It can be calculated using a formula
given by Ziegler et al. [8].
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3. Bragg’s rule

Bragg’s rule which states that the stopping power of a compound may be
calculated by the linear combination of the stopping powers of the individual
elements is used to find the stopping powers in the multi element targets
[16]. We applied Bragg’s rule to find the stopping powers and the second
moment of the stopping powers in NaI target. There is another method to
find the stopping powers in a diatomic target. In this technique, an artificial
single element is formed by taking averaged atomic numbers and averaged
atomic mass of the elements in compound. Bowyer et al. [10] showed that
Bragg’s rule gives better results than the average atomic number technique.
Therefore, in the present work, Bragg’s rule is applied to all stopping powers.
By using Bragg’s rule, input quantities which are of the coefficients in Eq. (1)
can be found as follows: The nuclear and electronic stopping powers for
diatomic NaI target are found first by adding stoichiometrically weighted
stopping powers of each element. Then the total stopping power in the
compound is obtained by adding the electronic and nuclear stopping powers
of each. The same method is applied to the nuclear energy loss moment in
order to find the value of the total nuclear stopping power in NaI scintillator.
(see for details Ref. [6]).

4. Numerical calculation

A computer program has been developed within Maple8 symbolic com-
putation platform and built-in functions of Maple8 are employed to solve
the equation numerically. There are various numerical techniques to solve
Eq. (1) numerically. Bowyer et al. [10] employed iterative refinement tech-
nique based on the method developed by Winterbon [17] and a variable step
ODE solver based on Adam’s method to calculate the ranges of ions in solids
by using their modified set of equations.

In our technique we applied higher order Runge–Kutta method to solve
Eq. (1) numerically [5,6]. The numerical solution of Eq. (1) is, in principle,
the solution of an initial value problem where the initial conditions must
be well defined. In order to find initial conditions, we employed the same
method as that proposed by Biersack [7] in the low energy region. In the first
step of calculation, our algorithm calculates the electronic stopping power,
the nuclear stopping power and the nuclear energy loss straggling. These
results are then used to determine the coefficients of the differential equation
at numerical solution. Afterwards, high order Runge–Kutta solver is applied
to find the numerical solution of Eq. (1).
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5. Results and discussion

The comparison of the range results with the literature for protons and
alpha particles with energies up to 100 MeV are presented for NaI scintillator
target. The results from this work with respect to the range of protons are
compared with the results calculated from PRAL[9] and SRIM2003 (TRIM
part) [9]. In order to find PRAL results, we employed SRIM2003 package.
In the main menu of SRIM2003 package program, we choose “Stopping and
Range Tables” section to generate PRAL results and computer generated list
of stopping and range values. The results referred as SRIM2003 is calculated
by choosing “TRIM calculation” section in the main menu of SRIM2003
package. In our calculation, PRAL and SRIM2003, the atomic density of
NaI target is 3.67 g/cm3. We performed SRIM2003 calculations for 2000
ions per simulation.

Figure 1 is a plot of the range versus the incident protons energies for NaI
target. The solid curve represents the calculated results using our technique,
and squares show the SRIM2003 and comparison with PRAL is also given.
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Fig. 1. Comparison of the calculated ranges of protons in sodium-iodide with
SRIM2003 and PRAL for energies from 100 keV to 100 MeV. The solid line repre-
sents the data calculated by the present method.

We found that our results are systematically lower than the results of
SRIM and PRAL but SRIM and PRAL programs produce similar results.
However, there is an agreement between our results and SRIM for the be-
haviour of range curve over the energy interval from 100 keV to 100 MeV.
The reason for the systematic differences from SRIM is thought to be the
effect of electronic stopping mechanism used. We used Montenegro et al. [4]
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formula for the electronic stopping power. However, the other techniques
use semi-empirical stopping power formulas.

As it is shown in Fig. 2, there is a satisfactory agreement between the
calculated ranges and other methods. This comparison shows that SRIM
and PRAL produce similar results; however, our results somewhat differ
from these results. The differences between our results and SRIM show no
energy dependence and represent the same behaviour over the whole energy
interval. It should be noted that we found some level of agreement with
literature even with the simplifications that we presented in the current
work. The results presented in this work are satisfactory for the range of
protons and alpha particles implanted into NaI. It is not possible to tell
which technique gives better results due to lack of experimental data in the
literature related to this work.
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Fig. 2. Comparison of the calculated values of the range with SRIM2003 and
PRAL for alpha particles implanted into NaI at energies between 100 keV and
100 MeV. The solid line represents the results of this study; the squares represent
the SRIM2003.

We found differences up to 35 percent between our results and SRIM re-
sults. The reason of these differences is mainly arising from the calculation
model of stopping power which is different in SRIM and in our calculation.
SRIM uses semiemprical stopping power calculation model which gives re-
sults in agreement with experiment for the most ion target combination but
it is hard to implement for any practical calculation. The stopping power
model that we used is easy to implement and with a single formula it is pos-
sible to calculate stopping powers for all ion-target combinations and it also
produces fair results for the most of the compared experimental data. There
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could be difference in produced results of SRIM and Montenegro stopping
power model up to 10 percent in some cases. But there is no stopping power
model which gives the best agreement with experiment for all ion-target
combinations and available experimental data is very limited. The other
reason of the differences between the results of our calculation and SRIM is
the calculation method of the range. The technique we used is based on the
transport equation model and resulting equations are solved numerically.
However, numerical uncertainty is within 1 percent in calculation and do
not contribute significantly to the final differences between SRIM and our
method. SRIM program uses Monte Carlo method to calculate the range
and their results can change up to 2 percent depending on the chosen random
number producer seeds.

The electronic energy loss straggling Qe that we neglected in this work
is expected to contribute to the range at higher energies. However, the de-
viations of our data from SRIM are energy independent (e.g., the deviations
did not increase with increasing energies). Therefore, the differences between
SRIM and this work are mainly arising from different treatment of stopping
powers and range calculations in these methods. Although the electronic
energy loss formula that we employed is easy to handle and consists of a
single expression for a wide energy interval, it sacrifices the accuracy if one
assumes that SRIM program produces better results.

We made above comparisons with respect to the SRIM calculations since
we have not found any experimental data in the literature for the range
of protons and alpha particles in NaI scintillator. We observed that the
differences are energy independent and of the order of 35% for protons and
alpha particles when compared with SRIM.

6. Conclusion

This work presents the results of the range calculation for protons and
alpha particles in NaI scintillator. We have used the author’s method from
a pervious work [5,6] to calculate the range of protons and alpha particles.
This method based on the solution of a first order ODE’s for the easy and
efficient calculation of the range in diatomic target materials. Montenegro
et al. formula for the electronic stopping power which is valid for all non-
relativistic energies allowed quick calculation of the ranges of particles for
energies from 100 keV to 100 MeV. Although, the Monte Carlo programs
calculate ion ranges and angular distributions quite well, the major disad-
vantage of this method is that it is inherently a computer time-consuming
procedure since large number of ions is required to simulate only for one
energy input. The proposed method is simpler and satisfactory when com-
pared with similar procedures in the literature. We have found a satisfactory
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agreement for the range of ions for wide energy interval when compared with
the results of SRIM. The calculated values of the range of high energy pro-
tons and alpha particles in sodium iodide-scintillator have been compared
with SRIM and PRAL due to lack of experimental data in the literature.
The comparison shows that the calculated results are in an agreement for
the behaviour of range curve. However, there is a systematic but energy
independent deviation from SRIM. The reason for this systematically lower
range values is thought to be the effect of different treatment of the electronic
stopping power and range method.
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